

UPPSALA UNIVERSITET

1. Goal

The Shallow Ice Approximation (SIA) is derived under two assumptions:

- 1. That the ice sheet is shallow, i.e. $\epsilon = [H]/[L] << 1,$
- 2. That the vertical shear stress and horizontal velocity dominates, i.e. that certain scaling relations hold.

However, in literature there are different scaling relations. By numerical experiments, using **Elmer, we investigate what scaling relations are valid**. We compare our results to scaling relations in **Baral et al. (2001), Blatter** (1995) and Schoof & Hindmarsh (2010).

over a horizontal layer, and the boundary layer border is defined to be at **10 % of the maximum** value (red star in Figure 4). Separate scaling relations inside and outside the **boundary layer are then computed.**

Computing Scaling Relations by Solving the Full Stokes Equations Assessing the validity of the SIA

Josefin Ahlkrona^{1,2}, Nina Kirchner², Per Lötstedt¹ (1) Department of Information Technology, Division of Scientific Computing, Uppsala University, Uppsala, Sweden, (2) Bert Bolin Centre for Climate Research & Department of Physical Geography and Quaternary Geology, Stockholm University, Stockholm, Sweden

2. Theory - Scaling Relations

Baral et al assumes that

While Blatter uses

 $t_{XZ} \sim \rho g[H] \epsilon^1, t_{XX} \sim \rho g[H] \epsilon^2$ $V_7/V_X \sim \epsilon$

 $t_{XZ} \sim \rho g[H] ε^1, t_{XX} \sim \rho g[H] ε^1$ $v_{X} \sim A[H](\rho g[H])^{3} \epsilon^{3}, v_{Z} \sim A[H](\rho g[H])^{3} \epsilon^{4}$

Johnson & McMeeking and Schoof & Hindmarsh states that there is a high viscosity (coinciding with higher longitudinal stress) **boundary layer** near the ice surface with thickness varying as $\varepsilon^{1/3}$, and that in this boundary layer the variables need to be rescaled. The scalings in Schoof & Hindmarsh applied to our problem are:

Outside the boundary layer, Ω
 $t_{XZ} \sim \rho g[H] \epsilon^1$, $t_{XX} \sim \rho g[H] \epsilon^2$ In the boundary layer, Ω
 $t_{XZ} \sim \rho g[H] \epsilon^1$, $t_{XX} \sim \rho g[H] \epsilon^2$ $v_X \sim A[H](\rho g[H])^3 \epsilon^3$, $v_Z \sim A[H](\rho g[H])^3 \epsilon^4$ $v_X \sim A[H](\rho g[H])^3 \epsilon^3$, $v_Z \sim A[H](\rho g[H])^3 \epsilon^4$

4. Results

We have varied geometrical parameters. For a angle α independent of ε the scaling relations do not agree with any theory. For $\alpha = \arctan(\epsilon)^\circ$ we vary the bump amplitude:

Variable	Ω	Ω₀	Ω _i	
н _ы	2.7ρg[H]ε ^{0.26}	_	-	
t _{xz}	0.61ρg[H]ε ^{1.0}	1.1ρg[H]ε ^{1.1}	1.6ρg[H]ε ^{1.3}	
t _{XX}	2.8ρg[H]ε ^{1.5}	1.2ρg[H]ε ^{1.7}	1.7ρg[H]ε ^{1.4}	
VX	1.1A[H](ρg[H]) ³ ε ^{3.0}	0.53A[H](ρg[H])3ε ^{2.9}	1.2A[H](ρg[H])3ε ^{3.0}	
VZ	4.9A[H](ρg[H]) ³ ε ^{4.0}	0.93A[H](ρg[H]) ³ ε ^{3.9}	4.4A[H](ρg[H]) ³ ε ^{4.0}	
Table 2 a-arctan(c)° hump amplitude				

Table 1. $\alpha = \arctan(\epsilon)^{\circ}$, bump amplitude

lable 2. $\alpha = \arctan(\epsilon)^2$, pump amplitude

Variable	e Ω	Ω₀	Ω _i
H _{bl}	2.2ρg[H]ε ^{0.31}	_	_
t _{xz}	0.58ρg[H]ε ^{1.0}	0.86ρg[H]ε ^{1.0}	1.3ρg[H]ε ^{1.3}
t _{XX}	1.12ρg[H]ε ^{1.5}	0.32ρg[H]ε ^{1.6}	0.77ρg[H]ε ^{1.4}
VX	0.44A[H](ρg[H]) ³ ε ^{3.0}	0.35A[H](ρg[H]) ³ ε ^{3.0}	0.58A[H](ρg[H]) ³ ε ^{3.0}
vz	0.71A[H](ρg[H])3ε ^{4.0}	0.39A[H](ρg[H])3ε ^{3.9}	0.89A[H](ρg[H])3ε ^{4.0}

The boundary layer remains even when lowering the bump amplitude to 0.05[H]. At zero bump amplitude there is no boundary layer.

obtained.

5. Conclusions

- There is a thick high viscosity boundary layer near the ice surface, which depends on ε, agreeing fairly well with theory in Johnson & McMeeking (1984).

- The scalings in Baral et al., which the SIA is derived from, do not take the boundary layer into account. This matters when going to second order (SOSIA).

- The scalings in Schoof & Hindmarsh are in good agreement with our results, except for the **longitudinal stress t_{XX}**, which does not behave as ε^2 outside the boundary layer.

- The scaling relations behind the SIA do not hold for slope angles independent of the aspect ratio ε .

polynomial fit (pink line) agrees well.

- The **boundary layer** develops **immediately** as bumps are introduced at the bed.