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P ?
= NP (Cook, 1971; Levin, 1973)

This is one of the seven Millennium Prize problems of the
Clay Mathematics Institute (Massachusetts, USA),
each worth 1 million US$.

Informally:
P = class of problems that need no search to be solved
NP = class of problems that might need search to solve
P = class of problems with easy-to-compute solutions
NP = class of problems with easy-to-check solutions

Thus: Can search always be avoided (P = NP),
or is search sometimes necessary (P ̸= NP)?

Problems that are solvable in polynomial time (in the input
size) are considered tractable, or easy. Problems requiring
non-polynomial time are considered intractable, or hard.
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P and NP: Definitions and Examples

A bit more formally, and focussing on decision problems
for NP, whose answer is ‘yes’ or ‘no’, for inputs of size n:

P = the class of easy problems, whose solutions can be
computed in polynomial time: O(nk ) for some fixed k .
Examples: sorting; almost all problems in this course.
NP = the class of problems for which a witness can be
checked in polynomial time, when the answer is ‘yes’.
NP stands for “non-deterministic polynomial time”,
not for “non-polynomial time”. We trivially have P ⊆ NP.
Example (factoring): Given an n-digit number, does it
have a divisor ending in 7? Computing such a divisor
seems hard, but checking a candidate divisor is easy.
Undecidable problems cannot be solved by any
algorithm, no matter how much time is allocated.
Examples: halting problem; disjointness of two CFLs.

So not all problems are in NP, independently of P versus NP.
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Reduction and NP Hardness (Karp, 1972)

Informally:

A problem Q reduces to a problem R, denoted Q ≤P R,
if every instance of Q can be transformed in poly time
into an instance of R that has the same yes/no answer.

We also say that R is at least as hard as Q. Note that
≤P is transitive: ∀Q,E ,R : Q ≤P E ≤P R ⇒ Q ≤P R.

Proving that a problem Q is in P is doable by showing
that Q ≤P E for some existing problem E in P.

A problem is NP-hard if it is at least as hard as every
problem in NP: every problem in NP reduces to it.

On slide 19 is a wider definition of NP hardness.
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NP Completeness (Cook, 1971; Levin, 1973)

Formally:
A problem is NP-complete if it is in NP and is NP-hard.

If some NP-complete problem is polynomial-time solvable,
then every problem in NP is poly-time solvable: P ⊇ NP.

An NP-complete problem is poly-time solvable iff P = NP.

If some problem in NP is not poly-time solvable (P ̸= NP),
then no NP-complete problem is polynomial-time solvable.

The status of NP-complete problems is currently unknown:
No polynomial-time algorithm was found for any of them,
and no proof was made that no such algorithm can exist.

Most experts believe NP-complete problems are intractable,
as the opposite would be truly amazing.
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NP Completeness: Examples

Given a digraph (V ,E):

Examples
Finding a shortest path takes

O(V · E) time and is in P.
Determining the existence of a simple path (which has
distinct vertices) that has at least a given number ℓ of
edges is NP-complete.
Hence finding a longest path seems hard: increase ℓ
starting from a trivial lower bound, until answer is ‘no’.

Examples
Finding an Euler tour (which visits each edge once)
takes O(E) time and is thus in P.
Determining the existence of a Hamiltonian cycle
(which visits each vertex once) is NP-complete.
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Finding an Euler tour (which visits each edge once)
takes O(E) time and is thus in P.
Determining the existence of a Hamiltonian cycle
(which visits each vertex once) is NP-complete.
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NP Completeness: More Examples

Examples
2-SAT: Determining the satisfiability of a conjunction of
disjunctions of 2 Boolean literals is in P.

3-SAT: Determining the satisfiability of a conjunction of
disjunctions of 3 Boolean literals is NP-complete.
SAT: Determining the satisfiability of a formula over
Boolean literals is NP-complete.
Clique: Determining the existence of a clique (complete
subgraph) of a given size in a graph is NP-complete.
Vertex Cover: Determining the existence of a vertex
cover (a vertex subset with at least one endpoint for all
edges) of a given size in a graph is NP-complete.
Subset Sum: Determining the existence of a subset, of
a given set, that has a given sum is NP-complete.
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Pseudo-Polynomial Algorithms

Example (Subset Sum)
Determining the existence of a subset, of a given set S
of n numbers, that has a given sum t is NP-complete:

A dynamic programming algorithm takes O(n · t) time,
as each entry in its n × t table is found in O(1) time.
This is polynomial in the size n of the input set S
and polynomial in the magnitude of the input t , which
can be large depending on n and the numbers in S.
This is exponential in the size ⌈logb t⌉ of the base-b
representation of t , since t = blogb t (usually: b = 2).

Definition
An algorithm of complexity polynomial in the magnitude of
its input numbers is said to be pseudo-polynomial.
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NP Completeness: Proof by Reduction

Proving that a problem R of NP is NP-complete is doable by
showing E ≤P R for some existing NP-complete problem E ,
since by definition Q ≤P E for every problem Q in NP.

If a poly-time algorithm for R existed, then we would have a
poly-time algorithm for E , which would lead to P = NP.

Examples (exercises will be given in the AD3 course)
SAT is NP-complete (Cook, 1971; Levin, 1973).
SAT reduces to 3-SAT, but not to 2-SAT.
3-SAT reduces to Clique and Subset Sum.
Clique reduces to Vertex Cover, which reduces to
Hamiltonian Cycle, which reduces to Travelling
Salesperson (TSP), asking if there is a Hamiltonian
cycle with cost at most k in a complete weighted graph.
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Remarks

If P ̸= NP, then there exist problems in NP that are
neither in P nor NP-complete. Artificial such problems
can be constructed, but integer factorisation and graph
isomorphism are practical problems in NP that are
currently not known to be in P or to be NP-complete.

There exist many other complexity classes, chartering
the territory outside NP, some of them overlapping with
the NP-hard class, and containing practical problems,
such as planning. Determining a precise complexity
map is contingent upon settling the P versus NP issue.

The stable matching problem is believed by many to be
hard, but it can be solved in O(n) time for n hospitals &
n students, and is thus in P (Gale and Shapley, 1962).
Shapley shared the Nobel Prize in Economics 2012.
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What Now?

In a satisfaction problem, a ‘yes’ answer includes a witness.
In an optimisation problem, a ‘yes’ answer includes an
optimal witness according to some cost function.

Satisfaction and optimisation problems with NP-complete
decision problems are often also said to be NP-hard.
(Recall the method on slide 11 for finding a longest path.)

Several courses at Uppsala University teach techniques for
addressing NP-hard optimisation or satisfaction problems:

Algorithms and Datastructures 3 (1DL481) (period 3)
Continuous Optimisation (1TD184) (period 2)
Modelling for Combinatorial Optim. (1DL451) (period 1)
CO & Constraint Programming (1DL442) (periods 1+2)

☞ NP completeness is where the fun begins (not ends)!
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