## Chapter 32: String Matching

## Fall 2007

Simonas Šaltenis
simas@cs.aau.dk

Modified by Pierre Flener (version of 30 November 2016)

## String Matching Algorithms

- Goals of the lecture:
- Naïve string matching algorithm and analysis
- Rabin-Karp algorithm (1987) and its analysis
- Knuth-Morris-Pratt algorithm (1977) ideas
- Turing Awards:
- 1974: Donald Knuth
- 1976: Michael Rabin
- 1985: Richard Karp


## String Matching Problem

- Input:
- Text $T=$ "at the thought of"
- $n=$ length $(T)=17$
- Pattern $P=$ "the"
- $m=$ length $(P)=3 \quad$ We assume $m \leq n$.
- Output: (CLRS indexes from $1 \&$ aims at all shifts)
- Shift $s$ - the smallest integer ( $0 \leq s \leq n-m$ ) such that $T[s . . s+m-1]=P[0 . . m-1]$. Returns -1 if no such $s$ exists.



## Naïve String Matching

- Idea: Brute force
- Check all values of $s$ from 0 to $n-m$

Naïve-Matcher (T, P)

```
01 for \(s \leftarrow 0\) to \(n-m\) do
\(02 \quad j \leftarrow 0\)
03 // check if \(T[s . . s+m-1]=P[0 . . m-1]\)
04 while \(T[s+j]=P[j]\) do
\(05 \quad j \leftarrow j+1\)
06 if \(j=m\) then return \(s\)
07 return -1
```

- Let $T=$ "at the thought of" and $P=$ "though"
- What is the number of character comparisons?


## Analysis of Naïve String Matching

- The analysis is made for finding all shifts
- Worst case:
- Outer loop: $n-m+1$ iterations
- Inner loop: max $m$ constant-time iterations
- Total: $\max (n-m+1) m=O(n m)$, as $m \leq n$
- What input gives this worst-case behaviour?
- Best case: $\Theta(n-m+1)$
- When?
- Completely random text and pattern:
- $O(n-m)$


## Analysis of Naïve String Matching

- The analysis is made for finding all shifts
- Worst case:
- Outer loop: $n-m+1$ iterations
- Inner loop: max $m$ constant-time iterations
- Total: $\max (n-m+1) m=O(n m)$, as $m \leq n$
- What input gives this worst-case behaviour? Examples: $P=a^{m}$ and $T=a^{n} ; P=a^{m-1} b$ and $T=a^{n}$
- Best case: $\Theta(n-m+1)$
- When?
- Completely random text and pattern:
- $O(n-m)$


## Analysis of Naïve String Matching

- The analysis is made for finding all shifts
- Worst case:
- Outer loop: $n-m+1$ iterations
- Inner loop: max $m$ constant-time iterations
- Total: $\max (n-m+1) m=O(n m)$, as $m \leq n$
- What input gives this worst-case behaviour? Examples: $P=a^{m}$ and $T=a^{n} ; P=a^{m-1} b$ and $T=a^{n}$
- Best case: $\Theta(n-m+1)$
- When? Example: $P[0]$ is not in $T$
- Completely random text and pattern:
- $O(n-m)$


## Fingerprint Idea

- Assume:
- We can compute a fingerprint $f(P)$ of $P$ in $\Theta(m)$ time; similarly for $f(T[0 . . m-1])$
- $f(P) \neq f(t) \Rightarrow P \neq t$ for any $t=T[s . . s+m-1]$
- We can compare fingerprints in $O(1)$ time
- We can compute $f^{\prime}=f(T[s+1$.. $s+m])$ from $f(T[s . . s+m-1])$ in $O(1)$ time



## Algorithm with Fingerprints

- Let the alphabet $\Sigma=\{0,1,2,3,4,5,6,7,8,9\}$
- Let the fingerprint be a decimal number, i.e., $f\left(" 2045^{\prime \prime}\right)=2 * 10^{3}+0 * 10^{2}+4^{*} 10^{1}+5=2045$

Fingerprint-Matcher (T, P)

```
0 1 ~ f p ~ \leftarrow ~ c o m p u t e ~ f ( P )
0 2 ~ f t ~ \leftarrow ~ c o m p u t e ~ f ( T [ 0 . . m - 1 ] )
0 3 \text { for s } \leftarrow 0 \text { to n - m do}
04 if fp = ft then return s
05 ft \leftarrow(ft - T[s]*10m-1)*10 + T[s+m]
0 6 ~ r e t u r n ~ - 1 ~
```



- Running time: $2 \Theta(m)+\Theta(n-m)=\Theta(n)$, as $m \leq n$
- Where is the catch?! There are two, actually.


## Using a Hash Function

- First problem: We cannot assume $m$-digit number arithmetic works in $O(1)$ time!
- Solution = hashing: $h(s)=f(s) \bmod q$
- Example: if $q=7$, then $h\left(" 52^{\prime \prime}\right)=52 \bmod 7=3$
- We now indeed have: $h(P) \neq h(t) \Rightarrow P \neq t$
- Second problem: the inverse contrapositive " $f(P)=f(t) \Rightarrow P=t$ " of (*) was not assumed!
- Example: if $q=7$ then $h(" 59$ ") $=3$, but " 59 " $\neq 52$ "
- Basic "mod $q$ " arithmetic:
- $(a+b) \bmod q=(a \bmod q+b \bmod q) \bmod q$
- $\left(a^{*} b\right) \bmod q=(a \bmod q) *(b \bmod q) \bmod q_{10}$


## Preprocessing and Stepping

- Preprocessing, using Horner's rule and 'mod' laws:
- $f p=\left(10^{*}\left(\ldots *\left(10^{*}(10 * 0+P[0])+P[1]\right)+\ldots\right)+P[m-1]\right) \bmod q$
- In the same way, compute ft from $T[0 . . m-1$ ]
- Exercise: Let $P=" 2531$ " and $q=7$ : what is $f p$ ?
- Stepping:
- $\left.f t \leftarrow\left(f t-T[s]^{*} 10^{m-1} \bmod q\right)^{*} 10+T[s+m]\right) \bmod q$
- $10^{m-1} \bmod q$ can be computed once, in the preprocessing
- Exercise: Let $T[\ldots]=$ " 5319 " and $q=7$ : what is the new $f t$ when $T[s+m]=" 7$ "?



## Rabin-Karp Algorithm (1987)

```
Rabin-Karp-Matcher (T, P)
\(01 \mathrm{q} \leftarrow\) a prime larger than \(m\)
\(02 \mathrm{c} \leftarrow 10^{\mathrm{m}-1} \bmod \mathrm{q} / /\) run a loop multiplying by \(10 \bmod q\)
\(03 \mathrm{fp} \leftarrow 0\); ft \(\leftarrow 0\)
04 for \(i \leftarrow 0\) to \(\mathrm{m}-1\) do // preprocessing
\(05 \mathrm{fp} \leftarrow(10 * f p+\mathrm{P}[\mathrm{i}]) \bmod q\)
\(06 \mathrm{ft} \leftarrow(10 * f t+\mathrm{T}[\mathrm{i}]) \bmod \mathrm{q}\)
07 for \(s \leftarrow 0\) to \(n-m\) do // matching
08 if \(\mathrm{fp}=\mathrm{ft}\) then // run a loop to compare strings
09 if \(P[0 . . \mathrm{m}-1]=\mathrm{T}[\mathrm{s} . . \mathrm{s}+\mathrm{m}-1]\) then return s
\(10 \mathrm{ft} \leftarrow((\mathrm{ft}-\mathrm{T}[\mathrm{s}] * \mathrm{c}) * 10+\mathrm{T}[\mathrm{s}+\mathrm{m}]) \bmod \mathrm{q}\)
11 return -1
```

- Exercise: How many character comparisons are done if $T=$ "2531978", $P=$ "1978", and $q=7$ ?


## Analysis

- If $q$ is a prime number, then the hash function distributes $m$-digit strings evenly among the $q$ values.
- Thus, only every $q^{\text {th }}$ value of shift $s$ will result in matching fingerprints, which requires comparing strings with $O(m)$ comparisons
- Expected running time, if $q>m$ :
- Preprocessing: $\Theta(m)$
- Outer loop: $n-m+1$ iterations
- All inner loops: maximum $\frac{n-m}{q} m=O(n-m)$
- Total time: $O(n+m)=O(n)$
- Worst-case running time: $O(n m)$


## Rabin-Karp in Practice

- If the alphabet has $d$ characters, then interpret characters as radix-d digits: replace 10 by $d$ in the algorithm.
- Choosing a prime number $q>m$ can be done with a randomised algorithm in $O(m)$ time, or $q$ can be fixed to be the largest prime so that $d^{*} q$ fits in a computer word.
- Rabin-Karp is simple and can be extended to two-dimensional pattern matching.


## Matching in $n$ Comparisons

- Goal: Each text character is compared only once to a pattern character.
- Problem with the naïve algorithm:
- Forgets what was learned from a partial match!
- Examples:
- $T=$ "Tweedledee and Tweedledum" and $P=$ "Tweedledum"
- $T$ = "pappappappar" and $P=$ "pappar"


## General Situation

- State of the algorithm:
- Reading character $T[i]$
- $q<m$ characters of $P$ are matched so far in $T$

- We see a non-matching character $\alpha$ in $T[i]$
- Need to find for $i^{\prime}=i+1$ :
- Length of longest prefix of $P \quad P[0 . . q-1] \alpha$ : that is a suffix of $P[0 . . q-1] \alpha$ :
 new $q=q^{\prime}=\max \{k \leq q \mid P[0 . . k-1]=P[q-k+1 . . q-1] \alpha\}$
- Pre-computation would take $O(m|\Sigma|)$ time and memory...


## Finite Automaton Search

- Algorithm:
- Preprocess:
- For each $q(0 \leq q \leq m-1)$ and each $\alpha \in \Sigma$ pre-compute a new value of $q$. Let us call it $\sigma(q, \alpha)$.
- Fill a table of size $m|\Sigma|$
- Run through the text
- Whenever a mismatch is found ( $P[q] \neq T[s+q]$ ):
- Set $s=s+q-\sigma(q, \alpha)+1$ and $q=\sigma(q, \alpha)$
- Analysis:
- © Matching phase in $O(n)$ time
- : Too much memory: $\Theta(m|\Sigma|)$, too much preprocessing: at best $O(m|\Sigma|)$.


## Prefix Function

- Idea: Revisit the unmatched character ( $\alpha$ )!

- State of the algorithm:
- Reading character $T[i]$
- $q<m$ characters of $P$ are matched
- We see a non-matching character $\alpha$ in $T[i]$
- Need to find for $i^{\prime}=i$ :
- Length of the longest prefix of $P[0 . . q-2]$
that is a suffix of $P[0 . . q-1]$ :


$$
\text { new } q=q^{\prime}=\pi[q]=\max \{k<q \mid P[0 . . k-1]=P[q-k . . q-1]\}
$$

## Prefix Table

- Pre-compute a prefix table of size $m$ to store the values of $\pi[q]$ for $0 \leq q \leq m$

| $P$ |  | $\mathbf{p}$ | $\mathbf{a}$ | $\mathbf{p}$ | $\mathbf{p}$ | $\mathbf{a}$ | $\mathbf{r}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $q$ | 0 | 1 | 2 | 3 | 4 | 5 | 6 |
| $\pi[q]$ | 0 | 0 | 0 | 1 | 1 | 2 | 0 |

- Exercise:

Compute a prefix table for $P=$ "dadadu"

## Knuth-Morris-Pratt (1977)

```
KMP-Matcher(T, P)
0 1 \pi \leftarrow \text { Compute-Prefix-Table(P)}
0 2 ~ q ~ \leftarrow ~ 0 ~ / / ~ n u m b e r ~ o f ~ c h a r s ~ m a t c h e d ~ = ~ i n d e x ~ o f ~ n e x t ~ c h a r ~
0 3 \text { for i < 0 to n-1 do // scan text from left to right}
04 while q > 0 and P[q] \not F T[i] do
05 q}\leftarrow\pi[q
06 if P[q] = T[i] then q }\leftarrowq+
07 if q = m then return i-m+1
0 8 ~ r e t u r n ~ - 1 ~
```

To return all shifts, replace the then block of line 07 by print $i-m+1 ; q \leftarrow \pi[q]$

Compute-Prefix-Table is essentially the KMP matching algorithm, but performed on $P$ as text.

## Analysis of KMP

- Worst-case running time: $O(n+m)=O(n)$
- Main algorithm: $O(n)$
- Compute-Prefix-Table: $O(m)$
- Space usage: $O(m)$


## Reverse Naïve Algorithm

- Why not search from the end of $P$ ?
- Boyer and Moore

Reverse-Naive-Matcher (T, P)
01 for $s \leftarrow 0$ to $n-m$
$02 j \leftarrow m-1 \quad / /$ start from the end
03 // check if T[s..s+m-1] = P[0..m-1]
04 while $T[s+j]=P[j]$ do
$05 \quad j \leftarrow j-1$
06 if $j<0$ return $s$
07 return -1

- Running time is exactly the same as for the naïve algorithm...


## Occurrence Heuristic

- Boyer and Moore added two heuristics to the reverse naïve matcher, to get an $O(n+m)$ algorithm, but it is complex
- Horspool suggested just to use the modified occurrence heuristic:
- After a mismatch, align $T[s+m-1]$ with the rightmost occurrence of that letter in the pattern $P[0 . . m-2]$
- Examples:
- $T=$ "detective date" and $P=$ "date"
- $T=$ "tea kettle" and $P=$ "kettle"


## Shift Table

- In preprocessing, compute the shift table of the size $|\Sigma|$.
$\operatorname{shift}[w]= \begin{cases}m-1-\max \{i<m-1 \mid P[i]=w\} & \text { if } w \text { is in } P[0 . . m-2], \\ m & \text { otherwise. }\end{cases}$
- Example: $P=$ "kettle"
- $\operatorname{shift}[e]=4$, $\operatorname{shift}[1]=1$, $\operatorname{shift}[t]=2$, $\operatorname{shift[k]=5}$
- shift[any other letter] = 6
- Exercise: $P=$ "pappar"
- What is the shift table?


## Boyer-Moore-Horspool

```
BMH-Matcher(T, P)
01 // compute the shift table for P
0 1 ~ f o r ~ c ~ \leftarrow ~ 0 ~ t o ~ \| ~ \| \| - ~ 1 ~ d o
02 shift[c] = m // default values
0 3 \text { for k } \leftarrow 0 \text { to m-2 do}
04 shift[P[k]] = m-1-k
05 // search
06 s \leftarrow 0
0 7 \text { while s s n-m do}
0 8 ~ j ~ \leftarrow ~ m - 1 ~ / / ~ s t a r t ~ f r o m ~ t h e ~ e n d
09 // check if T[s..s+m-1] = P[0..m-1]
10 while T[s+j] = P[j] do
11 j < j 1
12 if j < 0 then return s
13 s < s + shift[T[s+m-1]] // shift by last letter
14 return -1
```


## BMH Analysis

- Worst-case running time
- Preprocessing: $O(|\Sigma|+m)$
- Searching: $O(n m)$
- Exercise: What input gives this bound?
- Total: $O(n m)$
- Space: $O(|\Sigma|)$
- Independent of $m$
- On real-world data sets: very fast


## Comparison

- Let us compare the algorithms.

Criteria:

- Worst-case running time
- Preprocessing
- Searching
- Expected running time
- Space used
- Implementation complexity

