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Introduction
Edge-finding is a commonly used filtering algorithm for resource constrained

scheduling problems. For cumulative scheduling problems (i.e., resources with

a capacity greater than 1), the state of the art was until recently the Θ-tree

algorithm by Vilím[3], with a complexity of O (kn logn), where n is the number

of tasks and k the number of distinct resource requirements.

We present a new edge-finding algorithm of O
(
n2
)

complexity, and

demonstrate that in practice it outperforms earlier algorithms, while offering

comparable performance to Vilím’s more recent timetable edge-finding [4].

Cumulative Resource Scheduling
In a resource constrained scheduling problem, a set of tasks share a finite

resource of capacity. Tasks have fixed resource requirements and durations,

and a domain of start times. The problem is to assign each task a start time such

that the capacity of the resource is never exceeded.

..

0

.

5

.

10

.

A

.
B

.

C

.

i

.

C

.

ci

.
pi

.

estA=esti=0

.

lctA= lctB= lctC=5

.

estB=estC=2

.

lcti=10

Cumulative scheduling is NP-Complete, but there exist several polynomial

filtering algorithms for elastic relaxations of the constraint, with edge-finding

being one of the most common.

Edge-Finding
Edge-finding attempts to deduce precedence relations between a set of tasks Ω

and another task i /∈ Ω. If there is not enough capacity in the time between

estΩ and lctΩ to schedule all the tasks in Ω as well as i, then i must end after the

end (or begin before the beginning) of all tasks in Ω. This deduction justifies a

tightening of the earliest start time (or latest completion time) of i.
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Not all sets of tasks need to be considered, only task intervals:

ΩU
L = {t ∈ T | estt ≥ estL, lctt ≤ lctU}

Determining that Ω precedes i is not enough, as the maximal update to esti may

come from a subset of Ω. Hence, the edge-finding rule, for each task i ∈ T [2]:

est′i = max
Ω⊆T
i/∈Ω

C(lctΩ− estΩ∪{i})<eΩ∪{i}

max
Θ⊆Ω

rest(Θ,ci)>0

estΘ+

⌈
rest (Θ, ci)

ci

⌉
(EF)

Minimum slack intervals
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lctΘ=5 To find the intervals that lead to

the best update, edge-finders such as

[2, 1, 3] consider interval slack: the

amount of capacity unused by the

task interval.

Intuitively: the less slack an interval

has, the more likely it is to lead to a

good bound update.

The minimum slack interval can be used to check the condition on the outer

maximization of (EF). We also consider the interval with the least slack of any

interval Θu
ℓ such that estℓ ≤ esti; as we prove in the paper, if the Θ from the inner

maximization of (EF) has estΘ ≤ esti, then Θ will be this interval of minimum

slack.

Maximum density intervals
To correctly locate Θ when estΘ > esti, we introduce the notion of

maximum density, where density measures the average resource usage by a

task interval.
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We prove that when estΘ > esti, the interval Θu
ℓ with estℓ > esti with

the maximum density is either (a) the interval Θ that satisfies the inner

maximization of (EF), or (b) an interval where estℓ > estΘ, which must also lead

to a (possibly weaker) update of esti. In the latter case, we further demonstrate

that the algorithm moves closer to finding the true maximal update on each

propagation, requiring in the worst case propagations on the order of O (n);

experimental results suggest that, in practice, our algorithm rarely requires more

propagations than other edge-finders.

Results
The algorithm was implemented in Gecode 3.6.0, and compared with several

previous edge-finding filters. The j30, j60 and j90 problem sets of the Project

Scheduling Problem Library (PSPLib) were used as benchmarks. Runtimes are

shown for the time required to find the best solution on a 3.07 ghz Intel Core

i7 processor, with a time limit of 300 seconds.
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Figure 1: Θ-tree edge-finding[3]
has a complexity of O (kn logn),
where k is the number of distinct
capacity requirements among the
tasks, which is not strictly dominated
by the O

(
n2
)

complexity of our
algorithm, especially for small k.
Nevertheless, in terms of runtime our
algorithm consistently outperformed
the Gecode Θ-tree edge-finder by a
factor of three.
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Figure 2: Despite the theoretical
possibility that our algorithm would
require additional propagations to
reach the same fixpoint as earlier
algorithms (specifically for the Θ-tree
algorithm[?] here), in practice the
number of propagations varied by less
than one percent in almost all cases.
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Figure 3: A comparison with
Vilím’s O

(
n2
)

timetable edge-
finding[4] was less clear-cut. Each
algorithm performed better on
several instances, with timetable
edge-finding performing better on
difficult j30 instances, but worse
on many j60 and j90 instances.
Interestingly, the Vilím algorithm,
which is strictly speaking stronger
than traditional edge-finding, was
able to solve many of the harder
instances that all other algorithms we
implemented timed out on.

Conclusion
• We present a O

(
n2
)

algorithm for cumulative edge-finding which does not

suffer from the incompleteness of the original quadratic algorithm [1].

• Our algorithm outperforms the state of the art Θ-tree algorithm [3], while

offering a simpler implementation with no custom data structures.


