
Introduction to Lab 2

Jonas Flodin <jonas.flodin@it.uu.se>

Division of Computer Systems
Dept. of Information Technology

Uppsala University

2012-10-09

What is lab 2?
. . . or what is consistency, and who cares anyway?

The purpose of this assignment is to give insights into:
1. how to program muli-processors
2. why synchronization is needed
3. how synchronization may be implemented
4. how memory consistency affects program behavior
5. how heavy-weight synchronization can be avoided with

atomic instructions

What is a process?

A process contains the following:
I A set of memory mappings (heap, code, etc)
I Environment variables
I Signal handlers
I A list of open file descriptors (files, devices, network

connections, etc)
I UID/GID/PID and some more TLAs1

I One or more threads.

1Three Letter Abbreviations

What is a thread?

A thread is an independent flow of control within
a process

What is a thread?

A thread contains:
I A set of registers. Including:

I Program Counter
I Stack Pointer

I A scheduling priority

Why do we need synchronization?

i f (balance > amount)
balance = balance − amount ;

What happens if multiple threads execute the code above at the
same time?

How do we update shared state correctly?
Bringing order to chaos

Two common approaches:
I Use critical sections

I Heavy-weight approach.
I Operating systems usually provide an API to do this.

I Atomic instructions
I Relatively light-weight compared to above method.
I Serializes memory accesses on the system.
I May need to write assembler or use compiler

pragmas/intrinsics.

x86 memory ordering

I Defined in Volume 3A (System Programming guide) of the
Intel R© 64 and IA-32 Architectures Software Developer’s
Manual.

I Memory ordering depends on access type:
Processor Ordering for “normal” memory operations. Very

similar to Total Store Order.
Total Lock Order for instructions with the lock prefix.

Atomic instructions behave as if the system
implemented Sequential Consistency.

What is Processor Ordering?
An incomplete description

In an individual processor:
I Writes are not reordered with other writes.
I Reads may be reordered with older writes to different

locations.
In a multi-processor system:

I Writes by a single processor are observed in the same
order by all processors.

I Writes from an individual processor are not ordered with
respect to writes from other processors.

I Memory ordering obeys causality.
I Any two stores are seen in a consistent order by

processors other than those performing the store.

Forcing memory order

It is possible to force memory ordering using memory fences.

Assembler:

mfence

GCC intrinsics:

__bu i l t in_ ia32_mfence () ;

What is an atomic instruction?

I Atomic instructions perform their action as one unit without
exposing intermediate state

I Naturally aligned loads and stores (up to 64 bits) are
generally atomic, i.e. it’s impossible to read a half-updated
word.2

I Most instructions accessing memory can be turned into
atomic instructions by adding a lock prefix.

2They still adhere to Processor Ordering and not Total Lock Order.

Simple examples

Incrementing a number:

lock inc 0x0(%eax)

Decrementing a number:

lock dec 0x0(%eax)

Exchange

xchg %eax , 0x0(%ebx)

I Exchanges the value in memory location 0x0(%ebx) with
the value in %eax

I Always atomic, the lock prefix is optional

Compare and exchange

lock cmpxchg %ebx , 0x0(%ecx)

I Uses %eax as an implicit operand
I Is %eax is equal to 0x0(%ecx)?

true Write %ebx into 0x0(%ecx)
false Write 0x0(%ecx) into %eax

Note: Nothing is written to memory if the comparison fails.

Background
. . . or who is this Dekker guy anyway?

I Dekker’s algorithm solves the critical section problem for 2
threads without fancy hardware support.

I Attributed to the Dutch mathematician Theodorus J.
Dekker in a manuscript from 1965 by Edsger W. Dijkstra.

The algorithm

flagi ⇐ True
while flagj do

if turn 6= i then
flagi ⇐ False
while turn 6= i do

Do nothing or sleep
end while
flagi ⇐ True

end if
end while

Do critical work

turn⇐ j
flagi ⇐ False

Limitations

I Only works for two threads.
I . . . but we don’t care.

I Does not work with weak consistency models.
I Requires memory barriers to force the processor to order

accesses.

In the lab
What you’ll be doing (hopefully)

I You will:
I Implement Dekker’s algorithm and use memory barriers to

make it run correctly on x86.
I Implement a simple algorithm using different types of

atomic instructions instead of critical sections
I Do performance studies for different types of

implementation strategies
Bonus Implement queue locks using atomic instructions
I Complete lab manual on the course homepage3

3http://www.it.uu.se/edu/course/homepage/avdark/ht12

Important dates

I Groups:
Prep. Room 1412D, 13:15–17:00

A 2012-10-10, Room 1412D, 08:15–12:00
B 2012-10-11, Room 1412D, 13:15–17:00
C 2012-10-12, Room 1412D, 13:15–17:00

I Deadline: Lab occasions

Summary
And remember. . .

Thou shalt make thy program’s purpose and structure
clear to thy fellow man by using the One True Brace
Style, even if thou likest it not, for thy creativity is
better used in solving problems than in creating
beautiful new impediments to understanding.4

4http://www.lysator.liu.se/c/ten-commandments.html

http://www.it.uu.se/edu/course/homepage/avdark/ht12
http://www.lysator.liu.se/c/ten-commandments.html

	Introduction
	Consistency in the x86
	Atomic instructions in the x86
	Dekker's algorithm
	Summary

