
Computing Scaling Relations by Solving the Full Stokes Equations 
Assessing the validity of the SIA 

The Shallow Ice Approximation (SIA) is 
derived under two assumptions:

  1. That the ice sheet is shallow, i.e.

     ε=[H]/[L] << 1, 

  2. That the vertical shear stress and
      horizontal velocity dominates, i.e. that     
     certain scaling relations hold. 
   
However, in literature there are different scaling 
relations. By numerical experiments, using 
Elmer, we investigate what scaling relations 
are valid. We compare our results to scaling 
relations  in  Baral et al. (2001), Blatter 
(1995) and Schoof & Hindmarsh (2010). 

Elmer is run for the 
ISMIP-HOM inspired 
problem in Figure 1. The 
length, L, of the domain is 
varied between 10 km 
and 10 240 km, which 
means that ε is varied.

    

- There is a thick high viscosity boundary layer near the 
ice surface, which depends on ε, agreeing fairly well 
with theory in Johnson & McMeeking (1984). 
  

- The boundary layer develops immediately 
as bumps are introduced at the bed.
  

- The scalings in Baral et al., which the SIA is 
derived from, do not take the boundary 
layer into account. This matters when going 
to second order (SOSIA).
   

- The scalings in Schoof & Hindmarsh are in good 
agreement with our results, except for the 
longitudinal stress txx, which does not 
behave as ε2 outside the boundary layer. 
   

- The scaling relations behind the SIA do not hold for 
slope angles independent of the aspect ratio ε.
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For each ε, the L2-
norm of the field 
variables is computed. 
Doing a polynomial 
fit for the norm for 
the smallest ε 
(Figure 2), scaling 
relations are 
obtained.

To measure the boundary layer thickness 
numerically, the longitudinal stress is summarized 
over a horizontal layer, and the boundary layer 
border is defined to be at 10 % of the maximum 
value (red star in Figure 4). Separate scaling 
relations inside and outside the 
boundary layer are then computed.

Johnson & McMeeking and Schoof & Hindmarsh states that there is a high 
viscosity (coinciding with higher longitudinal stress) boundary layer near the ice 
surface with thickness varying as ε1/3, and that in this boundary layer the variables 
need to be rescaled. The scalings in Schoof & Hindmarsh applied to our 
problem are:
   

    

  
  

  

In the boundary layer, Ωi
txz ~ ρg[H]ε4/3, txx ~ ρg[H]ε4/3

vx ~ A[H](ρg[H])3ε3, vz ~ A[H](ρg[H])3ε4

1. Goal 2. Theory - Scaling Relations
      

Baral et al assumes that
  

txz ~ ρg[H]ε1, txx ~ ρg[H]ε2

vz/vx ~ ε  
   

  

      

While Blatter uses
  

txz ~ ρg[H]ε1, txx ~ ρg[H]ε1

vx ~ A[H](ρg[H])3ε3, vz ~ A[H](ρg[H])3ε4

  

3b. Method - Boundary layer
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4. Results

5. Conclusions

Table 1. α=arctan(ε)°, bump amplitude 

Variable                    

Hbl         2.2ρg[H]ε0.31                          -                                     -        

txz         0.58ρg[H]ε1.0                  0.86ρg[H]ε1.0                 1.3ρg[H]ε1.3 

txx         1.12ρg[H]ε1.5                 0.32ρg[H]ε1.6                0.77ρg[H]ε1.4 

vx          0.44A[H](ρg[H])3ε3.0      0.35A[H](ρg[H])3ε3.0     0.58A[H](ρg[H])3ε3.0

vz          0.71A[H](ρg[H])3ε4.0      0.39A[H](ρg[H])3ε3.9     0.89A[H](ρg[H])3ε4.0  

Table 2. α=arctan(ε)°, bump amplitude 

We have varied geometrical parameters. For a angle α independent of ε the scaling 
relations do not agree with any theory. For α=arctan(ε)° we vary the bump amplitude:    

The boundary layer remains even when lowering the bump amplitude to 0.05[H]. 
At zero bump amplitude there is no boundary layer.

3a. Method - calculating scalings 
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Figure 2. The L2- norm of the vertical shear 
stress txz for different ε (black line). The 

polynomial fit (pink line) agrees well.

Figure 1. Model problem.  [H] is 
constant at 1 km, while L is varied.

Outside the boundary layer, Ωo    
txz ~ ρg[H]ε1, txx ~ ρg[H]ε2

vx ~ A[H](ρg[H])3ε3, vz~ A[H](ρg[H])3ε4
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Figure 4. Sum of 
longitudinal stress over 

horizontal layers k.

Figure 3. Grid with 
horizontal layers, k.

  Ω                            Ωo                          Ωi

Variable                    

Hbl             2.7ρg[H]ε0.26                        -                                       -        

txz             0.61ρg[H]ε1.0                1.1ρg[H]ε1.1                    1.6ρg[H]ε1.3 
   

txx             2.8ρg[H]ε1.5                 1.2ρg[H]ε1.7                1.7ρg[H]ε1.4 

vx              1.1A[H](ρg[H])3ε3.0      0.53A[H](ρg[H])3ε2.9      1.2A[H](ρg[H])3ε3.0

vz              4.9A[H](ρg[H])
3
ε
4.0

      0.93A[H](ρg[H])
3
ε
3.9

      4.4A[H](ρg[H])
3
ε
4.0        

  Ω                         Ωo                            Ωi


