Chapter 34: P versus NP, A Gentle Introduction

 (Version of 18th December 2022)Pierre Flener

Department of Information Technology
Computing Science Division
Uppsala University
Sweden

Course 1DL231:
Algorithms and Data Structures 2 (AD2)

Outline

Introduction
P and NP
Reduction
and
NP Hardness
NP Com-
pleteness
Relationships
What Now?
(1) Introduction
2) P and NP

3 Reduction and NP Hardness

4 NP Completeness
(5) Relationships
(6) What Now?

AD2

Outline

Introduction
P and NP
Reduction and NP Hardness

NP Com-

 pletenessRelationships What Now?

1) Introduction
(2) P and NP
(3) Reduction and NP Hardness
(4) NP Completeness
5. Relationships
6. What Now?

$(000 k, 1971:$ Levin, 1973$)$

This is one of the seven Millennium Prize problems of the Clay Mathematics Institute (Massachusetts, USA), each worth 1 million US\$.

$(000 K, 1971$, Levin, 1973)

This is one of the seven Millennium Prize problems of the Clay Mathematics Institute (Massachusetts, USA), each worth 1 million US\$.

Informally:
■ $\mathrm{P}=$ class of problems that need no search to be solved NP = class of problems that might need search to solve

(Cook, 1971; Levin, 1973)

This is one of the seven Millennium Prize problems of the Clay Mathematics Institute (Massachusetts, USA), each worth 1 million US\$.

Informally:
■ $\mathrm{P}=$ class of problems that need no search to be solved NP = class of problems that might need search to solve
■ $\mathrm{P}=$ class of problems with easy-to-compute solutions NP = class of problems with easy-to-check solutions

(Cook, 1971; Levin, 1973)

This is one of the seven Millennium Prize problems of the Clay Mathematics Institute (Massachusetts, USA), each worth 1 million US\$.

Informally:

- $\mathrm{P}=$ class of problems that need no search to be solved NP = class of problems that might need search to solve
■ $\mathrm{P}=$ class of problems with easy-to-compute solutions NP = class of problems with easy-to-check solutions
Thus: Can search always be avoided ($\mathrm{P}=\mathrm{NP}$), or is search sometimes necessary ($\mathrm{P} \neq \mathrm{NP}$)?

(Cook, 1971; Levin, 1973)

This is one of the seven Millennium Prize problems of the Clay Mathematics Institute (Massachusetts, USA), each worth 1 million US\$.

Informally:
■ $\mathrm{P}=$ class of problems that need no search to be solved NP = class of problems that might need search to solve
■ $\mathrm{P}=$ class of problems with easy-to-compute solutions NP = class of problems with easy-to-check solutions
Thus: Can search always be avoided ($\mathrm{P}=\mathrm{NP}$), or is search sometimes necessary ($\mathrm{P} \neq \mathrm{NP}$)?

Problems that are solvable in polynomial time (in the input size) are considered tractable, or easy. Problems requiring non-polynomial time are considered intractable, or hard.

Outline

Introduction
P and NP
Reduction
and
NP Hardness
NP Completeness

Relationships
What Now?

(1ntroduction

(2) P and NP

(3) Reduction and NP Hardness
(4) NP Completeness

5 Relationships
6 What Now?

P and NP: Definitions and Examples

A bit more formally, and focussing on decision problems for NP, whose answer is 'yes' or 'no', for inputs of size n :

■ $P=$ the class of easy problems, whose solutions can be computed in polynomial time: $\mathcal{O}\left(n^{k}\right)$ for some fixed k.

P and NP: Definitions and Examples

Introduction

P and NP
Reduction and
NP Hardness
NP Com-
pleteness
Relationships
What Now?

A bit more formally, and focussing on decision problems for NP, whose answer is 'yes' or 'no', for inputs of size n :

■ $P=$ the class of easy problems, whose solutions can be computed in polynomial time: $\mathcal{O}\left(n^{k}\right)$ for some fixed k. Examples: sorting; almost all problems in this course.

P and NP: Definitions and Examples

Introduction

P and NP

Reduction

A bit more formally, and focussing on decision problems for NP, whose answer is 'yes' or 'no', for inputs of size n :

■ $P=$ the class of easy problems, whose solutions can be computed in polynomial time: $\mathcal{O}\left(n^{k}\right)$ for some fixed k. Examples: sorting; almost all problems in this course.
■ NP = the class of problems for which a witness can be checked in polynomial time, when the answer is 'yes'. NP stands for "non-deterministic polynomial time", not for "non-polynomial time". We trivially have $\mathrm{P} \subseteq$ NP.

P and NP: Definitions and Examples

Introduction

P and NP

Reduction
and
NP Hardness
NP Com-
pleteness
Relationships
What Now?

A bit more formally, and focussing on decision problems for NP, whose answer is 'yes' or 'no', for inputs of size n :

■ $P=$ the class of easy problems, whose solutions can be computed in polynomial time: $\mathcal{O}\left(n^{k}\right)$ for some fixed k. Examples: sorting; almost all problems in this course.
■ NP = the class of problems for which a witness can be checked in polynomial time, when the answer is 'yes'. NP stands for "non-deterministic polynomial time", not for "non-polynomial time". We trivially have $\mathrm{P} \subseteq$ NP. Example (factoring): Given an n-digit number, does it have a divisor ending in 7 ? Computing such a divisor seems hard, but checking a candidate divisor is easy.

P and NP: Definitions and Examples

A bit more formally, and focussing on decision problems for NP, whose answer is 'yes' or 'no', for inputs of size n :

■ $P=$ the class of easy problems, whose solutions can be computed in polynomial time: $\mathcal{O}\left(n^{k}\right)$ for some fixed k. Examples: sorting; almost all problems in this course.

- NP = the class of problems for which a witness can be checked in polynomial time, when the answer is 'yes'. NP stands for "non-deterministic polynomial time", not for "non-polynomial time". We trivially have $\mathrm{P} \subseteq \mathrm{NP}$. Example (factoring): Given an n-digit number, does it have a divisor ending in 7 ? Computing such a divisor seems hard, but checking a candidate divisor is easy.
- Undecidable problems cannot be solved by any algorithm, no matter how much time is allocated.

P and NP: Definitions and Examples

A bit more formally, and focussing on decision problems for NP, whose answer is 'yes' or 'no', for inputs of size n :

- $P=$ the class of easy problems, whose solutions can be computed in polynomial time: $\mathcal{O}\left(n^{k}\right)$ for some fixed k. Examples: sorting; almost all problems in this course.
- NP = the class of problems for which a witness can be checked in polynomial time, when the answer is 'yes'. NP stands for "non-deterministic polynomial time", not for "non-polynomial time". We trivially have $\mathrm{P} \subseteq \mathrm{NP}$. Example (factoring): Given an n-digit number, does it have a divisor ending in 7 ? Computing such a divisor seems hard, but checking a candidate divisor is easy.
- Undecidable problems cannot be solved by any algorithm, no matter how much time is allocated. Examples: halting problem; disjointness of two CFLs.

P and NP: Definitions and Examples

A bit more formally, and focussing on decision problems for NP, whose answer is 'yes' or 'no', for inputs of size n :

■ $P=$ the class of easy problems, whose solutions can be computed in polynomial time: $\mathcal{O}\left(n^{k}\right)$ for some fixed k. Examples: sorting; almost all problems in this course.
■ NP = the class of problems for which a witness can be checked in polynomial time, when the answer is 'yes'. NP stands for "non-deterministic polynomial time", not for "non-polynomial time". We trivially have $\mathrm{P} \subseteq$ NP. Example (factoring): Given an n-digit number, does it have a divisor ending in 7 ? Computing such a divisor seems hard, but checking a candidate divisor is easy.
■ Undecidable problems cannot be solved by any algorithm, no matter how much time is allocated. Examples: halting problem; disjointness of two CFLs. So not all problems are in NP, independently of P versus NP.

Outline

Introduction
P and NP
Reduction and NP Hardness

NP Completeness

Relationships
What Now?

(1ntroduction

3 Reduction and NP Hardness

(4) NP Completeness

5. Relationships

6. What Now?

Reduction and NP Hardness

(Karp, 1972)

Informally:

Introduction
P and NP
Reduction
and NP Hardness

■ A problem Q reduces to a problem R, denoted $Q \leq_{p} R$, if every instance of Q can be transformed in poly time into an instance of R that has the same yes/no answer.

Reduction and NP Hardness

(Karp, 1972)

Informally:

Introduction
P and NP
Reduction
and NP Hardness

■ A problem Q reduces to a problem R, denoted $Q \leq_{p} R$, if every instance of Q can be transformed in poly time into an instance of R that has the same yes/no answer. We also say that R is at least as hard as Q.

Reduction and NP Hardness

(Karp, 1972)

Informally:

■ A problem Q reduces to a problem R, denoted $Q \leq_{p} R$, if every instance of Q can be transformed in poly time into an instance of R that has the same yes/no answer. We also say that R is at least as hard as Q. Note that \leq_{p} is transitive: $\forall Q, E, R: Q \leq_{\mathrm{p}} E \leq_{\mathrm{p}} R \Rightarrow Q \leq_{\mathrm{p}} R$.

Reduction and NP Hardness

Informally:

Introduction

P and NP
Reduction
and NP Hardness

NP Completeness

■ A problem Q reduces to a problem R, denoted $Q \leq_{\mathrm{p}} R$, if every instance of Q can be transformed in poly time into an instance of R that has the same yes/no answer. We also say that R is at least as hard as Q. Note that \leq_{P} is transitive: $\forall Q, E, R: Q \leq_{\mathrm{P}} E \leq_{\mathrm{P}} R \Rightarrow Q \leq_{\mathrm{P}} R$.

■ Proving that a problem Q is in P is doable by showing that $Q \leq_{P} E$ for some existing problem E in P.

Reduction and NP Hardness

Informally:

Introduction

P and NP

Reduction
and NP Hardness

NP Completeness

■ A problem Q reduces to a problem R, denoted $Q \leq_{\mathrm{p}} R$, if every instance of Q can be transformed in poly time into an instance of R that has the same yes/no answer. We also say that R is at least as hard as Q. Note that \leq_{P} is transitive: $\forall Q, E, R: Q \leq_{\mathrm{p}} E \leq_{\mathrm{P}} R \Rightarrow Q \leq_{\mathrm{p}} R$.

■ Proving that a problem Q is in P is doable by showing that $Q \leq_{\mathrm{P}} E$ for some existing problem E in P .

■ A problem is NP-hard if it is at least as hard as every problem in NP: every problem in NP reduces to it.

Reduction and NP Hardness

Informally:

■ A problem Q reduces to a problem R, denoted $Q \leq_{\mathrm{P}} R$, if every instance of Q can be transformed in poly time into an instance of R that has the same yes/no answer. We also say that R is at least as hard as Q. Note that \leq_{P} is transitive: $\forall Q, E, R: Q \leq_{\mathrm{P}} E \leq_{\mathrm{P}} R \Rightarrow Q \leq_{\mathrm{P}} R$.

■ Proving that a problem Q is in P is doable by showing that $Q \leq_{\mathrm{P}} E$ for some existing problem E in P .

■ A problem is NP-hard if it is at least as hard as every problem in NP: every problem in NP reduces to it.

■ On slide 19 is a wider definition of NP hardness.

Outline

Introduction
P and NP
Reduction
and
NP Hardness
NP Completeness

Relationships
What Now?

(1) Introduction

2. Pand NP

3 Reduction and NP Hardness

4 NP Completeness

5 Relationships

6 What Now?

NP Completeness (Cook, 1971; Levin, 1973)

Formally:

■ A problem is NP-complete if it is in NP and is NP-hard.

Introduction
P and NP
Reduction
and
NP Hardness
NP Completeness

Relationships
What Now?

NP Completeness (Cook, 1971; Levin, 1973)

Formally:
■ A problem is NP-complete if it is in NP and is NP-hard. If some NP-complete problem is polynomial-time solvable, then every problem in NP is poly-time solvable: $\mathrm{P} \supseteq \mathrm{NP}$.

NP Completeness (Cook, 1971; Levin, 1973)

Formally:
■ A problem is NP-complete if it is in NP and is NP-hard. If some NP-complete problem is polynomial-time solvable, then every problem in NP is poly-time solvable: $\mathrm{P} \supseteq \mathrm{NP}$.

An NP-complete problem is poly-time solvable iff $P=N P$.

NP Completeness (Cook, 1971; Levin, 1973)

Formally:
■ A problem is NP-complete if it is in NP and is NP-hard. If some NP-complete problem is polynomial-time solvable, then every problem in NP is poly-time solvable: $\mathrm{P} \supseteq$ NP.

An NP-complete problem is poly-time solvable iff $P=N P$.
If some problem in NP is not poly-time solvable ($P \neq N P$), then no NP-complete problem is polynomial-time solvable.

NP Completeness (Cook, 1971; Levin, 1973)

Formally:
\square A problem is NP-complete if it is in NP and is NP-hard. If some NP-complete problem is polynomial-time solvable, then every problem in NP is poly-time solvable: $\mathrm{P} \supseteq$ NP.

An NP-complete problem is poly-time solvable iff $P=N P$.
If some problem in NP is not poly-time solvable ($P \neq N P$), then no NP-complete problem is polynomial-time solvable.

The status of NP-complete problems is currently unknown: No polynomial-time algorithm was found for any of them, and no proof was made that no such algorithm can exist.

NP Completeness (Cook, 1971; Levin, 1973)

Formally:

\square A problem is NP-complete if it is in NP and is NP-hard. If some NP-complete problem is polynomial-time solvable, then every problem in NP is poly-time solvable: $\mathrm{P} \supseteq$ NP.

An NP-complete problem is poly-time solvable iff $P=N P$.
If some problem in NP is not poly-time solvable ($P \neq N P$), then no NP-complete problem is polynomial-time solvable.

The status of NP-complete problems is currently unknown: No polynomial-time algorithm was found for any of them, and no proof was made that no such algorithm can exist.

Most experts believe NP-complete problems are intractable, as the opposite would be truly amazing.

NP Completeness: Examples

Given a digraph (V, E) :

Examples

■ Finding a shortest path takes

NP Completeness: Examples

Given a digraph (V, E):

Examples

■ Finding a shortest path takes $\mathcal{O}(V \cdot E)$ time and is in P .

Reduction

NP Completeness: Examples

Given a digraph (V, E) :

Introduction
P and NP
Reduction

Examples

■ Finding a shortest path takes $\mathcal{O}(V \cdot E)$ time and is in P .
■ Determining the existence of a simple path (which has distinct vertices) that has at least a given number ℓ of edges is NP-complete.

NP Completeness: Examples

Given a digraph (V, E) :

Introduction
P and NP
Reduction
and
NP Hardness
NP Completeness

Examples

■ Finding a shortest path takes $\mathcal{O}(V \cdot E)$ time and is in P .

- Determining the existence of a simple path (which has distinct vertices) that has at least a given number ℓ of edges is NP-complete. Hence finding a longest path seems hard: increase ℓ starting from a trivial lower bound, until answer is 'no'.

NP Completeness: Examples

Given a digraph (V, E):

Introduction
P and NP
Reduction
and
NP Hardness
NP Completeness

Relationships
What Now?

Examples

■ Finding a shortest path takes $\mathcal{O}(V \cdot E)$ time and is in P .

- Determining the existence of a simple path (which has distinct vertices) that has at least a given number ℓ of edges is NP-complete. Hence finding a longest path seems hard: increase ℓ starting from a trivial lower bound, until answer is 'no'.

Examples

■ Finding an Euler tour (which visits each edge once) takes

NP Completeness: Examples

Given a digraph (V, E) :

Introduction
P and NP
Reduction
and
NP Hardness
NP Com-

Examples

■ Finding a shortest path takes $\mathcal{O}(V \cdot E)$ time and is in P .

- Determining the existence of a simple path (which has distinct vertices) that has at least a given number ℓ of edges is NP-complete. Hence finding a longest path seems hard: increase ℓ starting from a trivial lower bound, until answer is 'no'.

Examples

■ Finding an Euler tour (which visits each edge once) takes $\mathcal{O}(E)$ time and is thus in P .

NP Completeness: Examples

Given a digraph (V, E) :

Introduction
P and NP
Reduction
and
NP Hardness
NP Completeness

Relationships
What Now?

Examples
■ Finding a shortest path takes $\mathcal{O}(V \cdot E)$ time and is in P .
■ Determining the existence of a simple path (which has distinct vertices) that has at least a given number ℓ of edges is NP-complete. Hence finding a longest path seems hard: increase ℓ starting from a trivial lower bound, until answer is 'no'.

Examples

■ Finding an Euler tour (which visits each edge once) takes $\mathcal{O}(E)$ time and is thus in P .

- Determining the existence of a Hamiltonian cycle (which visits each vertex once) is NP-complete.

NP Completeness: More Examples

Examples

■ 2-SAT: Determining the satisfiability of a conjunction of disjunctions of 2 Boolean literals is in P .

NP Completeness: More Examples

Examples

■ 2-SAT: Determining the satisfiability of a conjunction of disjunctions of 2 Boolean literals is in P .

- 3-SAT: Determining the satisfiability of a conjunction of disjunctions of 3 Boolean literals is NP-complete.

NP Completeness: More Examples

Examples

■ 2-SAT: Determining the satisfiability of a conjunction of disjunctions of 2 Boolean literals is in P .

- 3-SAT: Determining the satisfiability of a conjunction of disjunctions of 3 Boolean literals is NP-complete.
- SAT: Determining the satisfiability of a formula over Boolean literals is NP-complete.

NP Completeness: More Examples

Examples

- 2-SAT: Determining the satisfiability of a conjunction of disjunctions of 2 Boolean literals is in P .
■ 3-SAT: Determining the satisfiability of a conjunction of disjunctions of 3 Boolean literals is NP-complete.
- SAT: Determining the satisfiability of a formula over Boolean literals is NP-complete.
- Clique: Determining the existence of a clique (complete subgraph) of a given size in a graph is NP-complete.

NP Completeness: More Examples

Examples

- 2-SAT: Determining the satisfiability of a conjunction of disjunctions of 2 Boolean literals is in P .
■ 3-SAT: Determining the satisfiability of a conjunction of disjunctions of 3 Boolean literals is NP-complete.
- SAT: Determining the satisfiability of a formula over Boolean literals is NP-complete.
- Clique: Determining the existence of a clique (complete subgraph) of a given size in a graph is NP-complete.
- Vertex Cover: Determining the existence of a vertex cover (a vertex subset with at least one endpoint for all edges) of a given size in a graph is NP-complete.

NP Completeness: More Examples

Examples

- 2-SAT: Determining the satisfiability of a conjunction of disjunctions of 2 Boolean literals is in P .
■ 3-SAT: Determining the satisfiability of a conjunction of disjunctions of 3 Boolean literals is NP-complete.
- SAT: Determining the satisfiability of a formula over Boolean literals is NP-complete.
- Clique: Determining the existence of a clique (complete subgraph) of a given size in a graph is NP-complete.
- Vertex Cover: Determining the existence of a vertex cover (a vertex subset with at least one endpoint for all edges) of a given size in a graph is NP-complete.
■ Subset Sum: Determining the existence of a subset, of a given set, that has a given sum is NP-complete.

Introduction
P and NP
Reduction
and
NP Hardness
NP Completeness

Relationships
What Now?

Pseudo-Polynomial Algorithms

Example (Subset Sum)

Determining the existence of a subset, of a given set S of n numbers, that has a given sum t is NP-complete:

Pseudo-Polynomial Algorithms

Example (Subset Sum)

Determining the existence of a subset, of a given set S of n numbers, that has a given sum t is NP-complete:

- A dynamic programming algorithm takes $\mathcal{O}(n \cdot t)$ time, as each entry in its $n \times t$ table is found in $\mathcal{O}(1)$ time.

Pseudo-Polynomial Algorithms

Example (Subset Sum)

Determining the existence of a subset, of a given set S of n numbers, that has a given sum t is NP-complete:

- A dynamic programming algorithm takes $\mathcal{O}(n \cdot t)$ time, as each entry in its $n \times t$ table is found in $\mathcal{O}(1)$ time.
■ This is polynomial in the size n of the input set S and polynomial in the magnitude of the input t, which can be large depending on n and the numbers in S.

Pseudo-Polynomial Algorithms

Example (Subset Sum)

Determining the existence of a subset, of a given set S of n numbers, that has a given sum t is NP-complete:

- A dynamic programming algorithm takes $\mathcal{O}(n \cdot t)$ time, as each entry in its $n \times t$ table is found in $\mathcal{O}(1)$ time.
■ This is polynomial in the size n of the input set S and polynomial in the magnitude of the input t, which can be large depending on n and the numbers in S.
■ This is exponential in the size $\left\lceil\log _{b} t\right\rceil$ of the base- b representation of t, since $t=b^{\log _{b} t}$ (usually: $b=2$).

Pseudo-Polynomial Algorithms

Example (Subset Sum)

Determining the existence of a subset, of a given set S of n numbers, that has a given sum t is NP-complete:

- A dynamic programming algorithm takes $\mathcal{O}(n \cdot t)$ time, as each entry in its $n \times t$ table is found in $\mathcal{O}(1)$ time.
- This is polynomial in the size n of the input set S and polynomial in the magnitude of the input t, which can be large depending on n and the numbers in S.
- This is exponential in the size $\left\lceil\log _{b} t\right\rceil$ of the base-b representation of t, since $t=b^{\log _{b} t}$ (usually: $b=2$).

Definition

An algorithm of complexity polynomial in the magnitude of its input numbers is said to be pseudo-polynomial.

NP Completeness: Proof by Reduction

Proving that a problem R of NP is NP-complete is doable by showing $E \leq_{\mathrm{p}} R$ for some existing NP-complete problem E, since by definition $Q \leq_{\mathrm{p}} E$ for every problem Q in NP.

NP Completeness: Proof by Reduction

Proving that a problem R of NP is NP-complete is doable by showing $E \leq_{P} R$ for some existing NP-complete problem E, since by definition $Q \leq_{\mathrm{P}} E$ for every problem Q in NP. If a poly-time algorithm for R existed, then we would have a poly-time algorithm for E, which would lead to $P=N P$.

NP Completeness: Proof by Reduction

Proving that a problem R of NP is NP-complete is doable by showing $E \leq_{P} R$ for some existing NP-complete problem E, since by definition $Q \leq_{\mathrm{P}} E$ for every problem Q in NP. If a poly-time algorithm for R existed, then we would have a poly-time algorithm for E, which would lead to $P=N P$.

Examples (exercises will be given in the AD3 course)

■ SAT is NP-complete (Cook, 1971; Levin, 1973).

NP Completeness: Proof by Reduction

Proving that a problem R of NP is NP-complete is doable by showing $E \leq_{P} R$ for some existing NP-complete problem E, since by definition $Q \leq_{\mathrm{P}} E$ for every problem Q in NP. If a poly-time algorithm for R existed, then we would have a poly-time algorithm for E, which would lead to $P=N P$.

Examples (exercises will be given in the AD3 course)

- SAT is NP-complete (Cook, 1971; Levin, 1973).

■ SAT reduces to 3-SAT, but not to 2-SAT.

NP Completeness: Proof by Reduction

Proving that a problem R of NP is NP-complete is doable by showing $E \leq_{P} R$ for some existing NP-complete problem E, since by definition $Q \leq_{\mathrm{p}} E$ for every problem Q in NP. If a poly-time algorithm for R existed, then we would have a poly-time algorithm for E, which would lead to $P=N P$.

Examples (exercises will be given in the AD3 course)

- SAT is NP-complete (Cook, 1971; Levin, 1973).
- SAT reduces to 3-SAT, but not to 2-SAT.
- 3-SAT reduces to Clique and Subset Sum.

NP Completeness: Proof by Reduction

Proving that a problem R of NP is NP-complete is doable by showing $E \leq_{P} R$ for some existing NP-complete problem E, since by definition $Q \leq_{\mathrm{P}} E$ for every problem Q in NP. If a poly-time algorithm for R existed, then we would have a poly-time algorithm for E, which would lead to $P=N P$.

Examples (exercises will be given in the AD3 course)

- SAT is NP-complete (Cook, 1971; Levin, 1973).

■ SAT reduces to 3-SAT, but not to 2-SAT.

- 3-SAT reduces to Clique and Subset Sum.
- Clique reduces to Vertex Cover, which reduces to Hamiltonian Cycle, which reduces to Travelling Salesperson (TSP), asking if there is a Hamiltonian cycle with cost at most k in a complete weighted graph.

Outline

Introduction
P and NP
Reduction and NP Hardness

NP Completeness
(1) Introduction
2. Pand NP

3) Reduction and NP Hardness

4 NP Completeness

(5) Relationships

6 What Now?

Reduction

Relationships

Introduction
P and NP
 ?

$P \neq N P$

$$
P=N P
$$

© Wikimedia Commons

Introduction
P and NP
Reduction

Remarks

■ If $P \neq N P$, then there exist problems in NP that are neither in P nor NP-complete. Artificial such problems can be constructed, but integer factorisation and graph isomorphism are practical problems in NP that are currently not known to be in P or to be NP-complete.
■ There exist many other complexity classes, chartering the territory outside NP, some of them overlapping with the NP-hard class, and containing practical problems, such as planning. Determining a precise complexity map is contingent upon settling the P versus NP issue.

Remarks

■ If $P \neq N P$, then there exist problems in NP that are neither in P nor NP-complete. Artificial such problems can be constructed, but integer factorisation and graph isomorphism are practical problems in NP that are currently not known to be in P or to be NP-complete.
■ There exist many other complexity classes, chartering the territory outside NP, some of them overlapping with the NP-hard class, and containing practical problems, such as planning. Determining a precise complexity map is contingent upon settling the P versus NP issue.
■ The stable matching problem is believed by many to be hard, but it can be solved in $\mathcal{O}(n)$ time for n hospitals \& n students, and is thus in P (Gale and Shapley, 1962). Shapley shared the Nobel Prize in Economics 2012.

Outline

Introduction
P and NP
Reduction
and
NP Hardness
NP Completeness

Relationships
What Now?

1. Introduction

(3) Reduction and NP Hardness
(4) NP Completeness
5. Relationships

6 What Now?

AD2

What Now?

In a satisfaction problem, a 'yes' answer includes a witness. In an optimisation problem, a 'yes' answer includes an optimal witness according to some cost function.

What Now?

In a satisfaction problem, a 'yes' answer includes a witness. In an optimisation problem, a 'yes' answer includes an optimal witness according to some cost function. Satisfaction and optimisation problems with NP-complete decision problems are often also said to be NP-hard. (Recall the method on slide 11 for finding a longest path.)

What Now?

In a satisfaction problem, a 'yes' answer includes a witness. In an optimisation problem, a 'yes' answer includes an optimal witness according to some cost function. Satisfaction and optimisation problems with NP-complete decision problems are often also said to be NP-hard. (Recall the method on slide 11 for finding a longest path.)
Several courses at Uppsala University teach techniques for addressing NP-hard optimisation or satisfaction problems:

■ Algorithms and Datastructures 3 (1DL481) (period 3)
■ Continuous Optimisation (1TD184) (period 2)
■ Modelling for Combinatorial Optim. (1DL451) (period 1)
■ CO \& Constraint Programming (1DL442) (periods 1+2) NP completeness is where the fun begins (not ends)!

