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1. Goal 2. Theory - Scaling Relations 3a. Method - calculating scalings
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1. That the ice sheet is shallow, i.e. Vz/Vx ~ & vx ~ AlHl(pglH])"e", vz ~ AlH](pglH])"¢
e=[H]/[L] << 1, Johnson & McMeeking and Schoof & Hindmarsh states that there is a high - Elmer is run for the
viscosity (coinciding with higher longitudinal stress) boundary layer near the ice ISMIP-HOM inspired
| surface with thickness varying as €'/3, and that in this boundary layer the variables problem in Figure 1. The
2. That the vertical shear stress and need to be rescaled. The scalings in Schoof & Hindmarsh applied to our length, L, of the domain Is
horizontal velocity dominates, i.e. that problem are: vageldobze;gveken 10h!<rl:
certain scaling relations hold. | an m, wnic
g Outside the boundary layer, Q In the boung?ry layer, Q; 43 | means that € is varied.
I . . tyz ~ pg[H]El, tyx ~ pg[H]E2 txz ~ pglH]e™ ", txx ~ pglH]e Figure 1. Model problem. [H]is |
Howgver, In I|teratur_e there are_dn‘ferent sc:‘:\llng vy ~ A[HI(0a[H])3€3, vo~ A[HI(palH])3e? vx ~ A[HI(pg[H])3€3, vz ~ A[H](pg[H])3& constant at 1 km, while Lis varied. | [~=ru Soies
relations. By numerical experiments, using | [ Polynomal i
Elmer, we investigate what scaling relations For each g, the L,- 1
are valid. We compare our results to scaling 4. Results nOrrnb?f the field - =
relations in Baral et al. (2001), Blatter vellieloliss s oIS, i,
(1995) and Schoof & Hindmarsh (2010). We have varied geometrical parameters. For a angle a independent of € the scaling Doing a polynomial

relations do not agree with any theory. For a=arctan(e)® we vary the bump amplitude:

Table 1. a=arctan(g)®, bump amplitude
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Figure 3. Grid with Table 2. a=arctan(g)®, bump amplitude
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To measure the boundary layer thickness txx 1.12pg[Hlel > 0.32pg[H]e1:© 0.77pg[H11-4
numerically, the longitudinal stress is summarized
over a horizontal layer, and the boundary layer VX 0.44A[H1(pg[H1)3e3-0  0.35A[H1(pg[H])3e3-0 0.58A[H1(pg[H])3e3-0
. . o .
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value (red star in Figure 4). Separate scaling

relations inside and outside the The boundary layer remains even when lowering the bump amplitude to 0.05[H].
boundary layer are then computed. At zero bump amplitude there is no boundary layer.
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relations are Figure 2. The L,- norm of the vertical shear
- stress tx> for different € (black line). The
obtained. polynomial fit (pink line) agrees well.

5. Conclusions

- There is a thick high viscosity boundary layer near the
ice surface, which depends on g, agreeing fairly well
with theory in Johnson & McMeeking (1984).

- The boundary layer develops immediately
as bumps are introduced at the bed.

- The scalings in Baral et al., which the SIA is
derived from, do not take the boundary
layer into account. This matters when going
to second order (SOSIA).

- The scalings in Schoof & Hindmarsh are in good
agreement with our results, except for the
longitudinal stress txy, which does not
behave as €2 outside the boundary layer.

- The scaling relations behind the SIA do not hold for
slope angles independent of the aspect ratio €.



