Chapter 32:
String Matching

Fall 2007
Simonas Saltenis
simas@cs.aau.dk

Modlified by Pierre Flener
(version of 30 November 2016)

mailto:simas@cs.aau.dk

String Matching Algorithms

® Goals of the lecture:
= Naive string matching algorithm and analysis
= Rabin-Karp algorithm (1987) and its analysis
= Knuth-Morris-Pratt algorithm (1977) ideas

® Turing Awards:
" 1974: Donald Knuth
m 1976: Michael Rabin
m 1985: Richard Karp

String Matching Problem

® [nput:
B Text T = “at the thought of”
e n = length(7) = 17
m Pattern P = “the”
e m = length(P) =3 We assume m =< n.

® Qutput: (CLRS indexes from 1 & aims at all shifts)

m Shift s - the smallest integer (0 <s < n—-m)
such that 7[s .. s+m-1] = P[0 .. m-1].
Returns -1 if no such s exists.

0123 | il 3 1L
at [the [thought |of
s=3

012

Naive String Matching

® [dea: Brute force
B Check all values of s from 0 to n—-m

Naive-Matcher (T, P)
0l for s << 0 ton — m do

02 3 < 0

03 // check 1if T[s..s+m-1] = P[0..m-1]
04 while T[s+]] = P[]] do

05 N el B E

06 if Jj = m then return s

07 return -1

B |et T = "at the thought of” and P = “"though”
" What is the number of character comparisons?

Analysis of Naive String Matching

® The analysis is made for finding all shifts

® Worst case:
® Quter loop: n—-m+1 iterations
® [nner loop: max m constant-time iterations
® Total: max (n-m+1)m = O(nm), as m < n
= What input gives this worst-case behaviour?

m Best case: ©(n-m+1)
" When?

B Completely random text and pattern:
" O(n-m)

Analysis of Naive String Matching

® The analysis is made for finding all shifts

® Worst case:

® Quter loop: n—-m+1 iterations

® [nner loop: max m constant-time iterations

® Total: max (n-m+1)m = O(nm), as m < n

®= What input gives this worst-case behaviour?

Examples: P=a™ and T=a"; P=a™'b and T=a"

m Best case: 6(n-m+1)

= When?

B Completely random text and pattern:
" O(n-m)

Analysis of Naive String Matching

® The analysis is made for finding all shifts

® Worst case:

® Quter loop: n—-m+1 iterations

® [nner loop: max m constant-time iterations

® Total: max (n-m+1)m = O(nm), as m < n

®= What input gives this worst-case behaviour?

Examples: P=a™ and T=a"; P=a™'b and T=a"

m Best case: 6(n-m+1)

" When? Example: P[O] isnotin T

B Completely random text and pattern:
" O(n-m)

Fingerprint Idea

B Assume:

= We can compute a fingerprint f(P) of P
in ©(m) time; similarly for f(T[O .. m-1])
m f(P)=f(t) = P=t forany t = T[s..s+m-1] (*)
= We can compare fingerprints in O(1) time
" We can compute "= f(T[s+1 .. s+m])
from f(T[s .. s+m-1]) in O(1) time
fr

7 A,
%%%%%%

A J

x

NP,

Algorithm with Fingerprints

® | et the alphabet *={0,1,2,3,4,5,6,7,8,9}
m | et the fingerprint be a decimal number, i.e.,
f(*2045") = 2*103 + 0*102+ 4*10t+ 5 = 2045

Fingerprint-Matcher (T, P)
01 fp < compute f (P) T1s]

02 ft < compute £(T[0..m-1]) 1 newr
03 for s << 0 ton — m do 50/
04 if fp = ft then return s 7. 2

NN
< RN
N ¢
N
NN
NN

05 ft <« (ft — T[s]*10™1)*10 + T[s+m]
O return -1

77
T
T[s+m]

® Running time: 20(m) + ©(n-m) = O(n), as m < n
® Where is the catch?! There are two, actually.

Using a Hash Function

® First problem: We cannot assume m-digit
number arithmetic works in O(1) time!

®m Solution = hashing: h(s) = f(s) mod g
" Example: if g=7, then h(*52") =52 mod 7 = 3
m \We now indeed have: h(P) = h(t) = P =t

® Second problem: the inverse contrapositive
“f(P)=f(t) = P=t" of (*) was not assumed!
B Example: if g=7 then h('59")=3, but "59"%"52"
® Basic "mod g” arithmetic:
" (g+b) mod g =(amodg + b modg) mod g
" (g*b) mod g = (@ mod g) * (b mod g) mod g 19

Preprocessing and Stepping

® Preprocessing, using Horner's rule and 'mod’ laws:
" fp = (10*%(..*(10*(10*0+P[0])+P[1]+...).+P[m-1])mod g
" In the same way, compute ft from 7[0..m-1]
m Exercise: Let P = "2531" and g = 7: what is fp?

® Stepping:
" ft— (ft - T[s]*10™*mod g)*10 + T[s+m]) mod g
"= 10m™1mod g can be computed once, in the preprocessing

m Exercise: Let T[...] = "5319” and g = 7: what is the new
ft when T[s+m]="7"?

T[s
[l] new ft
ft
T[s+m]

11

Rabin-Karp Algorithm (1987)

Rabin-Karp-Matcher (T, P)
0l g <= a prime larger than m

02 ¢ < 10 mod g // run a loop multiplying by 10 mod g
03 fp < 0; ft < O
04 for i < 0 to m-1 do // preprocessing

05 fp < (10*fp + P[i]) mod g

06 ft <« (10*ft + T[1]) mod g

07 for s < 0 ton - m do // matching

08 if fp = ft then // run a loop to compare strings
09 if P[O0..m-1] = T[s..s+m-1] then return s

10 ft < ((ft - T[s]l*c)*10 + T[s+m]) mod g

11 return -1

®m Fxercise: How many character comparisons are
done if T = "2531978", P = "1978", and g = 77

12

Analysis

B If g is a prime number, then the hash
function distributes m-digit strings evenly
among the g values.

® Thus, only every g™ value of shift s will result in
matching fingerprints, which requires
comparing strings with O(m) comparisons

®m Fxpected running time, if g > m:
® Preprocessing: O(m)
® Quter loop: n—-m+1 |terat|onsm
= All inner loops: maximum ——m=0(n—m)
® Total time: O(n+m) = O(n)
® \Worst-case running time: O(nm)

13

Rabin-Karp in Practice

® If the alphabet has d characters, then
interpret characters as radix-d digits:
replace 10 by d in the algorithm.

® Choosing a prime number g > m can be
done with a randomised algorithm in O(m)
time, or g can be fixed to be the largest
prime so that d*g fits in a computer word.

® Rabin-Karp is simple and can be extended
to two-dimensional pattern matching.

14

Matching in n Comparisons

® Goal: Each text character is compared only
once to a pattern character.

® Problem with the naive algorithm:
® Forgets what was learned from a partial match!
" Examples:

e T = "Tweedledee and Tweedledum”
and P = “"Tweedledum”

e T = "pappappappar” and P = “pappar”

15

General Situation

m State of the algorithm: 1yl
= Reading character T[/] 't
® g<m characters of P are i

matched so farin T
= We see a nhon-matching
character a in TI[/]
B Need to find for j'=j+1: P!

" Length of longest prefix of P P[0..g-1]a:
that is a suffix of P[0..g-1]a:

newg=qg = max{k=qg | P[O0..k-1] = P[g-k+1..g-1]a}

= Pre-computation would take
O(m|Z]|) time and memory...

\-_’ Q //
~. —>

A

H_I

q

16

Finite Automaton Search

® Algorithm:

® Preprocess:

e Foreach g (0 = g<m-1) and each a €X
pre-compute a new value of g. Let us call it o(g,a).

e Fill a table of size m|Z|
= Run through the text
e Whenever a mismatch is found (P[qg] = T[s+q]):
e Sets=s+g-o(g,0) +1 and g = o(qg,a)
® Analysis:
" © Matching phase in O(n) time

= ® Too much memory: O(m|z]),

too much preprocessing: at best O(m|Z|).
17

Prefix Function

® Jdea: Revisit the unmatched q
character (o)! p:

® State of the algorithm: T o
= Reading character TT/] T

® g<m characters of P are matched

= We see a non-matching q’
character a.in T[/] -

: 111 P:
® Need to find for j' = /: g\
= | ength of the longest P[0..g-1]o: Q. el
pl‘efiX Of P[Oq_Z] q this again

that is a suffix of P[0..g-1]:
newqg=q ==x[g] = max{k <qg| P[O0..k-1] = P[g-k..qg-1]}

18

Prefix Table

® Pre-compute a prefix table of size m to
store the values of n[g] for 0 =g = m

P

P

a

P

P

a

q

1

3

4

5

n[q]

0

1

B Fxercise:
Compute a prefix table for P = “"dadadu”

19

Knuth-Morris-Pratt (1977)

KMP-Matcher (T, P)

01 ®w < Compute-Prefix-Table (P)

02 g < 0 // number of chars matched = index of next char
03 for i < 0 to n-1 do // scan text from left to right

04 while g > 0 and P[g] = T[1i] do
05 q < n[qg]

06 if P[g] = T[i] then g < g+l
07 if g = m then return i-m+l

08 return -1

To return all shifts, replace the then block of line 07 by
print i-m+l; g < m[g]

Compute-Prefix-Table is essentially the KMP
matching algorithm, but performed on P as text.

20

Analysis of KMP

® \Worst-case running time: O(n+m) = O(n)
® Main algorithm: O(n)
B Compute-Prefix-Table: O(m)

® Space usage: O(m)

21

Reverse Naive Algorithm

® \Why not search from the end of P?
® Boyer and Moore

Reverse-Naive-Matcher (T, P)
0l for s <= 0 to n—m

02 il B gl // start from the end

03 // check if T[s..s+m-1] = P[0..m-1]
04 while T[s+j] = P[j] do

05 J o« -1

06 if j < 0 return s

07 return -1

B Running time is exactly the same as for the
naive algorithm...

22

Occurrence Heuristic

® Boyer and Moore added two heuristics to
the reverse naive matcher, to get an
O(n+m) algorithm, but it is complex

® Horspool suggested just to use the
modified occurrence heuristic:
m After a mismatch, align T[s + m-1] with the

rightmost occurrence of that letter in the
pattern P[0..m-2]

" Examples:
e = "detective date” and P= “date”
e T= “"tea kettle” and P= “kettle”

23

Shift Table

® [n preprocessing, compute the shift table
of the size |Z].

shift[w]= m—1—max {i<m—1|Pli]J=w] ifw is.inP[O..m—z],
m otherwise.

B Fxample: P = “kettle”
m shiftfe] =4, shift[1] =1, shift[t] =2, shift[k] =5
® shift[any other letter] = 6

®m Fxercise: P = "pappar”
= What is the shift table?

24

Boyer-Moore-Horspool

BMH-Matcher (T, P)

01
01
02
03
04
05
06
07
08
09
10
il IR
12
13
14

// compute the shift table for P
for ¢ < 0 to |2|- 1 do

s AN 5 Bl // default values
for k < 0 to m—2 do

shift[P[k]] = m-1-k
// search
s < 0

while s = n—m do
j < m-1 // start from the end

L/ Nlcheck GE E[s..stm:s1] '= P[O. . m+1]
while T([s+j] = P[]j] do
A k11 B

if 7 < 0 then return s

S < s + shift[T[s+m-1]] // shift by last letter

return -1

25

BMH Analysis

® \Worst-case running time
® Preprocessing: O(|Z|+m)

m Searching: O(nm)
e Exercise: What input gives this bound?
® Total: O(nm)

®m Space: O(|Z])
" Tndependent of m
® On real-world data sets: very fast

26

Comparison

® | et us compare the algorithms.

Criteria:

® \WWorst-case running time
e Preprocessing
e Searching

= Expected running time
® Space used
" Tmplementation complexity

27

