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Abstract

A psi-calculus is an extension of the pi-calculus with
nominal data types for data structures and for logical as-
sertions representing facts about data. These can be trans-
mitted between processes and their names can be statically
scoped using the standard pi-calculus mechanism to allow
for scope migrations.

Other proposed extensions of the pi-calculus can be for-
mulated as psi-calculi; examples include the applied pi-
calculus, the spi-calculus, the fusion calculus, the concur-
rent constraint pi-calculus, and calculi with polyadic com-
munication channels or pattern matching. Psi-calculi can
be even more general, for example by allowing structured
channels, higher-order formalisms such as the lambda cal-
culus for data structures, and a predicate logic for asser-
tions.

Our labelled operational semantics and definition of
bisimulation is straightforward, without a structural con-
gruence. We establish minimal requirements on the nominal
data and logic in order to prove general algebraic prop-
erties of psi-calculi. The proofs have been checked in the
interactive proof checker Isabelle.

We are the first to formulate a truly compositional la-
belled operational semantics for calculi of this calibre. Ex-
pressiveness and therefore modelling convenience signifi-
cantly exceeds that of other formalisms, while the purity of
the semantics is on par with the original pi-calculus.

1 Introduction

The pi-calculus [15] has a multitude of extensions where
higher-level data structures and operations on them are
given as primitive. To mention only two there are the
spi-calculus by Abadi and Gordon [2] focusing on crypto-
graphic primitives, and the applied pi-calculus of Abadi and
Fournet [1] where agents can introduce statically scoped
aliases of names for data, used e.g. to express how knowl-
edge of an encryption is restricted. It is also parametrised

by an arbitrary signature for expressing data and an equa-
tion system for expressing data equalities. The impact of
these enriched calculi is considerable with hundreds of pa-
pers applying or developing the formalisms. As Abadi and
Fournet rightly observe there is a tradeoff between “pu-
rity”, meaning the simplicity and elegance of the original
pi-calculus, and modelling convenience. Expressing com-
plicated schemes in the original pi-calculus can simply be-
come too gruesome and error prone.

But the modelling convenience of many high-level prim-
itives comes at a price. The theory of the formalism may
instead become gruesome and error prone, and it can be dif-
ficult to assess the effects of modifications to it. For exam-
ple, the semantics of the applied pi-calculus is defined using
two levels of processes (pure and extended), an inductively
defined reduction relation, an algebraically defined struc-
tural congruence, and (in order to achieve compositional-
ity) a notion of a barb and an explicit quantification over
contexts. The authors therefore propose a more tractable
semantics based on inductively defined labelled transitions,
but as we show in Section 3.1 below it turns out to be non-
compositional and in fact does not agree with the reduc-
tion semantics. For another example, the labelled seman-
tics of the concurrent constraint pi-calculus by Buscemi and
Montanari [7] also turns out to be non-compositional, as we
show in Section 3.2. The fact that such mistakes can go
unnoticed for years indicates the complexity of the proofs.

Our contribution in this paper is to define psi-calculi:
a framework where a range of calculi can be formulated
with a lean and symmetric semantics, and where proofs
can be conducted using straightforward induction without
resorting to a structural congruence or explicit quantifica-
tion of contexts. We claim to be the first to formulate such
truly compositional labelled operational semantics for cal-
culi of this calibre. Psi-calculi accommodate not only the
examples mentioned above, but also extensions such as the
pi-calculus with polyadic synchronisation [8], fusion [19],
and concurrent constraints [6]. The main idea is that a
psi-calculus is obtained by extending the basic untyped pi-
calculus with the following parameters: (1) a set of data
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terms, which can function as both communication channels
and communicated objects, (2) a set of conditions, for use
in conditional constructs such as if statements, (3) a set of
assertions, used to express e.g. constraints or aliases. One
of our main results is to identify minimal requirements on
these parameters. These turn out to be quite general and
natural.

Psi-calculi go beyond our previous work on extended
pi-calculi [13] since we admit arbitrary assertions (and not
only declarations of aliases), and arbitrary conditions (and
not only equality tests). Also, we base our exposition on
nominal data types and these accommodate e.g. alpha-
equivalence classes of terms with binders. For example,
we can use a higher-order logic for assertions and condi-
tions, and higher-order formalisms such as the lambda cal-
culus for data terms and channels. Last but not least the
formalisation is leaner and more symmetric. Thus we get
the best of two worlds: expressiveness and therefore mod-
elling convenience significantly exceeds that of the applied
pi-calculus, while the “purity” of the semantics is on par
with the original pi-calculus.

The straightforward definitions make our proofs suitable
for checking in a theorem prover. We have implemented
our framework in Isabelle [16] using its nominal data type
package [18], and proved all results in Section 4 [3]. This
gives us absolute certainty of general results for a large class
of calculi — at least to the point of the current state of the
art for machine checked proofs.

In the next section we give the basic definitions of the
syntax and semantics of psi-calculi. In Section 3 we re-
late to other work and demonstrate the expressiveness by
showing how a variety of calculi can be formulated. In Sec-
tion 4 we introduce a notion of bisimilarity and establish
the expected algebraic results about it. Finally Section 5
concludes with ideas for further work.

2 Definitions

2.1 Nominal data types

We base psi-calculi on nominal data types. A reader
unfamiliar with these needs not fear: we shall recapitulate
what little background is needed and be generous with ex-
amples. A traditional data type can be built from a signa-
ture of constant symbols, functions symbols, etc. A nomi-
nal data type is more general, for example it can also con-
tain binders and identify alpha-variants of terms. Formally
a nominal data type is not required to be built in any partic-
ular way; the only requirements are related to the treatment
of the atomic symbols called names as explained below.

As usual we assume a countably infinite set of atomic
namesN ranged over by a, b, . . . , x, y, z. Intuitively, names
will represent the symbols that can be statically scoped,

and also represent symbols acting as variables in the sense
that they can be subjected to substitution. A typed calculus
would distinguish names of different kinds but our account
will be untyped. A typing may certainly contribute to clarity
of expressions but it is not necessary for our results.

A nominal set [17, 11] is a set equipped with name swap-
ping functions written (a b), for any names a, b. An intu-
ition is that for any member X it holds that (a b) ·X is X
with a replaced by b and b replaced by a. Formally, a name
swapping is any function satisfying certain natural axioms
such as (a b) · ((a b) ·X) = X . One main point of this is
that even though we have not defined any particular syn-
tax we can define what it means for a name to “occur” in
an element: it is simply that it can be affected by swap-
pings. The names occurring in this way in an element X
constitute the support of X , written n(X). We write a#X ,
pronounced “a is fresh for X”, for a 6∈ n(X). In a tradi-
tional data type we will have a#X if a does not occur syn-
tactically in X . In for example the lambda calculus where
alpha-equivalent terms are identified (i.e. the elements are
alpha-equivalence classes of terms) the support corresponds
to the free names. If A is a set of names we write A#X to
mean ∀a ∈ A . a#X .

We require all elements to have finite support, i.e., n(X)
is finite for all X . It follows that for any X there are in-
finitely many a such that a#X . Some elements will have
empty support, a prime example is the identity function in
the lambda calculus, or a term of a traditional data type not
containing any names. Such elements satisfy equivariance,
(a b) · X = X for all a, b. A function f is equivariant if
(a b)·f(X) = f((a b)·X) holds for allX , and similarly for
functions and relations of any arity. Intuitively, this means
that all names are treated equally.

A nominal data type is just a nominal set together with a
set of functions on it. In particular we require a substitution
function, which intuitively substitutes elements for names.
If X is an element of a data type, ã is a sequence of names
without duplicates and Ỹ is an equally long sequence of el-
ements, the substitution X[ã := Ỹ ] is an element of the
same data type as X . In a traditional data type substitu-
tion can be thought of as replacing all occurrences of names
ã by Ỹ . In a calculus with binders it can be thought of
as replacing the free names, alpha converting any binders
to avoid capture. Formally, we define substitution as any
equivariant function satisfying the substitution laws of [3],
e.g. z#(X, Ñ)⇒ z#X[ã := Ñ ].

2.2 Agents

A psi-calculus is defined by instantiating three nominal
data types and four operators:

Definition 1 (Psi-calculus parameters). A psi-calculus re-
quires the three (not necessarily disjoint) nominal data
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types:

T the (data) terms, ranged over by M,N
C the conditions, ranged over by ϕ
A the assertions, ranged over by Ψ

and the four equivariant operators:
.↔: T×T→ C Channel Equivalence
⊗ : A×A→ A Composition
1 : A Unit
`⊆ A×C Entailment

The binary functions above will be written in infix. Thus,
if M and N are terms then M .↔ N is a condition, pro-
nounced “M and N are channel equivalent” and if Ψ and
Ψ′ are assertions then so is Ψ⊗Ψ′. Also we write Ψ ` ϕ,
“Ψ entails ϕ”, for (Ψ, ϕ) ∈ `.

The data terms are used to represent all kinds of data,
including communication channels. Intuitively, two agents
can communicate if one sends and the other receives along
the same channel. This is why we require a condition
M

.↔ N to say that M and N represent the same commu-
nication channel. For example, in the pi-calculus .↔ would
be just identity.

The assertions will be used to declare information neces-
sary to resolve the conditions. Assertions can be contained
in agents and represent constraints; they can contain names
and thereby be syntactically scoped and represent informa-
tion known only to the agents within that scope. The op-
erator ⊗ on assertions will, intuitively, be used to represent
conjunction of the information in the assertions. The asser-
tion 1 can be used to represent the least possible information
in an assertion.

The intuition of entailment is that Ψ ` ϕ means that
given the information in Ψ, it is possible to infer ϕ. We
say that two assertions are equivalent if they entail the same
conditions:

Definition 2 (assertion equivalence). Two assertions are
equivalent, written Ψ ' Ψ′, if for all ϕ we have that
Ψ ` ϕ⇔ Ψ′ ` ϕ.

We can now formulate our requisites on valid psi-
calculus parameters:

Definition 3 (Requisites on valid psi-calculus parameters).

Channel Symmetry: Ψ `M .↔ N =⇒ Ψ ` N .↔M
Channel Transitivity: Ψ `M .↔ N ∧ Ψ ` N .↔ L

=⇒ Ψ `M .↔ L

Compositionality: Ψ ' Ψ′ =⇒ Ψ⊗Ψ′′ ' Ψ′⊗Ψ′′

Identity: Ψ⊗1 ' Ψ
Associativity: (Ψ⊗Ψ′)⊗Ψ′′ ' Ψ⊗(Ψ′⊗Ψ′′)
Commutativity: Ψ⊗Ψ′ ' Ψ′⊗Ψ

Our requisites on a psi-calculus is that the channel equiv-
alence is symmetric and transitive, that ⊗ is composi-
tional, and that the equivalence classes of assertions form
an abelian monoid. These requisites turn out to be strictly
minimal for our results in Section 4 to hold. Note that chan-
nel equivalence is not required to be reflexive. Thus it is
possible to have data terms that are not channel equivalent
to anything at all, meaning that they cannot be used as chan-
nels.

In the following ã means a finite (possibly empty) se-
quence of names, a1, . . . , an. The empty sequence is writ-
ten ε and the concatenation of ã and b̃ is written ãb̃. When
occurring as an operand of a set operator, ãmeans the corre-
sponding set of names {a1, . . . , an}. We also use sequences
of terms, conditions, assertions etc. in the same way.

A frame can intuitively be thought of as an assertion with
local names:

Definition 4 (Frame). A frame F is a pair 〈BF ,ΨF 〉 where
BF is a sequence of names that bind into the assertion ΨF .
We use F,G to range over frames.

Name swapping on a frame just distributes to its two
components. We identify alpha equivalent frames, so
n(F ) = n(ΨF ) − n(BF ). We overload 1 to also mean
the least informative frame 〈ε,1〉 and ⊗ to mean com-
position on frames defined by 〈B1,Ψ1〉⊗〈B2,Ψ2〉 =
〈B1B2,Ψ1⊗Ψ2〉 where B1 # B2,Ψ2 and vice versa. We
also write Ψ⊗F to mean 〈ε,Ψ〉⊗F , and (νb)F to mean
〈bBF ,ΨF 〉.

Definition 5 (Equivalence of frames). We define F ` ϕ to
mean that there existBF and ΨF such that F = 〈BF ,ΨF 〉,
BF#ϕ, and ΨF ` ϕ. We also define F ' G to mean that
for all ϕ it holds that F ` ϕ iff G ` ϕ.

Intuitively a condition is entailed by a frame if it is
entailed by the assertion and does not contain any names
bound by the frame. Two frames are equivalent if they en-
tail the same conditions.

Definition 6 (psi-calculus agents). Given valid psi-calculus
parameters as in Definitions 1 and 3, the psi-calculus
agents, ranged over by P,Q, . . ., are of the following forms.

M N.P Output
M(λx̃)N.P Input
case ϕ1 : P1 [] · · · [] ϕn : Pn Case
(νa)P Restriction
P |Q Parallel
!P Replication
(|Ψ|) Assertion

In the Input M(λx̃)N.P we require that x̃ ⊆ n(N) is
a sequence without duplicates, and any name in x̃ binds its
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occurrences in both N and P . Restriction binds a in P . An
assertion is guarded if it is a subterm of an Input or Output.
In a replication !P there may be no unguarded assertions
in P , and in case ϕ1 : P1 [] · · · [] ϕn : Pn there may be no
unguarded assertion in any Pi.

In the Output and Input forms M is called the subject
and N the object. Output and Input are similar to those
in the pi-calculus, but arbitrary terms can function as both
subjects and objects. In the input M(λx̃)N.P the intuition
is that there is a pattern matching where the pattern (λx̃)N
can match any term obtained by instantiating x̃. In the tra-
ditional pi-calculus terms are just names and its input con-
struct a(x).P can be represented as a(λx)x.P . The case
construct as expected works by behaving as one of the Pi
for which the corresponding ϕi is true. So it embodies both
an if (if there is only one branch) and a nondeterministic
choice (if the conditions are overlapping).

Some notational conventions: We define the agent 0
as (|1|). The construct case ϕ1 : P1 [] · · · [] ϕn : Pn is
sometimes abbreviated as case ϕ̃ : P̃ , or if n = 1 as
if ϕ1 then P1. In psi-calculi where a condition > exists
such that Ψ ` > for all Ψ we write P + Q to mean
case > : P [] > : Q. Input subjects are underlined to facili-
tate parsing of complicated expressions; in simple cases we
often omit the underline.

Formally, we define name swapping on agents by dis-
tributing it over all constructors, and substitution on agents
by distributing it and avoiding captures by binders through
alpha-conversion in the usual way. We identify alpha-
equivalent agents; in that way we get a nominal data type of
agents where the support n(P ) of P is the union of the sup-
ports of the components of P , removing the names bound
by λ and ν. This corresponds to the names with a free oc-
currence in P .

Definition 7 (Frame of an agent). The frame F(P ) of an
agent P is defined inductively as follows:

F(M(λx̃)N.P ) = F(M N.P ) =
F(case ϕ̃ : P̃ ) = F(!P ) = 1

F((|Ψ|)) = 〈ε,Ψ〉
F(P |Q) = F(P ) ⊗ F(Q)
F((νb)P ) = (νb)F(P )

In the following we often write BP and ΨP for the two
elements of F(P ). The intuition is that a frame collects
information from the top-level assertions in an agent. 1 is
the empty frame (corresponding to an agent that has no top-
level assertions), and F(P )⊗F(Q) is the combination of
the frames from two parallel agents. An agent where all
assertions are guarded thus has the frame 1.

2.3 Operational semantics

The actions α that agents can perform are of three kinds:
output actions, input actions (of the early kind, meaning that
the input action contains the received object) and the silent
action τ . The operational semantics will consist of transi-

tions of the form Ψ � P
α−→ P ′. This transition intuitively

means that P can perform an action α leading to P ′, in an
environment that asserts Ψ.

Definition 8 (Actions). The actions ranged over by α, β are
of the following three kinds:

M (νã)N Output
M N Input
τ Silent

For actions we refer to M as the subject and N as the
object. We define bn(M (νã)N ) = ã, and bn(α) = ∅ if α
is an input or τ .

Definition 9 (Transitions). A transition is of the kind

Ψ � P
α−→ P ′, meaning that when the environment con-

tains the assertion Ψ the agent P can do an α to become
P ′. The transitions are defined inductively in Table 1.

The environmental assertions Ψ � · · · in Table 1 ex-
presses the effect that the environment has on the agent, by
enabling conditions in CASE, by giving rise to action sub-
jects in IN and OUT and by enabling interactions in COM.
Thus Ψ never changes between hypothesis and conclusion
except for the parallel operator, where an agent is part of
the environment for another agent. In a derivation tree for a
transition, the assertion will therefore increase towards the
leafs by application of PAR and COM. The freshness con-
ditions on the involved frames will ensure that if a name is
bound in one agent its representative in a frame is distinct
from names in parallel agents, and also (in PAR) that it does
not occur on the transition label.

In comparison to the applied pi-calculus and the concur-
rent constraint pi calculus one main novelty is the inclu-
sion of these environmental assertions. They are necessary
to make our semantics compositional, i.e., the effect of the
environment on an agent is wholly captured by the seman-
tics. In contrast, the labelled transitions of the applied and
the concurrent constraint pi calculi must rely on an auxil-
iary structural congruence, containing axioms such as scope
extension (νa)(P |Q) ≡ (νa)P |Q if a#Q. With our se-
mantics such laws are derived rather than postulated. The
advantage of our approach is that proofs of metatheoreti-
cal results such as compositionality are much simpler since
there is only the one inductive definition of transitions.
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IN
Ψ `M .↔ K

Ψ � M(λỹ)N.P K N [ey:=eL]−−−−−−−→ P [ỹ := L̃]
OUT

Ψ `M .↔ K

Ψ � M N.P
K N−−−→ P

CASE
Ψ � Pi

α−→ P ′ Ψ ` ϕi
Ψ � case ϕ̃ : P̃ α−→ P ′

COM
ΨQ⊗Ψ � P

M (νea)N−−−−−−→ P ′ ΨP⊗Ψ � Q
K N−−−→ Q′ Ψ⊗ΨP⊗ΨQ `M

.↔ K

Ψ � P |Q τ−→ (νã)(P ′ |Q′)
ea#Q

PAR
ΨQ⊗Ψ � P

α−→ P ′

Ψ � P |Q α−→ P ′|Q
bn(α)#Q SCOPE

Ψ � P
α−→ P ′

Ψ � (νb)P α−→ (νb)P ′
b#α,Ψ

OPEN
Ψ � P

M (νea)N−−−−−−→ P ′

Ψ � (νb)P M (νea∪{b})N−−−−−−−−−→ P ′
b#ea,Ψ,M
b ∈ n(N)

REP
Ψ � P | !P α−→ P ′

Ψ � !P α−→ P ′

Table 1. Operational semantics. Symmetric versions of COM and PAR are elided. In the rule COM we
assume that F(P ) = 〈BP ,ΨP 〉 and F(Q) = 〈BQ,ΨQ〉 where BP is fresh for all of Ψ, BQ, Q,M and P ,
and that BQ is correspondingly fresh. In the rule PAR we assume that F(Q) = 〈BQ,ΨQ〉 where BQ is
fresh for Ψ, P and α. In OPEN the expression νã∪{b}means the sequence ã with b inserted anywhere.

3 Expressiveness and related calculi

In this section we explore the expressiveness of psi-
calculi, mainly in comparison to other process calculi. To
begin with a simple example, the pi-calculus [15] can be
represented as a psi-calculus where the only data terms are
names, the only assertion is 1, and the conditions are equal-
ity tests on names. Formally:

T = N
C = {a = b. a, b ∈ T} ∪ {a .↔ b. a, b ∈ T}
A = {1}
⊗ = λΨ1,Ψ2. 1
` = {(1, a = a). a ∈ N} ∪ {(1, a .↔ a). a ∈ N}

Here we can let > be a = a and can thus represent pi-
calculus sum through case. We obtain the polyadic pi-
calculus by adding the tupling symbols tn for tuples of ar-
ity n to T., i.e. T = {tn(a1, . . . , an). a1, . . . , an ∈ N}
(where we abbreviate t1(a) as a). The polyadic output is
to simply output the corresponding tuple of object names,
and the polyadic input a(b1, . . . , bn).P is represented by a
pattern matching a(λb1, . . . , bn)tn(b1, . . . , bn).P . Strictly
speaking this allows tuples also in subject position in agents,
but such prefixes will not give rise to any transition since
M

.↔ M is only entailed when M is a name. In examples
below, we write polyadic objects assuming such a represen-
tation.

3.1 Calculi for cryptography

Psi-calculi can express a variety of cryptographic opera-
tions on data. The main idea is that assertions define rela-
tions between ciphertext and plaintext. For example, let the
assertion “C = enc(M,k)” mean that encrypting the mes-
sage M with the key k results in the ciphertext C, and let
“M = dec(C, k)” mean that decryptingC with key k yields
M . Entailment contains equations relating encryption and
decryption such as ∀M,k. dec(enc(M,k), k) = M . The
point is that a secure key can be represented by a bound
name: it is unguessable outside its scope. An example agent
aC . (νk)((|C = enc(M,k)|) | P ) outputs a term C and as-
serts that it is the encryption ofM using the bound k as key,
without opening the scope of k. Therefore an agent receiv-
ing C can resolve the condition dec(C, k) = M only after
receiving this k in a communication. Technically this is be-
cause of the freshness conditions in the PAR rule in Table 1
where BQ is assumed fresh for P : this means that to apply
the rule, P cannot use any name bound in the frame of Q.

This closely resembles the situation in applied pi [1]. By
contrast, in the spi-calculus [2] encrypted messages such as
enc(M,k) are transmitted directly. Consider an example
spi-calculus process

P = (νk,m)(a〈enc(m, k)〉 . P ′ (1)

where P ′ = b(x) . if x = m then c. Here P sends a fresh
name m encrypted with a fresh key k to the environment,
and then receives a value x. Assuming perfect encryp-
tion, the environment cannot know m or k, so P ′ can-
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not receive m along b, and the output on c will never
be possible. However, in the spi-calculus the transition

P
(νk,m)a〈enc(m,k)〉−−−−−−−−−−−−→ P ′ opens the scopes of k and m, so

here scoping does not correspond to restriction of knowl-
edge. A reasonable equivalence must explicitly keep track
of which names are known, leading to several complex
bisimulation definitions (see [4] for an overview).

The applied pi-calculus is parametrised by a signature
Σ for data terms and an equational theory `Σ over Σ, and
more importantly introduces active substitutions {M/x} of
data terms for variables. These can be introduced by the in-
ferred structural rule (νx)({M/x} | A) ≡ A[x := M ]. Ap-
plied pi distinguishes between names a, b, c and variables
x, y, z (collectively called atoms) where only variables can
be substituted, and uses a simple type system to distinguish
names and variables of channel type from other terms of
base type. Only names of channel type can be used as com-
munication channels. Structured data terms cannot be sent
directly, instead an alias variable such as x must be used,
and the term itself does not occur on the transition label.
We have P ≡ Q for P above in (1), where

Q = (νx, k,m)({enc(m,k)/x} | ax . P ′) (2)

Here Q a (νx)x−−−−→ (νk,m)({enc(m,k)/x} | P ′) and only the
alias of the encryption (its “value”) appears on the label;
the scope of k and m is not opened and in this sense they
are still confidential to the environment. However, the la-
belled semantics does not allow sending structured data
terms where the scope should be opened, such as a tuple
of names in the polyadic pi-calculus.

The labelled semantics for applied pi turns out to be non-
compositional. Consider the closed (extended) applied pi
agents

A = (νa)({a/x} | x.b.0) B = (νa)({a/x} | 0)

where we omit the objects of the prefixes. They have the
same frame and no transitions, and are thus semantically
equivalent. But a context can contain x and can there-
fore use the active substitution to communicate with A.
Formally, let R = x.0; we have by scope extension that
A|R ≈ (νa)({a/x} | x.b.0 | x.0) ⇓ b, but it is not the case
that B|R ⇓ b. Therefore, no observational equivalence that
is preserved by all contexts and satisfies scope extension can
be captured by the labelled semantics. In this, Theorem 1 of
[1] is incorrect; the labelled and observational equivalences
do in fact not coincide, nor is labelled equivalence a congru-
ence. This is relevant for other papers that use or develop
the labelled semantics, e.g. [12, 14, 10, 9].

Possible fixes are to disallow aliases for channel names,
to be satisfied with compositionality for closed contexts, or
to allow variables in action subjects. The consequences are
difficult to assess, and our proposed solution is to instead

define a psi-calculus representing the corresponding applied
pi-calculus as follows. Assertions are finite sets of active
substitutions, ⊗ is union, and entailment deduces equality
under `Σ and application of all relevant active substitutions.

Requirements on the assertions in applied pi are that they
can only contain one active substitution per variable, that
the active substitutions are non-circular, that they do not oc-
cur under a replication etc. To stay as close to the applied
pi-calculus as possible we inherit these restrictions and only
consider agents that satisfy them. This allows us to write
M(Ψ∗) for the term resulting from the fixpoint of the sub-
stitutions in Ψ. We write v(M) for the free variables of M ,
and Chan for the set of names of channel type.

T = the set of terms defined by Σ
A = Pfin({{M/x} : M ∈ T, x variable})
C = {M = N,¬(M = N),M .↔ N : M,N ∈ T}
1 = ∅
⊗ = ∪
Ψ `M = N if `Σ M(Ψ∗) = N(Ψ∗)
Ψ ` ¬(M = N) if v(M(Ψ∗)) ∪ v(N(Ψ∗)) = ∅

∧¬(Ψ `M = N)
Ψ `M .↔ N if Ψ `M = N ∧ ∃c ∈ Chan : Ψ `M = c

Terms, assertions and conditions are as for applied pi ex-
cept for the condition ¬(M = N) which is needed to rep-
resent the if M = N then P else Q construct of applied pi
as case M = N : P [] ¬(M = N) : Q in psi. As in applied
pi, the terms compared for inequality need to be ground.
Channel equivalence M .↔ N requires that there is a chan-
nel name equal to both M and N .

The resulting psi-calculus differs from the applied pi-
calculus in some ways, the most important being that in psi,

aM.P
aM−−→ P where M is a structured term, corresponds

to sending the cleartext of M directly. This is not possible
in the applied pi-calculus. In order to transmit M in the
applied pi-calculus the structural rule (νx)({M/x} | A) ≡
A[x := M ] must be used and an alias x for M be sent. To
send an alias in this way in psi it must be introduced explic-
itly, as in (|{M/x}|) | ax.P , and this agent is not the same as
aM.P .

Therefore, although the agents P and Q above (in (1)
and (2)) are the same in the applied pi-calculus, the psi
counterparts of the agents are different. In psi, P in (1)
represents an agent that emits the clear text “enc(m, k)”.
Any agent that receives this will immediately learn both m
and k, and any scope of k will be opened in the process.
This kind of agent can only indirectly be represented in the
applied pi-calculus, by sending the restricted names sepa-
rately one at a time. In contrast, the psi counterpart of (2) is
Q = (νx, k,m)((|{enc(m,k)/x}|) | ax . P ′) and defines Q to
emit an alias for enc(m, k). As in the applied pi-calculus
since k is scoped a recipient will not learn m. If the same
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recipient later receives k, an alias u for the message m can
be constructed as (|{dec(x,k)/u}|).

Thus in psi, communication objects can range from lit-
eral data terms to indirect references, giving the user of the
calculus the possibility to choose the appropriate form.

Another difference between the calculi is il-
lustrated by the agent A of the compositional-
ity counterexample: Its counterpart PA in psi is

(νa)((|{a/x}|) | x.b.0) x−→ (νa)((|{a/x}|) | b.0) and
is not equivalent to (νa)((|{a/x}|) | 0); indeed also

PA | x.0 τ−→ b−→ in our labelled semantics. This
example motivates the requisite that .↔ must be sym-
metric, otherwise psi would suffer the same problem of
compositionality.

3.2 Fusion and concurrent constraints

In the explicit fusion calculus by Wischik and Gardner,
pi-F [19], the names in object position are fused by a com-

munication, as in ab̃ . P | ad̃ .Q τ−→ {b̃ = d̃} | P | Q
where {b̃ = d̃} (for b̃ and d̃ of equal length) is a fusion
which allows us to treat each bi ∈ b̃ as equivalent to di ∈ d̃.
The explicit fusion calculus has a simple formulation as a
psi-calculus:

T = N
C = {a = b. a, b ∈ T} ∪ {a .↔ b. a, b ∈ T}
A = { {a1 = b1, . . . , an = bn} . ai ∈ N , bi ∈ N}
⊗ = ∪
1 = ∅
` = {(Ψ, a = b). a = b ∈ EQ(Ψ)} ∪

{(Ψ, a .↔ b). Ψ ` a = b}

where EQ(Ψ) is the equivalence closure of Ψ (i.e. tran-
sitive, symmetric and reflexive closure). Thus terms are
names, assertions are name fusions, and the entailment re-
lation deduces equality between names based on fusion as-
sertions treated as equivalence relations. We can repre-
sent the pi-F input ab̃ . P as a(c̃) . ((|{b̃ = c̃}|) | P ) where
c̃#ab̃ . P . For example, the fusion calculus communication

ab̃ . P | ad̃ .Q τ−→ {b̃ = d̃} | P | Q is expressed as:

a(c̃) . ((|{b̃ = c̃}|) | P ) | ad̃ .Q τ−→
((|{b̃ = c̃}|) | P )[c̃ := d̃] | Q = (|{b̃ = d̃}|) | P | Q

The concurrent constraint pi-calculus (CC-Pi) [7] can be
seen as a (monadic) pi-F calculus with ask and tell state-
ments, parametrised by a constraint system in the form of
a named c-semiring. The semantics is given by a structural
congruence and a reduction relation. There is also a labelled
operational semantics, but it is in fact not compositional.
Consider the CC-Pi agents

P = (νb, x)(x = b | ax . b . c) Q = (νb, x)(x = b | ax)

(where insignificant objects are omitted). They have the
same constraint store and the same transitions in all con-
straint contexts. However, they do not have the same transi-
tions in all process contexts: a parallel context R = a(y).y
tells the difference:

P | R τ−→ τ−→ (νb)(x = b | x = y | c) c−→

while Q | R of course has no such c transition. Thus Theo-
rem 1 of [7] is incorrect: open bisimilarity is not a congru-
ence.

The labelled semantics of CC-Pi has a curious asymme-
try between the rule for prefixes and the rule for commu-
nication: in the first case, the constraint store cannot affect
the label induced by the prefix, while in the communication
case, the constraint store judges whether the subjects should
be considered the same, enabling the communication. The
psi-calculi have no such asymmetry: the assertions (corre-
sponding to the store) allow the subject to be rewritten in
the prefix rules and the subjects in COM are compared us-
ing the assertions (see the end of Sec. 3.3 for a discussion).
A possible fix for CC-Pi would involve allowing the store
to rewrite terms, thus also subjects in prefixes [5].

A psi-calculus corresponding to CC-pi with semiring C
extends the psi-calculus for pi-F as follows:

T = A = C
C = C ∪ {a .↔ b. a, b ∈ N}
⊗ = The similarly notated operator ⊗ in CC-Pi
1 = 1

Ψ ` ϕ if
{

Ψ � ϕ if Ψ, ϕ ∈ C
Ψ ` a = b ∧ a, b ∈ N if ϕ = a

.↔ b

Thus terms, conditions and assertions are defined by the
carrier of the named c-semiring (which by definition in-
cludes names and name fusions); 1 is the unit element,
⊗ = ⊗, entailment is the CC-Pi partial order � and in
addition Ψ ` a .↔ b if Ψ ` a = b and both a and b are
names. We extend a monadic version of the pi-F formu-
lation above by representing ask ϕ .P as if ϕ then P and
tell Ψ . P as (|Ψ|) | P . We avoid recursion (it can be en-
coded using replication).

There are a couple of ways this psi-calculus differs from
CC-Pi, apart from the source of the non-compositionality
mentioned above. Most prominently, in the semantics of
CC-Pi the fusions resulting from communication are re-
quired to be consistent with the store (as defined by the con-
straint system). In contrast our semantics will allow transi-
tions that lead to an inconsistent store. In general both of
these approaches have been used in concurrent constraint
systems. It appears not possible to integrate a consistency
check in a psi-calculus communication without changing
our COM-rule.
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An example of how a CC-Pi communication is repre-
sented in psi:

In CC-Pi:

P = Ψ | ab .Q | cd .R τ−→ Ψ⊗(b = d) | Q | R
if Ψ ` a = c and Ψ⊗(b = d) consistent

In psi:
P = (|Ψ|) | a b .Q | c(x) . ((|x = d|) | R)

τ−→ (|Ψ|) | (|b = d|) | Q | R if Ψ ` a = c

3.3 Further examples

Polyadic synchronisation In a psi-calculus the channels
can be arbitrary terms. This means that it is possible to in-
troduce functions on channels (e.g., if M is a channel then
so is f(M)). It also means that a channel can contain more
than one name. An extension of this kind is explored by
Carbone and Maffeis [8] in the so called pi-calculus with
polyadic synchronisation, eπ. Here action subjects are tu-
ples of names, and it is demonstrated that this allows a
gradual enabling of communication by opening the scope
of names in a subject, results in simple representations of
localities and cryptography, and gives a strictly greater ex-
pressiveness than standard pi-calculus. We can represent eπ
by using tuples of names in subject position. The only mod-
ification to the representation of the polyadic pi-calculus is
to extend ` to `= {(1,M .↔M). M ∈ T}, and to remove
the conditions of type M = N (since they can be encoded
in eπ).

Higher-order data The data terms can be drawn from
any nominal data type, including higher-order formalisms.
It is thus possible to transmit functions between agents. For
example, let T be the lambda calculus, containing abstrac-
tions λx.M and applicationsMN . In the parallel composi-
tion a (λx.M) . P | a(z) . b zN .Q the left hand component
transmits the function λx.M to the right, where the appli-
cation of it to N is transmitted along b. Reduction would
be represented as a binary predicate over lambda terms and
could be tested in psi-calculus conditions (the reduction
rules would be part of the definition of entailment). In this
sense psi can resemble a higher-order calculus. It is even
possible to let the terms be the psi-calculus agents them-
selves. An agent transmitted as a term cannot directly com-
municate with the agent that sent or received it, but there is
a possibility of indirect interaction through the entailment
relation. This area we leave for further study.

Advanced constraint systems Psi-calculi go beyond
most concurrent constraint systems in two ways. Firstly, we
allow arbitrary logics, even higher-order ones. Secondly,

we allow an agent to transmit a constraint to another pro-
cess. For example, assume that c is constraint and that f is
a function from assertions to assertions. Then we can write
a c . P | a(z) . ((|f(z)|) | Q) where the left hand agent sends
a the constraint c to the right, and f is applied to it.

Unnamed ether Finally, a simple instantiation of the psi-
calculus parameters illustrates the generality of the frame-
work. Assume we want to describe a situation where there
is only one unnamed communication channel, and where
any process may declare a local alias for it. We define

T = N
C = {a .↔ b. a, b ∈ T}
A = Pfin(N )
⊗ = ∪
1 = ∅
` = {(Ψ, a .↔ b). a, b ∈ Ψ}

In other words, the only terms are names, assertions are sets
of names, and two names are channel equivalent if they are
in an assertion. Omitting the action and prefix objects we

get {a, b} � a.0 a−→ 0, and also {a, b} � a.0 b−→ 0. By

the PAR rule we have ∅� a.0|(|{a, b}|) a−→ 0|(|{a, b}|) and

∅ � a.0|(|{a, b}|) b−→ 0|(|{a, b}|). Applying a restriction

we get ∅ � (νa)(a.0|(|{a, b}|)) b−→ (νa)(0|(|{a, b}|)) but
no corresponding action with subject a because of the side
condition on SCOPE. Thus, a communication through COM
can be inferred from (νa)(a.0|(|{a, b}|)) | b.0, but not from
(νa)(a.0|(|{a, b}|)) | a.0.

A more complicated example indicates the subtlety in-
volved in establishing scope extension, i.e., if a#Q then the
agents (νa)(P |Q) and (νa)P |Q have the same transitions.
We have that {a} ∪ {b} ` a .↔ b, and thus similarly to the
inference above that (νa, b)((|{a}|) | (|{b}|) | a.0 | b.0) has
an internal communication. By scope extension this agent
should have the same transitions as P | Q where

P = (νa)((|{a}|) | a.0) Q = (νb)((|{b}|) | b.0)

Here F(P ) = 〈a, {a}〉 and F(Q) = 〈b, {b}〉. A communi-
cation from P | Q is inferred by COM and the premises

1. {a} � P
b−→ (νa)((|{b}|) | 0)

(derived using {a} ⊗ {b} = {a, b} ` a .↔ b in OUT)

2. {b} � Q
a−→ (νa)((|{a}|) | 0)

(derived using {b} ⊗ {a} = {a, b} ` a .↔ b in IN)
3. {a} ⊗ {b} = {a, b} ` a .↔ b

The action subjects are derived by the assertions in both
cases to not clash with the binders.

This example illustrates the necessity of using channel
equivalence in all of IN, OUT and COM. It also demon-
strates why transitions in Table 1 are defined with asser-
tions and not frames, for whereas {a, b} ` a

.↔ b the
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corresponding result cannot be obtained from the frames.
F(Q) ⊗ {a} = 〈b, {a, b}〉 0 a

.↔ b, so that frame is
not useful for deriving a transition from P . The condition
BQ#α in PAR prevents P | Q from additionally having an
action with the name a.

4 Bisimilarity

4.1 Definition

For two agents to be bisimilar we require that the actions
from one can be simulated by the other. We also require
that the agents be statically equivalent, meaning that their
frames are equivalent. Finally, we require the equivalence
to hold for all possible assertions in an environment. This
leads to the following definition.

Definition 10 (Bisimulation). A bisimulationR is a ternary
relation between assertions and pairs of agents such that
R(Ψ, P,Q) implies all of

1. Static equivalence: Ψ⊗F(P ) ' Ψ⊗F(Q)
2. Symmetry: R(Ψ, Q, P )
3. Extension of arbitrary assertion:
∀Ψ′.R(Ψ⊗Ψ′, P,Q)

4. Simulation: for all α, P ′ such that bn(α)#Ψ, Q there
exists a Q′ such that

Ψ � P
α−→ P ′ =⇒ Ψ � Q

α−→ Q′∧R(Ψ, P ′, Q′)

We define P .∼Ψ Q to mean that there exists a bisimulation
R such thatR(Ψ, P,Q), and write .∼ for .∼1.

Interestingly, there is an alternative way to define bisim-
ulation as a binary relationR such that PRQ implies static
equivalence F(P ) ' F(Q), extension of arbitrary paral-
lel assertion ((|Ψ|)|P )R((|Ψ|)|Q), symmetry, and simulation
(as in Definition 10.4 with 1 for Ψ). Such a definition is
more in line with standard contextual bisimulations. The
drawback is that it relies on an operator in the calculus (par-
allel) for its definition. For conducting proofs our experi-
ence is that Definition 10 is preferable. We have shown that
these bisimilarities coincide, i.e., the definitions results in
the same .∼.

An example clarifies the role of point number 3. Let β
be a prefix and let ϕ be any non-trivial condition.

P = β.β.0 + β.0 + β. if ϕ then β.0
Q = β.β.0 + β.0

P can nondeterministically choose between three branches
and Q between the two first of them. Here P and Q are
not bisimilar. If P performs an action corresponding to its
third case, reaching the agent P ′ = if ϕ then β.0, there

is no way that Q can simulate since neither Q′ = 0 nor
Q′ = β.0 is equivalent to P ′ in all environments. In fact,
any reasonable variant of bisimulation that equates P and
Q will not be preserved by parallel. To see this, let T be
γ.(|Ψ|), where γ is any prefix and Ψ an assertion that entails

ϕ. Then the transition P | T β−→ P ′ | T cannot be simu-
lated by Q|T , since P ′|T can only do an action γ followed
by an action β, whereas β.0|T can do β immediately, and
0|T can do no β at all. This demonstrates why clause 3,
extension of arbitrary assertion, is necessary: it says that af-
ter each step all possible extensions of the assertion must be
considered. If we would merely require this at top level, i.e.
remove clause 3 and instead require ∀Ψ.R(Ψ, P,Q) in the
definition of P .∼ Q, the extensions would not recur; as a
consequence P and Q in the example would be equivalent,
and the equivalence would not be preserved by parallel.

For another example, consider

R = if ϕ then β . if ϕ then β.0 S = if ϕ then β.β.0

In R the condition ϕ is checked twice. In general R
and S are not equivalent. To see this, let Ψ and Ψ′ be
such that Ψ ` ϕ and Ψ⊗Ψ′ 6` ϕ. We then have that
Ψ � R

β−→ if ϕ then β.0 and it cannot be simulated by

Ψ � S
β−→ β.0 because of the recurring clause of exten-

sion of arbitrary assertion: if ϕ then β.0 has no transition
in the environment Ψ⊗Ψ′. However, if the entailment rela-
tion satisfies weakening, i.e. Ψ ` ϕ ⇒ Ψ⊗Ψ′ ` ϕ, we get
the intuitive result that R and S are bisimilar. Weakening
is a quite natural requirement, intuitively it says that no as-
sertion can “undo” any entailments. This also demonstrates
why we rejected the smaller and simpler definition of .∼ as
the largest relation satisfying

∀Ψ.Ψ � P
β−→ P ′ =⇒ Ψ � Q

β−→ Q′ ∧ P ′
.∼ Q′

The difference is that here bisimulation recurringly requires
to hold for all assertions, not only for those that are exten-
sions of the ones passed so far. This would have the un-
intuitive effect of making R and S in the example above
non-bisimilar, even if weakening holds.

4.2 Algebraic properties

Our results are that bisimilarity is preserved by the op-
erators in the expected way, and also satisfies the expected
structural algebraic laws.

9



Theorem 11.
P

.∼ P | 0
P | (Q |R) .∼ (P |Q) |R

P |Q .∼ Q | P
(νa)0 .∼ 0

P | (νa)Q .∼ (νa)(P |Q) if a#P
M N.(νa)P .∼ (νa)M N.P if a#M,N

M(λx̃)N.(νa)P .∼ (νa)M(λx̃)(N).P if a#x̃,M,N

case ϕ̃ : (̃νa)P .∼ (νa)case ϕ̃ : P̃ if a#ϕ̃
(νa)(νb)P .∼ (νb)(νa)P

!P .∼ P | !P

Theorem 12. For all Ψ:

1. P .∼Ψ Q =⇒ P |R .∼Ψ Q |R.

2. P .∼Ψ Q =⇒ (νa)P .∼Ψ (νa)Q.

3. P .∼Ψ Q =⇒ !P .∼Ψ !Q.

4. ∀i.Pi
.∼Ψ Qi =⇒ case ϕ̃ : P̃ .∼Ψ case ϕ̃ : Q̃.

5. P .∼Ψ Q =⇒M N.P
.∼Ψ M N.Q.

6. (∀L̃. P [ã := L̃] .∼Ψ Q[ã := L̃]) =⇒
M(λã)N.P .∼Ψ M(λã)N.Q

The most awkward part of the proof is for Theorem 12.1,
which requires some ingenuity in formulating the right lem-
mas.

Definition 13. P ∼Ψ Q means that for all x̃, M̃ it holds
P [x̃ := M̃ ] .∼Ψ Q[x̃ := M̃ ], and we write P ∼ Q for
P ∼1 Q.

The laws of Theorem 11 are valid also for ∼, moreover
we have:

Theorem 14. ∼Ψ is a congruence for all Ψ.

We have completely formalised all proofs in this section
using Isabelle [3].

5 Conclusion and Further Work

We have defined a framework for mobile process cal-
culi, parametrised on nominal types for data terms and for
a logic to express assertions and conditions. We have ex-
plored the expressiveness in comparison to related calculi
and established basic properties of strong bisimilarity. This
is a starting point for many interesting investigations. Sev-
eral versions of applied pi-calculi focus on cryptographic
properties of agents where type checking proves an agent
secure. We intend to explore typed psi-calculi to include
this kind of reasoning. One idea is to find out what proper-
ties the type system must have in order for the usual theo-
rems (e.g. subject reduction) to hold.

We are currently developing a symbolic semantics and
are investigating weak and barbed equivalences for our
framework.
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