Chapter 32: String Matching

Fall 2007 *Simonas Šaltenis simas@cs.aau.dk*

Modified by Pierre Flener (version of 30 November 2016)

String Matching Algorithms

Goals of the lecture:

- Naïve string matching algorithm and analysis
- Rabin-Karp algorithm (1987) and its analysis
- Knuth-Morris-Pratt algorithm (1977) ideas

Turing Awards:

- 1974: Donald Knuth
- 1976: Michael Rabin
- 1985: Richard Karp

String Matching Problem

Input:

- Text T = "at the thought of"
 - n = length(T) = 17
- Pattern P = "the"
 - m = length(P) = 3 We assume $m \le n$.

Output: (CLRS indexes from 1 & aims at all shifts)

 Shift s – the smallest integer (0 ≤ s ≤ n−m) such that T[s .. s+m−1] = P[0 .. m−1]. Returns −1 if no such s exists.

0123 ...
$$n-1$$

at the thought of
 $s=3$ the
012

Naïve String Matching

Idea: Brute force

Check all values of s from 0 to n-m

```
Naïve-Matcher(T,P)
01 for s ← 0 to n - m do
02 j ← 0
03 // check if T[s..s+m-1] = P[0..m-1]
04 while T[s+j] = P[j] do
05 j ← j + 1
06 if j = m then return s
07 return -1
```

Let T = "at the thought of" and P = "though" What is the number of character comparisons?

Analysis of Naïve String Matching

- The analysis is made for finding all shifts
- Worst case:
 - Outer loop: n-m+1 iterations
 - Inner loop: max m constant-time iterations
 - Total: max (n-m+1)m = O(nm), as $m \le n$
 - What input gives this worst-case behaviour?

Best case: $\Theta(n-m+1)$

- When?
- Completely random text and pattern:
 O(n-m)

Analysis of Naïve String Matching

- The analysis is made for finding all shifts
- Worst case:
 - Outer loop: n-m+1 iterations
 - Inner loop: max *m* constant-time iterations
 - Total: max (n-m+1)m = O(nm), as $m \le n$
 - What input gives this worst-case behaviour? Examples: P=a^m and T=aⁿ; P=a^{m-1}b and T=aⁿ
- Best case: $\Theta(n-m+1)$
 - When?
- Completely random text and pattern:
 O(n-m)

Analysis of Naïve String Matching

- The analysis is made for finding all shifts
- Worst case:
 - Outer loop: n-m+1 iterations
 - Inner loop: max *m* constant-time iterations
 - Total: max (n-m+1)m = O(nm), as $m \le n$
 - What input gives this worst-case behaviour? Examples: P=a^m and T=aⁿ; P=a^{m-1}b and T=aⁿ
- Best case: $\Theta(n-m+1)$
 - When? Example: P[0] is not in T
- Completely random text and pattern:
 O(n-m)

Fingerprint Idea

Assume:

- We can compute a *fingerprint* f(P) of P in Θ(m) time; similarly for f(T[0 .. m-1])
- $f(P) \neq f(t) \Rightarrow P \neq t$ for any $t = T[s \dots s + m 1]$ (*)
- We can compare fingerprints in O(1) time
- We can compute f' = f(T[s+1 .. s+m]) from f(T[s .. s+m-1]) in O(1) time

Algorithm with Fingerprints

- Let the alphabet $\Sigma = \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}$
- Let the fingerprint be a decimal number, i.e.,
 f("2045") = 2*10³ + 0*10² + 4*10¹ + 5 = 2045

- Running time: $2\Theta(m) + \Theta(n-m) = \Theta(n)$, as $m \le n$
- Where is the catch?! There are two, actually.

Using a Hash Function

- First problem: We cannot assume *m*-digit number arithmetic works in O(1) time!
- Solution = hashing: h(s) = f(s) mod q
 - Example: if q=7, then $h(52'') = 52 \mod 7 = 3$
 - We now indeed have: $h(P) \neq h(t) \Rightarrow P \neq t$
- Second problem: the inverse contrapositive $f(P)=f(t) \Rightarrow P=t''$ of (*) was not assumed!
 - Example: if q=7 then h("59")=3, but "59"≠"52"
 - Basic "mod q" arithmetic:
 - $(a+b) \mod q = (a \mod q + b \mod q) \mod q$
 - $(a*b) \mod q = (a \mod q) * (b \mod q) \mod q_{10}$

Preprocessing and Stepping

Preprocessing, using Horner's rule and 'mod' laws:

- $fp = (10^*(...^*(10^*(10^*0+P[0])+P[1])+...)+P[m-1]) \mod q$
- In the same way, compute *ft* from *T*[0..*m*-1]
- Exercise: Let P = "2531" and q = 7: what is fp?
- Stepping:
 - $ft \leftarrow (ft T[s]*10^{m-1} \mod q)*10 + T[s+m]) \mod q$
 - 10^{m-1} mod q can be computed once, in the preprocessing
 - Exercise: Let T[...] = "5319" and q = 7: what is the new ft when T[s+m]="7"?

Rabin-Karp Algorithm (1987)

```
Rabin-Karp-Matcher (T, P)

01 q \leftarrow a prime larger than m

02 c \leftarrow 10<sup>m-1</sup> mod q // run a loop multiplying by 10 mod q

03 fp \leftarrow 0; ft \leftarrow 0

04 for i \leftarrow 0 to m-1 do // preprocessing

05 fp \leftarrow (10*fp + P[i]) mod q

06 ft \leftarrow (10*ft + T[i]) mod q

07 for s \leftarrow 0 to n - m do // matching

08 if fp = ft then // run a loop to compare strings

09 if P[0..m-1] = T[s..s+m-1] then return s

10 ft \leftarrow ((ft - T[s]*c)*10 + T[s+m]) mod q

11 return -1
```

Exercise: How many character comparisons are done if T = "2531978", P = "1978", and q = 7?

Analysis

- If q is a prime number, then the hash function distributes m-digit strings evenly among the q values.
 - Thus, only every qth value of shift s will result in matching fingerprints, which requires comparing strings with O(m) comparisons
- Expected running time, if q > m:
 - Preprocessing: Θ(m)
 - Outer loop: n-m+1 iterations
 - All inner loops: maximum $\frac{n-m}{a}m = O(n-m)$
 - Total time: O(n+m) = O(n)
- Worst-case running time: O(nm)

Rabin-Karp in Practice

- If the alphabet has d characters, then interpret characters as radix-d digits: replace 10 by d in the algorithm.
- Choosing a prime number q > m can be done with a randomised algorithm in O(m) time, or q can be fixed to be the largest prime so that d*q fits in a computer word.
- Rabin-Karp is simple and can be extended to two-dimensional pattern matching.

Matching in *n* Comparisons

- Goal: Each text character is compared only once to a pattern character.
- Problem with the naïve algorithm:
 - Forgets what was learned from a partial match!
 - Examples:
 - T = "Tweedledee and Tweedledum" and P = "Tweedledum"
 - T = "pappappappar" and P = "pappar"

General Situation

- State of the algorithm:
 - Reading character T[i]
 - q<m characters of P are matched so far in T
 - We see a non-matching character α in T[i]
- Need to find for i'=i+1:
 - Length of longest prefix of $P P[0..q-1]\alpha$: that is a suffix of $P[0..q-1]\alpha$: new $q = q' = \max\{k \le q \mid P[0..k-1] = P[q-k+1..q-1]\alpha\}$

P:

Pre-computation would take
 O(m|Σ|) time and memory...

Finite Automaton Search

Algorithm:

Preprocess:

- For each q ($0 \le q \le m-1$) and each $\alpha \in \Sigma$ pre-compute a new value of q. Let us call it $\sigma(q,\alpha)$.
- Fill a table of size $m|\Sigma|$
- Run through the text
 - Whenever a mismatch is found $(P[q] \neq T[s+q])$:
 - Set $s = s + q \sigma(q, \alpha) + 1$ and $q = \sigma(q, \alpha)$

Analysis:

- Output State in O(n) time
- So much memory: $\Theta(m|\Sigma|)$, too much preprocessing: at best $O(m|\Sigma|)$.

Prefix Function

- Idea: Revisit the unmatched character (α)!
- State of the algorithm:
 - Reading character T[i]
 - q<m characters of P are matched</p>
 - We see a non-matching character α in T[i]
- Need to find for i' = i:
 - Length of the longest prefix of P[0..q-2] that is a suffix of P[0..q-1]:

new $q = q' = \pi [q] = \max\{k < q \mid P[0..k-1] = P[q-k..q-1]\}$

Prefix Table

Pre-compute a *prefix table* of size *m* to store the values of $\pi[q]$ for $0 \le q \le m$

Р		P	a	P	P	a	r
q	0	1	2	3	4	5	6
$\pi[q]$	0	0	0	1	1	2	0

Exercise: Compute a prefix table for P = "dadadu"

Knuth-Morris-Pratt (1977)

```
KMP-Matcher(T,P)
01 \pi \leftarrow Compute-Prefix-Table(P)
02 q \leftarrow 0 // number of chars matched = index of next char
03 for i ← 0 to n-1 do // scan text from left to right
04 while q > 0 and P[q] ≠ T[i] do
05 q ← <math>\pi[q]
06 if P[q] = T[i] then q ← q+1
07 if q = m then return i-m+1
08 return -1
```

To return all shifts, replace the then block of line 07 by

```
print i-m+1; q \leftarrow \pi[q]
```

Compute-Prefix-Table is essentially the KMP matching algorithm, but performed on *P* as text.

Analysis of KMP

Worst-case running time: O(n+m) = O(n)

- Main algorithm: O(n)
- Compute-Prefix-Table: O(m)
- Space usage: O(m)

Reverse Naïve Algorithm

Why not search from the end of P? Boyer and Moore

```
Reverse-Naïve-Matcher(T,P)
01 for s ← 0 to n-m
02 j ← m-1 // start from the end
03 // check if T[s..s+m-1] = P[0..m-1]
04 while T[s+j] = P[j] do
05 j ← j-1
06 if j < 0 return s
07 return -1</pre>
```

Running time is exactly the same as for the naïve algorithm...

Occurrence Heuristic

- Boyer and Moore added two heuristics to the reverse naïve matcher, to get an O(n+m) algorithm, but it is complex
- Horspool suggested just to use the modified occurrence heuristic:
 - After a mismatch, align T[s + m-1] with the rightmost occurrence of that letter in the pattern P[0..m-2]
 - Examples:
 - T= "detective date" and P= "date"
 - T= "tea kettle" and P= "kettle"

Shift Table

In preprocessing, compute the shift table of the size $|\Sigma|$.

shift $[w] = \begin{cases} m-1-\max\{i < m-1 | P[i] = w\} \\ m \end{cases}$ if w is in P[0..m-2], otherwise.

- Example: P = "kettle"
 - shift[e] =4, shift[1] =1, shift[t] =2, shift[k] =5
 - shift[any other letter] = 6
- Exercise: P = "pappar"
 - What is the shift table?

Boyer-Moore-Horspool

```
BMH-Matcher (T, P)
01 // compute the shift table for P
01 for c \leftarrow 0 to |\Sigma| - 1 do
02 shift[c] = m // default values
03 for k \leftarrow 0 to m-2 do
04 shift[P[k]] = m-1-k
05 // search
06 s ← 0
07 while s \leq n-m do
08 j \leftarrow m-1 // start from the end
09 // check if T[s..s+m-1] = P[0..m-1]
10 while T[s+j] = P[j] do
11
    j ← j 1
12
        if j < 0 then return s
13 s \leftarrow s + shift[T[s+m-1]] // shift by last letter
14 return -1
```

BMH Analysis

- Worst-case running time
 - Preprocessing: $O(|\Sigma|+m)$
 - Searching: O(nm)
 - Exercise: What input gives this bound?
 - Total: O(nm)
- Space: *O*(|Σ|)
 - Independent of m
- On real-world data sets: very fast

Comparison

- Let us compare the algorithms. Criteria:
 - Worst-case running time
 - Preprocessing
 - Searching
 - Expected running time
 - Space used
 - Implementation complexity