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What is lab 3?
. . . who cares about scalability anyway?

The purpose of this assignment is to give insights into:
1. how to program multi-processors
2. introduce the pthreads threading API
3. how different sharing patterns can affect performance
4. show how algorithm design affects scalability

What is Gauss-Seidel?
. . . and why do I care?

Gauss-Seidel is:
I an iterative linear equation solver.
I ancient and low-performing on its own.
I used as a component in modern multi-grid solvers.

How we will use Gauss-Seidel

We will use Gauss-Seidel to solve the Laplace equation:

∆u =
δ2u
δx2 +

δ2u
δy2 = 0 in Ω

u = 0 on δΩ

Note: The equation above is not a linear equation system!

. . . but we can approximate it as one using finite differences!

∆ui,j ≈
ui−1,j + ui+1,j + ui,j−1 + ui,j+1 − 4ui,j

h2



The Gauss-Seidel algorithm
A sweep

Generally:
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Applied to the Laplace equation (with h = 1):
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Access pattern
Serial version

Each element is the average of its neighbors. The “new” value
is used for the north and west neighbor.
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Access pattern
Parallel version

Thread 0 Thread 1

We will parallelize column wise. This requires synchronization
between the threads along the “border”. You will implement that
synchronization.
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The Gauss-Seidel algorithm
Testing for convergence

We define convergence as:∑
i

∑
j

|uk
i,j − uk+1

i,j | ≤ t

We say that the algorithm has converged when the absolute
difference between two iterations is smaller than the tolerance.



What are Posix Threads?

Pthreads is:
I a standardized way to create and synchronize threads
I the default threading API on most Unix systems. This

includes:
I GNU/Linux
I (Net|Free|...)BSD
I Sun Solaris
I Apple MacOS X
I . . .

Creating threads

i n t pthread_create (
p thread_t ∗ thread ,
const p t h r e a d _ a t t r _ t ∗ a t t r ,
void ∗ (∗ s t a r t _ r o u t i n e ) ( void ∗ ) ,
void ∗arg ) ;

Parameters:
thread Where to store the thread ID.

attr Attributes for the thread, NULL defaults.
start_routine Procedure to call in the new thread.

arg Argument passed to start_routine

Return Value:
0 if successful, error number otherwise.

Waiting for threads to terminate

i n t p th read_ jo in (
p thread_t thread ,
void ∗∗ va lue_p t r ) ;

Parameters:
thread Thread to wait for.

value_ptr Pointer to variable to store return value in, NULL to
discard return value.

Return Value:
0 if successful, error number otherwise.

Thread creation
An example

#include <pthread . h>
#include < s t d i o . h>

s t a t i c void ∗my_thread ( void ∗arg ) {
p r i n t f ( " He l lo Threads ! \ n " ) ;
return NULL;

}

i n t main ( i n t argc , char ∗argv [ ] ) {
p thread_t thread ;
/∗ TODO: No e r r o r handl ing : ( ∗ /
pthread_create (& thread , NULL,

my_thread , NULL ) ;
p th read_ jo in ( thread , NULL ) ;
return 0;

}



Mutexes
Initialization

i n t pthread_mutex_ in i t (
pthread_mutex_t ∗mutex ,
const pth read_mutexa t t r_ t ∗ a t t r ) ;

Parameters:
mutex Pointer to mutex to initialize.

attr Pointer to mutex attributes, NULL for default
attributes.

Return Value:
0 if successful, error number otherwise.

Mutexes
Initialization

pthread_mutex_t mutex =
PTHREAD_MUTEX_INITIALIZER ;

Mutex initialization the easy way, uses default attributes. No
need for explicit cleanup.

Mutexes
Cleanup

i n t pthread_mutex_destroy (
pthread_mutex_t ∗mutex ) ;

Parameters:
mutex Pointer to mutex to destroy.

Return Value:
0 if successful, error number otherwise.

Mutexes
Locking

i n t pthread_mutex_lock (
pthread_mutex_t ∗mutex ) ;

i n t pthread_mutex_unlock (
pthread_mutex_t ∗mutex ) ;

Parameters:
mutex Pointer to mutex to lock or unlock.

Return Value:
0 if successful, error number otherwise.



Mutexes
Example

s t a t i c i n t balance = 512;
s t a t i c pthread_mutex_t balance_mutex =

PTHREAD_MUTEX_INITIALIZER ;

s t a t i c i n t withdraw ( i n t amount ) {
i n t r e t = 0 ;
pthread_mutex_lock (&balance_mutex ) ;
i f ( balance > amount ) {

balance −= amount ;
r e t = amount ;

}
pthread_mutex_unlock (&balance_mutex ) ;
return r e t ;

}

Barriers
Initialization

i n t p t h r e a d _ b a r r i e r _ i n i t (
p t h r e a d _ b a r r i e r _ t ∗ b a r r i e r ,
const p t h r e a d _ b a r r i e r a t t r _ t ∗ a t t r ,
unsigned count ) ;

Note:
Barriers are optional in the Posix specification.
Parameters:

barrier Pointer to barrier to initialize.
attr Pointer to barrier attributes, NULL for defaults.

count Number of threads to wait for.
Return Value:
0 if successful, error number otherwise.

Barriers
Cleanup

i n t p th read_bar r i e r_des t roy (
p t h r e a d _ b a r r i e r _ t ∗ b a r r i e r ) ;

Parameters:
barrier Pointer to barrier to destroy.

Return Value:
0 if successful, error number otherwise.

Barriers
Waiting

i n t p th read_ba r r i e r_wa i t (
p t h r e a d _ b a r r i e r _ t ∗ b a r r i e r ) ;

Parameters:
barrier Pointer to barrier to wait for.

Return Value:
PTHREAD_BARRIER_SERIAL_THREAD or 0 on success, error
number otherwise.



Barriers
Example

s t a t i c p t h r e a d _ b a r r i e r _ t b a r r i e r ;

s t a t i c void i n i t _ b a r r i e r ( ) {
p t h r e a d _ b a r r i e r _ i n i t (& b a r r i e r , NULL,

2 ) ;
}
s t a t i c void d e s t r o y _ b a r r i e r ( ) {

p th read_bar r i e r_des t roy (& b a r r i e r ) ;
}
s t a t i c void do_s tu f f ( ) {

/∗ TODO: Super−fancy a lgo r i t hm here ∗ /
p th read_ba r r i e r_wa i t (& b a r r i e r ) ;

}

Documentation
... or the answer to Life, the Universe and Everything

There are two sources of “truth” if you are hacking Unix:
I The Single Unix Specification1

I Your local system’s man-pages, for example:
host$ man man
host$ man pthreads

1http://www.unix.org/single_unix_specification/

Files in the lab package

Makefile Controls compilation. Contains a test target.
gs_common.c Boring stuff you don’t need to touch.
gs_interface.h Contains declarations and documentation for

the interface between gs_common.c and your GS
implementation.

gsi_seq.c Sequential reference implementation.
gsi_pth.c Write your code here.

Demonstration

This page intentionally blank

http://www.unix.org/single_unix_specification/


Important dates

I Groups:
Prep. Room 1412D, 13:15–17:00

A 2012-11-13, Room 1412D, 13:15–17:00
B 2012-11-15, Room 1412D, 08:15–12:00
C 2012-11-16, Room 1412D, 08:15–12:00

I Deadline: Lab occasions

Summary

I You will:
I Parallelize a Gauss Seidel implementation using Pthreads

and flag synchronization
I Study the performance of your parallel implementation
I Perform architecture specific optimizations on the parallel

application
I Complete lab manual on the course homepage2

2http://www.it.uu.se/edu/course/homepage/avdark/ht12

Summary
And remember. . .

Thou shalt study thy libraries and strive not to reinvent
them without cause, that thy code may be short and
readable and thy days pleasant and productive.3

3http://www.lysator.liu.se/c/ten-commandments.html

http://www.it.uu.se/edu/course/homepage/avdark/ht12
http://www.lysator.liu.se/c/ten-commandments.html
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