
Chapter 32:
String Matching

Fall 2007
Simonas Šaltenis
simas@cs.aau.dk

Modified by Pierre Flener
(version of 30 November 2016)

mailto:simas@cs.aau.dk

2

String Matching Algorithms

 Goals of the lecture:
 Naïve string matching algorithm and analysis
 Rabin-Karp algorithm (1987) and its analysis
 Knuth-Morris-Pratt algorithm (1977) ideas

 Turing Awards:
 1974: Donald Knuth
 1976: Michael Rabin
 1985: Richard Karp

3

String Matching Problem

 Input:
 Text T = “at the thought of”

• n = length(T) = 17
 Pattern P = “the”

• m = length(P) = 3 We assume m ≤ n.

 Output: (CLRS indexes from 1 & aims at all shifts)
 Shift s – the smallest integer (0 ≤s ≤n–m)

such that T[s .. s+m–1] = P[0 .. m–1].
Returns –1 if no such s exists.

0123 … n-1

012

at the thought of

thes=3

4

Naïve String Matching

Naïve-Matcher(T,P)
01 for s  0 to n – m do
02 j  0
03 // check if T[s..s+m–1] = P[0..m–1]
04 while T[s+j] = P[j] do
05 j  j + 1
06 if j = m then return s
07 return –1

 Idea: Brute force
 Check all values of s from 0 to n–m

 Let T = “at the thought of” and P = “though”
 What is the number of character comparisons?

5

Analysis of Naïve String Matching

 The analysis is made for finding all shifts
 Worst case:

 Outer loop: n–m+1 iterations
 Inner loop: max m constant-time iterations
 Total: max (n–m+1)m = O(nm), as m ≤ n
 What input gives this worst-case behaviour?

 Best case: Q(n–m+1)
 When?

 Completely random text and pattern:
 O(n–m)

6

 The analysis is made for finding all shifts
 Worst case:

 Outer loop: n–m+1 iterations
 Inner loop: max m constant-time iterations
 Total: max (n–m+1)m = O(nm), as m ≤ n
 What input gives this worst-case behaviour?

Examples: P=am and T=an; P=am-1b and T=an

 Best case: Q(n–m+1)
 When?

 Completely random text and pattern:
 O(n–m)

Analysis of Naïve String Matching

7

 The analysis is made for finding all shifts
 Worst case:

 Outer loop: n–m+1 iterations
 Inner loop: max m constant-time iterations
 Total: max (n–m+1)m = O(nm), as m ≤ n
 What input gives this worst-case behaviour?

Examples: P=am and T=an; P=am-1b and T=an

 Best case: Q(n–m+1)
 When? Example: P[0] is not in T

 Completely random text and pattern:
 O(n–m)

Analysis of Naïve String Matching

8

Fingerprint Idea

 Assume:
 We can compute a fingerprint f(P) of P

in Θ(m) time; similarly for f(T[0 .. m–1])
 f(P)f(t) ⇒ Pt for any t = T[s .. s+m–1] (*)
 We can compare fingerprints in O(1) time
 We can compute f’ = f(T[s+1 .. s+m])

from f(T[s .. s+m–1]) in O(1) time

f

f’

9

Algorithm with Fingerprints

 Let the alphabet ={0,1,2,3,4,5,6,7,8,9}
 Let the fingerprint be a decimal number, i.e.,

f(“2045”) = 2*103 + 0*102 + 4*101 + 5 = 2045
 Fingerprint-Matcher(T,P)
01 fp  compute f(P)
02 ft  compute f(T[0..m–1])
03 for s  0 to n – m do
04 if fp = ft then return s
05 ft (ft – T[s]*10m-1)*10 + T[s+m]
06 return –1

f

new f
T[s]

T[s+m]

 Running time: 2Θ(m) + Θ(n–m) = Θ(n), as m ≤ n
 Where is the catch?! There are two, actually.

10

Using a Hash Function

 First problem: We cannot assume m-digit
number arithmetic works in O(1) time!

 Solution = hashing: h(s) = f(s) mod q
 Example: if q=7, then h(“52”) = 52 mod 7 = 3
 We now indeed have: h(P)  h(t) ⇒ P  t

 Second problem: the inverse contrapositive
“f(P)=f(t) ⇒P=t” of (*) was not assumed!
 Example: if q=7 then h(“59”)=3, but “59”“52”

 Basic “mod q” arithmetic:
 (a+b) mod q = (a mod q + b mod q) mod q
 (a*b) mod q = (a mod q) * (b mod q) mod q

11

Preprocessing and Stepping

 Preprocessing, using Horner's rule and 'mod' laws:
 fp = (10*(…*(10*(10*0+P[0])+P[1])+…)+P[m-1])mod q
 In the same way, compute ft from T[0..m-1]
 Exercise: Let P = “2531” and q = 7: what is fp?

 Stepping:
 ft  (ft – T[s]*10m-1 mod q)*10 + T[s+m]) mod q
 10m-1 mod q can be computed once, in the preprocessing
 Exercise: Let T[…] = “5319” and q = 7: what is the new

ft when T[s+m]=”7”?

ft

new ft
T[s]

T[s+m]

12

Rabin-Karp Algorithm (1987)

Rabin-Karp-Matcher(T,P)
01 q  a prime larger than m
02 c  10m-1 mod q // run a loop multiplying by 10 mod q
03 fp  0; ft  0
04 for i  0 to m-1 do // preprocessing
05 fp  (10*fp + P[i]) mod q
06 ft  (10*ft + T[i]) mod q
07 for s  0 to n – m do // matching
08 if fp = ft then // run a loop to compare strings
09 if P[0..m-1] = T[s..s+m-1] then return s
10 ft ((ft – T[s]*c)*10 + T[s+m]) mod q
11 return –1

 Exercise: How many character comparisons are
done if T = “2531978”, P = “1978”, and q = 7?

13

Analysis

 If q is a prime number, then the hash
function distributes m-digit strings evenly
among the q values.
 Thus, only every qth value of shift s will result in

matching fingerprints, which requires
comparing strings with O(m) comparisons

 Expected running time, if q > m:
 Preprocessing: Θ(m)
 Outer loop: n–m+1 iterations
 All inner loops: maximum
 Total time: O(n+m) = O(n)

 Worst-case running time: O(nm)

n−m
q
m=O (n−m)

14

Rabin-Karp in Practice

 If the alphabet has d characters, then
interpret characters as radix-d digits:
replace 10 by d in the algorithm.

 Choosing a prime number q > m can be
done with a randomised algorithm in O(m)
time, or q can be fixed to be the largest
prime so that d*q fits in a computer word.

 Rabin-Karp is simple and can be extended
to two-dimensional pattern matching.

15

Matching in n Comparisons

 Goal: Each text character is compared only
once to a pattern character.

 Problem with the naïve algorithm:
 Forgets what was learned from a partial match!
 Examples:

• T = “Tweedledee and Tweedledum”
and P = “Tweedledum”

• T = “pappappappar” and P = “pappar”

16

General Situation

 State of the algorithm:
 Reading character T[i]
 q<m characters of P are

matched so far in T
 We see a non-matching

character in T[i]
 Need to find for i'=i+1:

 Length of longest prefix of P
that is a suffix of P[0..q–1]

 Pre-computation would take
O(m||) time and memory...



i

q

T:

P:

new q = q’ = max{k ≤ q | P[0..k–1] = P[q–k+1..q–1]}



q

P[0..q–1]:

P:

q’

i'

17

Finite Automaton Search

 Algorithm:
 Preprocess:

• For each q (0 ≤ q ≤ m–1) and each 
pre-compute a new value of q. Let us call it (q,).

• Fill a table of size m||
 Run through the text

• Whenever a mismatch is found (P[q] T[s+q]):
• Set s = s + q – (q,) + 1 and q = (q,)

 Analysis:
  Matching phase in O(n) time
  Too much memory: Θ(m||),

too much preprocessing: at best O(m||).

18

Prefix Function

 Idea: Revisit the unmatched
character ()!

 State of the algorithm:
 Reading character T[i]
 q<m characters of P are matched
 We see a non-matching

character in T[i]

 Need to find for i' = i:
 Length of the longest

prefix of P[0..q–2]
that is a suffix of P[0..q–1]



i=i'

q

T:

P:

new q = q' =  [q] = max{k < q | P[0..k–1] = P[q–k..q–1]}



q

P[0..q–1]:

P:

q’

compare
this again

19

Prefix Table

 Pre-compute a prefix table of size m to
store the values of [q] for 0 ≤q ≤ m

 Exercise:
Compute a prefix table for P = “dadadu”

2

5

a

011000[q]

643210q

rppapP

20

Knuth-Morris-Pratt (1977)

KMP-Matcher(T,P)
01   Compute-Prefix-Table(P)
02 q  0 // number of chars matched = index of next char
03 for i  0 to n-1 do // scan text from left to right
04 while q > 0 and P[q]  T[i] do
05 q  [q]
06 if P[q] = T[i] then q  q+1
07 if q = m then return i–m+1
08 return –1

To return all shifts, replace the then block of line 07 by
print i–m+1; q  [q]

Compute-Prefix-Table is essentially the KMP
matching algorithm, but performed on P as text.

21

Analysis of KMP

 Worst-case running time: O(n+m) = O(n)
 Main algorithm: O(n)
 Compute-Prefix-Table: O(m)

 Space usage: O(m)

22

Reverse Naïve Algorithm

 Why not search from the end of P?
 Boyer and Moore

Reverse-Naïve-Matcher(T,P)
01 for s  0 to n–m
02 j  m–1 // start from the end
03 // check if T[s..s+m–1] = P[0..m–1]
04 while T[s+j] = P[j] do
05 j  j-1
06 if j < 0 return s
07 return –1

 Running time is exactly the same as for the
naïve algorithm…

23

Occurrence Heuristic

 Boyer and Moore added two heuristics to
the reverse naïve matcher, to get an
O(n+m) algorithm, but it is complex

 Horspool suggested just to use the
modified occurrence heuristic:
 After a mismatch, align T[s + m–1] with the

rightmost occurrence of that letter in the
pattern P[0..m–2]

 Examples:
• T= “detective date” and P= “date”
• T= “tea kettle” and P= “kettle”

24

Shift Table

 In preprocessing, compute the shift table
of the size ||.

 Example: P = “kettle”
 shift[e] =4, shift[l] =1, shift[t] =2, shift[k] =5
 shift[any other letter] = 6

 Exercise: P = “pappar”
 What is the shift table?

shift [w]={m−1−max {im−1∣P [i]=w} if w is in P [0. .m−2] ,
m otherwise.

25

Boyer-Moore-Horspool
BMH-Matcher(T,P)
01 // compute the shift table for P
01 for c  0 to ||- 1 do
02 shift[c] = m // default values
03 for k  0 to m–2 do
04 shift[P[k]] = m–1-k
05 // search
06 s  0
07 while s ≤ n–m do
08 j  m–1 // start from the end
09 // check if T[s..s+m–1] = P[0..m–1]
10 while T[s+j] = P[j] do
11 j  j 1
12 if j < 0 then return s
13 s  s + shift[T[s+m–1]] // shift by last letter
14 return –1

26

BMH Analysis

 Worst-case running time
 Preprocessing: O(||+m)
 Searching: O(nm)

• Exercise: What input gives this bound?
 Total: O(nm)

 Space: O(||)
 Independent of m

 On real-world data sets: very fast

27

Comparison

 Let us compare the algorithms.
Criteria:
 Worst-case running time

• Preprocessing
• Searching

 Expected running time
 Space used
 Implementation complexity

