
Chapter 32:
String Matching

Fall 2007
Simonas Šaltenis
simas@cs.aau.dk

Modified by Pierre Flener
(version of 30 November 2016)

mailto:simas@cs.aau.dk

2

String Matching Algorithms

 Goals of the lecture:
 Naïve string matching algorithm and analysis
 Rabin-Karp algorithm (1987) and its analysis
 Knuth-Morris-Pratt algorithm (1977) ideas

 Turing Awards:
 1974: Donald Knuth
 1976: Michael Rabin
 1985: Richard Karp

3

String Matching Problem

 Input:
 Text T = “at the thought of”

• n = length(T) = 17
 Pattern P = “the”

• m = length(P) = 3 We assume m ≤ n.

 Output: (CLRS indexes from 1 & aims at all shifts)
 Shift s – the smallest integer (0 ≤s ≤n–m)

such that T[s .. s+m–1] = P[0 .. m–1].
Returns –1 if no such s exists.

0123 … n-1

012

at the thought of

thes=3

4

Naïve String Matching

Naïve-Matcher(T,P)
01 for s 0 to n – m do
02 j 0
03 // check if T[s..s+m–1] = P[0..m–1]
04 while T[s+j] = P[j] do
05 j j + 1
06 if j = m then return s
07 return –1

 Idea: Brute force
 Check all values of s from 0 to n–m

 Let T = “at the thought of” and P = “though”
 What is the number of character comparisons?

5

Analysis of Naïve String Matching

 The analysis is made for finding all shifts
 Worst case:

 Outer loop: n–m+1 iterations
 Inner loop: max m constant-time iterations
 Total: max (n–m+1)m = O(nm), as m ≤ n
 What input gives this worst-case behaviour?

 Best case: Q(n–m+1)
 When?

 Completely random text and pattern:
 O(n–m)

6

 The analysis is made for finding all shifts
 Worst case:

 Outer loop: n–m+1 iterations
 Inner loop: max m constant-time iterations
 Total: max (n–m+1)m = O(nm), as m ≤ n
 What input gives this worst-case behaviour?

Examples: P=am and T=an; P=am-1b and T=an

 Best case: Q(n–m+1)
 When?

 Completely random text and pattern:
 O(n–m)

Analysis of Naïve String Matching

7

 The analysis is made for finding all shifts
 Worst case:

 Outer loop: n–m+1 iterations
 Inner loop: max m constant-time iterations
 Total: max (n–m+1)m = O(nm), as m ≤ n
 What input gives this worst-case behaviour?

Examples: P=am and T=an; P=am-1b and T=an

 Best case: Q(n–m+1)
 When? Example: P[0] is not in T

 Completely random text and pattern:
 O(n–m)

Analysis of Naïve String Matching

8

Fingerprint Idea

 Assume:
 We can compute a fingerprint f(P) of P

in Θ(m) time; similarly for f(T[0 .. m–1])
 f(P)f(t) ⇒ Pt for any t = T[s .. s+m–1] (*)
 We can compare fingerprints in O(1) time
 We can compute f’ = f(T[s+1 .. s+m])

from f(T[s .. s+m–1]) in O(1) time

f

f’

9

Algorithm with Fingerprints

 Let the alphabet ={0,1,2,3,4,5,6,7,8,9}
 Let the fingerprint be a decimal number, i.e.,

f(“2045”) = 2*103 + 0*102 + 4*101 + 5 = 2045
 Fingerprint-Matcher(T,P)
01 fp compute f(P)
02 ft compute f(T[0..m–1])
03 for s 0 to n – m do
04 if fp = ft then return s
05 ft (ft – T[s]*10m-1)*10 + T[s+m]
06 return –1

f

new f
T[s]

T[s+m]

 Running time: 2Θ(m) + Θ(n–m) = Θ(n), as m ≤ n
 Where is the catch?! There are two, actually.

10

Using a Hash Function

 First problem: We cannot assume m-digit
number arithmetic works in O(1) time!

 Solution = hashing: h(s) = f(s) mod q
 Example: if q=7, then h(“52”) = 52 mod 7 = 3
 We now indeed have: h(P) h(t) ⇒ P t

 Second problem: the inverse contrapositive
“f(P)=f(t) ⇒P=t” of (*) was not assumed!
 Example: if q=7 then h(“59”)=3, but “59”“52”

 Basic “mod q” arithmetic:
 (a+b) mod q = (a mod q + b mod q) mod q
 (a*b) mod q = (a mod q) * (b mod q) mod q

11

Preprocessing and Stepping

 Preprocessing, using Horner's rule and 'mod' laws:
 fp = (10*(…*(10*(10*0+P[0])+P[1])+…)+P[m-1])mod q
 In the same way, compute ft from T[0..m-1]
 Exercise: Let P = “2531” and q = 7: what is fp?

 Stepping:
 ft (ft – T[s]*10m-1 mod q)*10 + T[s+m]) mod q
 10m-1 mod q can be computed once, in the preprocessing
 Exercise: Let T[…] = “5319” and q = 7: what is the new

ft when T[s+m]=”7”?

ft

new ft
T[s]

T[s+m]

12

Rabin-Karp Algorithm (1987)

Rabin-Karp-Matcher(T,P)
01 q a prime larger than m
02 c 10m-1 mod q // run a loop multiplying by 10 mod q
03 fp 0; ft 0
04 for i 0 to m-1 do // preprocessing
05 fp (10*fp + P[i]) mod q
06 ft (10*ft + T[i]) mod q
07 for s 0 to n – m do // matching
08 if fp = ft then // run a loop to compare strings
09 if P[0..m-1] = T[s..s+m-1] then return s
10 ft ((ft – T[s]*c)*10 + T[s+m]) mod q
11 return –1

 Exercise: How many character comparisons are
done if T = “2531978”, P = “1978”, and q = 7?

13

Analysis

 If q is a prime number, then the hash
function distributes m-digit strings evenly
among the q values.
 Thus, only every qth value of shift s will result in

matching fingerprints, which requires
comparing strings with O(m) comparisons

 Expected running time, if q > m:
 Preprocessing: Θ(m)
 Outer loop: n–m+1 iterations
 All inner loops: maximum
 Total time: O(n+m) = O(n)

 Worst-case running time: O(nm)

n−m
q
m=O (n−m)

14

Rabin-Karp in Practice

 If the alphabet has d characters, then
interpret characters as radix-d digits:
replace 10 by d in the algorithm.

 Choosing a prime number q > m can be
done with a randomised algorithm in O(m)
time, or q can be fixed to be the largest
prime so that d*q fits in a computer word.

 Rabin-Karp is simple and can be extended
to two-dimensional pattern matching.

15

Matching in n Comparisons

 Goal: Each text character is compared only
once to a pattern character.

 Problem with the naïve algorithm:
 Forgets what was learned from a partial match!
 Examples:

• T = “Tweedledee and Tweedledum”
and P = “Tweedledum”

• T = “pappappappar” and P = “pappar”

16

General Situation

 State of the algorithm:
 Reading character T[i]
 q<m characters of P are

matched so far in T
 We see a non-matching

character in T[i]
 Need to find for i'=i+1:

 Length of longest prefix of P
that is a suffix of P[0..q–1]

 Pre-computation would take
O(m||) time and memory...

i

q

T:

P:

new q = q’ = max{k ≤ q | P[0..k–1] = P[q–k+1..q–1]}

q

P[0..q–1]:

P:

q’

i'

17

Finite Automaton Search

 Algorithm:
 Preprocess:

• For each q (0 ≤ q ≤ m–1) and each
pre-compute a new value of q. Let us call it (q,).

• Fill a table of size m||
 Run through the text

• Whenever a mismatch is found (P[q] T[s+q]):
• Set s = s + q – (q,) + 1 and q = (q,)

 Analysis:
 Matching phase in O(n) time
 Too much memory: Θ(m||),

too much preprocessing: at best O(m||).

18

Prefix Function

 Idea: Revisit the unmatched
character ()!

 State of the algorithm:
 Reading character T[i]
 q<m characters of P are matched
 We see a non-matching

character in T[i]

 Need to find for i' = i:
 Length of the longest

prefix of P[0..q–2]
that is a suffix of P[0..q–1]

i=i'

q

T:

P:

new q = q' = [q] = max{k < q | P[0..k–1] = P[q–k..q–1]}

q

P[0..q–1]:

P:

q’

compare
this again

19

Prefix Table

 Pre-compute a prefix table of size m to
store the values of [q] for 0 ≤q ≤ m

 Exercise:
Compute a prefix table for P = “dadadu”

2

5

a

011000[q]

643210q

rppapP

20

Knuth-Morris-Pratt (1977)

KMP-Matcher(T,P)
01 Compute-Prefix-Table(P)
02 q 0 // number of chars matched = index of next char
03 for i 0 to n-1 do // scan text from left to right
04 while q > 0 and P[q] T[i] do
05 q [q]
06 if P[q] = T[i] then q q+1
07 if q = m then return i–m+1
08 return –1

To return all shifts, replace the then block of line 07 by
print i–m+1; q [q]

Compute-Prefix-Table is essentially the KMP
matching algorithm, but performed on P as text.

21

Analysis of KMP

 Worst-case running time: O(n+m) = O(n)
 Main algorithm: O(n)
 Compute-Prefix-Table: O(m)

 Space usage: O(m)

22

Reverse Naïve Algorithm

 Why not search from the end of P?
 Boyer and Moore

Reverse-Naïve-Matcher(T,P)
01 for s 0 to n–m
02 j m–1 // start from the end
03 // check if T[s..s+m–1] = P[0..m–1]
04 while T[s+j] = P[j] do
05 j j-1
06 if j < 0 return s
07 return –1

 Running time is exactly the same as for the
naïve algorithm…

23

Occurrence Heuristic

 Boyer and Moore added two heuristics to
the reverse naïve matcher, to get an
O(n+m) algorithm, but it is complex

 Horspool suggested just to use the
modified occurrence heuristic:
 After a mismatch, align T[s + m–1] with the

rightmost occurrence of that letter in the
pattern P[0..m–2]

 Examples:
• T= “detective date” and P= “date”
• T= “tea kettle” and P= “kettle”

24

Shift Table

 In preprocessing, compute the shift table
of the size ||.

 Example: P = “kettle”
 shift[e] =4, shift[l] =1, shift[t] =2, shift[k] =5
 shift[any other letter] = 6

 Exercise: P = “pappar”
 What is the shift table?

shift [w]={m−1−max {im−1∣P [i]=w} if w is in P [0. .m−2] ,
m otherwise.

25

Boyer-Moore-Horspool
BMH-Matcher(T,P)
01 // compute the shift table for P
01 for c 0 to ||- 1 do
02 shift[c] = m // default values
03 for k 0 to m–2 do
04 shift[P[k]] = m–1-k
05 // search
06 s 0
07 while s ≤ n–m do
08 j m–1 // start from the end
09 // check if T[s..s+m–1] = P[0..m–1]
10 while T[s+j] = P[j] do
11 j j 1
12 if j < 0 then return s
13 s s + shift[T[s+m–1]] // shift by last letter
14 return –1

26

BMH Analysis

 Worst-case running time
 Preprocessing: O(||+m)
 Searching: O(nm)

• Exercise: What input gives this bound?
 Total: O(nm)

 Space: O(||)
 Independent of m

 On real-world data sets: very fast

27

Comparison

 Let us compare the algorithms.
Criteria:
 Worst-case running time

• Preprocessing
• Searching

 Expected running time
 Space used
 Implementation complexity

