
Introduction to Lab 3

Jonas Flodin <jonas.flodin@it.uu.se>

Division of Computer Systems
Dept. of Information Technology

Uppsala University

2012-11-12

What is lab 3?
. . . who cares about scalability anyway?

The purpose of this assignment is to give insights into:
1. how to program multi-processors
2. introduce the pthreads threading API
3. how different sharing patterns can affect performance
4. show how algorithm design affects scalability

What is Gauss-Seidel?
. . . and why do I care?

Gauss-Seidel is:
I an iterative linear equation solver.
I ancient and low-performing on its own.
I used as a component in modern multi-grid solvers.

How we will use Gauss-Seidel

We will use Gauss-Seidel to solve the Laplace equation:

∆u =
δ2u
δx2 +

δ2u
δy2 = 0 in Ω

u = 0 on δΩ

Note: The equation above is not a linear equation system!

. . . but we can approximate it as one using finite differences!

∆ui,j ≈
ui−1,j + ui+1,j + ui,j−1 + ui,j+1 − 4ui,j

h2

The Gauss-Seidel algorithm
A sweep

Generally:

xk+1
i =

bi −
∑

j<i aijxk+1
j −

∑
j>i aijxk

j

aij

Applied to the Laplace equation (with h = 1):

uk+1
i,j =

uk+1
i−1,j + uk+1

i,j−1 + uk
i+1,j + uk

i,j+1

4

Access pattern
Serial version

Each element is the average of its neighbors. The “new” value
is used for the north and west neighbor.

Access pattern
Serial version

Each element is the average of its neighbors. The “new” value
is used for the north and west neighbor.

Access pattern
Parallel version

Thread 0 Thread 1

We will parallelize column wise. This requires synchronization
between the threads along the “border”. You will implement that
synchronization.

Access pattern
Parallel version

Thread 0 Thread 1

We will parallelize column wise. This requires synchronization
between the threads along the “border”. You will implement that
synchronization.

Access pattern
Parallel version

Thread 0 Thread 1

We will parallelize column wise. This requires synchronization
between the threads along the “border”. You will implement that
synchronization.

Access pattern
Parallel version

Thread 0 Thread 1

We will parallelize column wise. This requires synchronization
between the threads along the “border”. You will implement that
synchronization.

The Gauss-Seidel algorithm
Testing for convergence

We define convergence as:∑
i

∑
j

|uk
i,j − uk+1

i,j | ≤ t

We say that the algorithm has converged when the absolute
difference between two iterations is smaller than the tolerance.

What are Posix Threads?

Pthreads is:
I a standardized way to create and synchronize threads
I the default threading API on most Unix systems. This

includes:
I GNU/Linux
I (Net|Free|...)BSD
I Sun Solaris
I Apple MacOS X
I . . .

Creating threads

i n t pthread_create (
p thread_t ∗ thread ,
const p t h r e a d _ a t t r _ t ∗ a t t r ,
void ∗ (∗ s t a r t _ r o u t i n e) (void ∗) ,
void ∗arg) ;

Parameters:
thread Where to store the thread ID.

attr Attributes for the thread, NULL defaults.
start_routine Procedure to call in the new thread.

arg Argument passed to start_routine

Return Value:
0 if successful, error number otherwise.

Waiting for threads to terminate

i n t p th read_ jo in (
p thread_t thread ,
void ∗∗ va lue_p t r) ;

Parameters:
thread Thread to wait for.

value_ptr Pointer to variable to store return value in, NULL to
discard return value.

Return Value:
0 if successful, error number otherwise.

Thread creation
An example

#include <pthread . h>
#include < s t d i o . h>

s t a t i c void ∗my_thread (void ∗arg) {
p r i n t f (" He l lo Threads ! \ n ") ;
return NULL;

}

i n t main (i n t argc , char ∗argv []) {
p thread_t thread ;
/∗ TODO: No e r r o r handl ing : (∗ /
pthread_create (& thread , NULL,

my_thread , NULL) ;
p th read_ jo in (thread , NULL) ;
return 0;

}

Mutexes
Initialization

i n t pthread_mutex_ in i t (
pthread_mutex_t ∗mutex ,
const pth read_mutexa t t r_ t ∗ a t t r) ;

Parameters:
mutex Pointer to mutex to initialize.

attr Pointer to mutex attributes, NULL for default
attributes.

Return Value:
0 if successful, error number otherwise.

Mutexes
Initialization

pthread_mutex_t mutex =
PTHREAD_MUTEX_INITIALIZER ;

Mutex initialization the easy way, uses default attributes. No
need for explicit cleanup.

Mutexes
Cleanup

i n t pthread_mutex_destroy (
pthread_mutex_t ∗mutex) ;

Parameters:
mutex Pointer to mutex to destroy.

Return Value:
0 if successful, error number otherwise.

Mutexes
Locking

i n t pthread_mutex_lock (
pthread_mutex_t ∗mutex) ;

i n t pthread_mutex_unlock (
pthread_mutex_t ∗mutex) ;

Parameters:
mutex Pointer to mutex to lock or unlock.

Return Value:
0 if successful, error number otherwise.

Mutexes
Example

s t a t i c i n t balance = 512;
s t a t i c pthread_mutex_t balance_mutex =

PTHREAD_MUTEX_INITIALIZER ;

s t a t i c i n t withdraw (i n t amount) {
i n t r e t = 0 ;
pthread_mutex_lock (&balance_mutex) ;
i f (balance > amount) {

balance −= amount ;
r e t = amount ;

}
pthread_mutex_unlock (&balance_mutex) ;
return r e t ;

}

Barriers
Initialization

i n t p t h r e a d _ b a r r i e r _ i n i t (
p t h r e a d _ b a r r i e r _ t ∗ b a r r i e r ,
const p t h r e a d _ b a r r i e r a t t r _ t ∗ a t t r ,
unsigned count) ;

Note:
Barriers are optional in the Posix specification.
Parameters:

barrier Pointer to barrier to initialize.
attr Pointer to barrier attributes, NULL for defaults.

count Number of threads to wait for.
Return Value:
0 if successful, error number otherwise.

Barriers
Cleanup

i n t p th read_bar r i e r_des t roy (
p t h r e a d _ b a r r i e r _ t ∗ b a r r i e r) ;

Parameters:
barrier Pointer to barrier to destroy.

Return Value:
0 if successful, error number otherwise.

Barriers
Waiting

i n t p th read_ba r r i e r_wa i t (
p t h r e a d _ b a r r i e r _ t ∗ b a r r i e r) ;

Parameters:
barrier Pointer to barrier to wait for.

Return Value:
PTHREAD_BARRIER_SERIAL_THREAD or 0 on success, error
number otherwise.

Barriers
Example

s t a t i c p t h r e a d _ b a r r i e r _ t b a r r i e r ;

s t a t i c void i n i t _ b a r r i e r () {
p t h r e a d _ b a r r i e r _ i n i t (& b a r r i e r , NULL,

2) ;
}
s t a t i c void d e s t r o y _ b a r r i e r () {

p th read_bar r i e r_des t roy (& b a r r i e r) ;
}
s t a t i c void do_s tu f f () {

/∗ TODO: Super−fancy a lgo r i t hm here ∗ /
p th read_ba r r i e r_wa i t (& b a r r i e r) ;

}

Documentation
... or the answer to Life, the Universe and Everything

There are two sources of “truth” if you are hacking Unix:
I The Single Unix Specification1

I Your local system’s man-pages, for example:
host$ man man
host$ man pthreads

1http://www.unix.org/single_unix_specification/

Files in the lab package

Makefile Controls compilation. Contains a test target.
gs_common.c Boring stuff you don’t need to touch.
gs_interface.h Contains declarations and documentation for

the interface between gs_common.c and your GS
implementation.

gsi_seq.c Sequential reference implementation.
gsi_pth.c Write your code here.

Demonstration

This page intentionally blank

http://www.unix.org/single_unix_specification/

Important dates

I Groups:
Prep. Room 1412D, 13:15–17:00

A 2012-11-13, Room 1412D, 13:15–17:00
B 2012-11-15, Room 1412D, 08:15–12:00
C 2012-11-16, Room 1412D, 08:15–12:00

I Deadline: Lab occasions

Summary

I You will:
I Parallelize a Gauss Seidel implementation using Pthreads

and flag synchronization
I Study the performance of your parallel implementation
I Perform architecture specific optimizations on the parallel

application
I Complete lab manual on the course homepage2

2http://www.it.uu.se/edu/course/homepage/avdark/ht12

Summary
And remember. . .

Thou shalt study thy libraries and strive not to reinvent
them without cause, that thy code may be short and
readable and thy days pleasant and productive.3

3http://www.lysator.liu.se/c/ten-commandments.html

http://www.it.uu.se/edu/course/homepage/avdark/ht12
http://www.lysator.liu.se/c/ten-commandments.html

	Introduction
	Gauss-Seidel
	POSIX Threads
	Lab Framework
	Summary

