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Psi-calculi is a parametric framework for extensions of thepi-calculus with data terms and arbitrary
logics. In this framework there is no direct way to representaction priorities, where an action can
execute only if all other enabled actions have lower priority. We here demonstrate that the psi-calculi
parameters can be chosen such that the effect of action priorities can be encoded.

To accomplish this we define an extension of psi-calculi withaction priorities, and show that
for every calculus in the extended framework there is a corresponding ordinary psi-calculus, without
priorities, and a translation between them that satisfies strong operational correspondence. This is a
significantly stronger result than for most encodings between process calculi in the literature.

We also formally prove in Nominal Isabelle that the standardcongruence and structural laws
about strong bisimulation hold in psi-calculi extended with priorities.

1 Introduction

Priorities in process calculi allow certain actions to takeprecedence over others. This is useful when
modelling systems because it admits more fine-grained control over the model’s behaviour. Phenomena
that exhibit prioritised behaviour include eg. interruptsin operating systems, and exception handling
in programming languages. In this paper we demonstrate how priorities can be represented in the psi-
calculi framework, by encoding them into the logical theorythat determines how actions are generated
by process syntax.

Psi-calculi [3] is a family of applied process calculi that generalises thepi-calculus in three ways.
First, the subjects (designating the communication channels) and objects (designating the communicated
data) of input and output actions may betermstaken from an arbitrary set, and not just single names.
Second, equality tests on names are replaced by tests of predicates calledconditions, taken from an
arbitrary logic. Finally, the process syntax is extended with assertions, which can be seen as introducing
new facts about the environment in which a process executes.The unguarded assertions of a process
influence the evaluation of conditions and the connectivitybetween channel terms, and can change as the
process executes.

In this paper, we show that the psi-framework is sufficientlyexpressive to represent action priori-
ties derived from a priority order on the communication channels. We are interested in priorities for
two reasons. First, previous work on priorities indicate that they are highly expressive: Jeffrey defines
a process calculus with time and priority where timed processes can be encoded in the untimed frag-
ment of the calculus [15]; Jensen shows that CCS augmented with priority choice can encode broadcast
communication [16]; and Versari et al. shows that CCS with priority and only theprefix and parallel
operators can solve both leader election (unlike the pi-calculus), and the “last man standing”-problem
(unlike the broadcast pi-calculus) [23]. Second, we are not aware of another process calculus (without
priorities) where adding priorities has been shown to yieldno increased expressiveness. The prevailing
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methods to introduce priorities in process algebras are through semantic rules with negative premises or
new auxiliary relations to express the absence of higher-priority actions; we shall need none of those.

We accomplish our result as follows. First we define an extension of the psi-calculi framework with
explicit channel priorities, where the priority level of a channel can change dynamically during process
execution, as defined by an auxiliary relation representingabsence of actions. We formally prove, using
the interactive theorem prover Isabelle [18], that in this setting strong bisimilarity satisfies the usual
algebraic laws and congruence properties familiar from thepi-calculus. We proceed to show that for
every psi-calculus with priorities, separate choice and prefix-guarded replication, it can be encoded in
a standard psi-calculus without priorities. This encodingsatisfies particularly strong quality criteria,
namely strong operational correspondence, meaning that the translation does not introduce any protocol
in the target language. The main idea is that we use a non-monotonic logic for the assertions, where
the appearance of enabled high-priority channels can temporarily prevent lower priority channels from
resulting in actions.

The rest of the paper is structured as follows. In Section 2 webriefly recapitulate the essentials of
psi-calculi, and in Section 3 we define the extension with explicit channel priorities. Section 4 contains
an encoding into standard psi-calculi. In Section 5 we establish strong operational correspondence and
briefly discuss other criteria for encodings, among them full abstraction, and Section 6 contains conclu-
sions with future work.

Full proofs of all theorems presented in this paper are available online athttp://www.it.uu.se/
research/group/mobility/prio-proofs.pdf.

2 Psi-calculi

The following is a quick recapitulation of the psi-calculi framework. For an in-depth introduction with
motivations and examples we refer the reader to [3].

We assume a countably infinite set of atomicnamesN ranged over bya,b, . . . ,z. Intuitively, names
are the symbols that can be scoped and be subject to substitution. A nominal set[21, 12] is a set equipped
with a formal notion of what it means to swap names in an element; this leads to a notion of when a
namea occurs in an elementX, written a ∈ n(X) (pronounced “a is in the support ofX”). We write
a#X, pronounced “a is fresh forX”, for a 6∈ n(X), and if A is a set of names we writeA#X to mean
∀a ∈ A . a#X. In the following ã is a finite sequence of names. The empty sequence is writtenε and
the concatenation of ˜a and b̃ is written ãb̃. We say that a function symbol isequivariant if all name
swappings distribute over it.

A nominal datatypeis a nominal set together with a set of functions on it. In particular we shall
consider substitution functions that substitute elementsfor names. IfX is an element of a datatype, ˜a is a
sequence of names without duplicates andỸ is an equally long sequence of elements of possibly another
datatype, thesubstitution X[ã :=Ỹ] is an element of the same datatype asX. The substitution function
can be chosen freely, but must satisfy certain natural laws regarding the treatment of names; it must be
equivariant, the names̃a in X[ã := T̃] must be alpha-convertible as if they were binding inX. See [3] for
details.

A psi-calculus is defined by instantiating three nominal data types and four equivariant operators;
formally it is a tuple(T,A,C,⊢,⊗,

.
↔,1) as follows.

Definition 1 (Psi-calculus parameters). A psi-calculus requires the three (not necessarily disjoint) nom-
inal data types: the (data) termsT, ranged over by M,N, the conditionsC, ranged over byϕ , the
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4 Priorities Without Priorities

assertionsA, ranged over byΨ, and the four operators:
.
↔∈ T ×T → C Channel Equivalence ⊗ ∈ A ×A → A Composition
1 : A Unit ⊢ ⊆ A ×C Entailment

The binary functions above will be written in infix. Thus,M
.
↔ N is a condition, pronounced “M and

N are channel equivalent”. We writeΨ ⊢ ϕ , pronounced “Ψ entailsϕ”, for (Ψ,ϕ) ∈ ⊢, and ifΨ andΨ′

are assertions then so isΨ⊗Ψ′, which intuitively represents the conjunction of the information inΨ and
Ψ′.

We say that two assertions arestatically equivalent, writtenΨ≃Ψ′ if they entail the same conditions,
i.e. for all ϕ we have thatΨ ⊢ ϕ iff Ψ′ ⊢ ϕ . We impose certain requisites on the sets and operators:
channel equivalence must be symmetric and transitive,⊗ must be compositional with regard to≃, and
the assertions with(⊗,1) form an abelian monoid modulo≃. Finally, substitutionM[ã := T̃] on terms
must be such that if the names̃a are in the support ofM, the support of̃T must be in the support of
M[ã := T̃].

A frameis an assertion together with a sequence of names that bind into it: it is of the form(ν b̃)Ψ
wherẽb binds into the assertionΨ. We useF,G to range over frames. We overloadΨ to also mean(νε)Ψ
and⊗ to composition on frames defined by(ν b̃1)Ψ1⊗ (ν b̃2)Ψ2 = (ν b̃1b̃2)(Ψ1⊗Ψ2) whereb̃1#b̃2,Ψ2

and vice versa. We writeΨ⊗F to mean(νε)Ψ⊗F, and(νc)((ν b̃)Ψ) for (ν c̃b)Ψ.
We defineF ⊢ ϕ to mean that there exists an alpha variant(ν b̃)Ψ of F such that̃b#ϕ andΨ ⊢ ϕ . We

also defineF ≃ G to mean that for allϕ it holds thatF ⊢ ϕ iff G⊢ ϕ .

Definition 2 (Psi-calculus agents). Given a psi-calculusP with parameters as in Definition1, theagents
P(P), ranged over by P,Q, . . ., are of the following forms.

0 Nil
MN .P Output
M(λ x̃)N .P Input
caseϕ1 : P1 [] · · · [] ϕn : Pn Case
(νa)P Restriction
P | Q Parallel
!P Replication
LΨM Assertion

Restriction(νa)P binds a in P and input M(λ x̃)N .P bindsx̃ in both N and P. An occurrence of a subterm
in an agent isguardedif it is a proper subterm of an input or output term. An agent isassertion guarded
if it contains no unguarded assertions. An agent iswell-formed if in M(λ x̃)N.P it holds thatx̃⊆ n(N)
is a sequence without duplicates, that in a replication!P the agent P is assertion guarded, and that in
caseϕ1 : P1 [] · · · [] ϕn : Pn the agents Pi are assertion guarded.

The agentcaseϕ1 : P1 [] · · · [] ϕn : Pn is sometimes abbreviated ascaseϕ̃ : P̃. We sometimes write
M(x).P for M(λx)x.P. From this point on, we only consider well-formed agents.

TheframeF (P) of an agentP is defined inductively as follows:

F (M(λ x̃)N .P) = F (M N .P) = F (0) = F (caseϕ̃ : P̃) = F (!P) = 1 F (LΨM) = (νε)Ψ

F (P | Q) = F (P)⊗F (Q) F ((νb)P) = (νb)F (P)

Theactionsranged over byα ,β are of the following three kinds:
OutputM(ν ã)N, input MN, andsilent τ . Here we refer toM as thesubjectandN as theobject. We
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IN
Ψ ⊢ K

.
↔ M

Ψ ✄ M(λ ỹ)N .P
K N[ỹ:=L̃]
−−−−−→ P[ỹ := L̃]

OUT
Ψ ⊢ M

.
↔ K

Ψ ✄ M N .P
KN
−−→ P

CASE
Ψ ✄ Pi

α
−→ P′ Ψ ⊢ ϕi

Ψ ✄ caseϕ̃ : P̃
α
−→ P′

PAR
ΨQ⊗Ψ ✄ P

α
−→ P′

Ψ ✄ P | Q
α
−→ P′ | Q

bn(α)#Q

COM
Ψ⊗ΨP⊗ΨQ ⊢ M

.
↔ K ΨQ⊗Ψ ✄ P

M(ν ã)N
−−−−→ P′ ΨP⊗Ψ ✄ Q

K N
−−→ Q′

Ψ ✄ P | Q
τ

−→ (ν ã)(P′ | Q′)
ã#Q

REP
Ψ ✄ P | !P

α
−→ P′

Ψ✄ !P
α
−→ P′

SCOPE
Ψ ✄ P

α
−→ P′

Ψ ✄ (νb)P
α
−→ (νb)P′

b#α,Ψ

OPEN
Ψ ✄ P

M(ν ã)N
−−−−→ P′

Ψ ✄ (νb)P M(ν ã∪{b})N
−−−−−−−→ P′

b#ã,Ψ,M
b∈ n(N)

Table 1: Structured operational semantics. Symmetric versions of COM and PAR are elided. In the rule
COM we assume thatF (P) = (ν b̃P)ΨP andF (Q) = (ν b̃Q)ΨQ whereb̃P is fresh for all ofΨ, b̃Q,Q,M
andP, and that̃bQ is similarly fresh. In the rule PAR we assume thatF (Q) = (ν b̃Q)ΨQ whereb̃Q is
fresh forΨ,P andα . In OPEN the expression ˜a∪{b} means the sequence ˜a with b inserted anywhere.

define bn(M(ν ã)N) = ã, and bn(α) = /0 if α is an input orτ . As in the pi-calculus, the outputM(ν ã)N
represents an action sendingN alongM and opening the scopes of the names ˜a.

Definition 3 (Transitions). A transitionis writtenΨ ✄ P
α
−→ P′, meaning that in the environmentΨ, P

can doα to become P′. The transitions are defined inductively in Table1.We abbreviate1 ✄ P α
−→ P′

as P α
−→ P′.

We identify alpha-equivalent agents, frames and transitions. In a transition the names in bn(α) bind
into both the action object and the derivative, therefore bn(α) is in the support ofα but not in the support
of the transition.

Definition 4 (Strong bisimulation). A strong bisimulationR is a ternary relation on assertions and pairs
of agents such thatR(Ψ,P,Q) implies

1. Static equivalence:Ψ⊗F (P)≃ Ψ⊗F (Q); and

2. Symmetry:R(Ψ,Q,P); and

3. Extension of arbitrary assertion:∀Ψ′. R(Ψ⊗Ψ′,P,Q); and

4. Simulation: for allα ,P′ such thatΨ ✄ P
α
−→ P′ andbn(α)#Ψ,Q,

there exists Q′ such thatΨ ✄ Q
α
−→ Q′ andR(Ψ,P′,Q′).
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We defineΨ ✄ P
.
∼ Q to mean that there exists a bisimulationR such thatR(Ψ,P,Q), and write P

.
∼ Q,

pronounced P and Q are(strongly) bisimilar, for 1✄P
.
∼ Q.

Definition 5 (Strong congruence). We define P∼Ψ Q to mean that for all substitution sequencesσ ,
Ψ ✄ Pσ .

∼ Qσ holds. We write P∼ Q, pronounced P is(strongly) congruentto Q, to mean P∼1 Q.

We have shown [3] that strong bisimilarity preserves all operators except input, and that strong con-
gruence is a congruence and satisfies the expected algebraiclaws for structural congruence.

3 Extension: Psi-calculi with priorities

The most common approaches to implementing priorities in process calculi are (1) to add a priority
operatorΘ such thatΘ(P) may only take the highest-priority actions ofP as defined by some ordering
on actions [1], and (2) to alway enforce priorities, rather than only at special operators [9, 10]. In order
to avoid introducing a new operator, we follow the second approach.

We associate a priority level to actions that may depend on the assertion environment, and hence
change dynamically as a process evolves. The intuition is that we writeΨ ⊢ M : p to mean that the
priority level of communication on the channelM in the environmentΨ is p, where lower values ofp
indicatehigherpriority. Priorities are subject to some natural constraints: they must be equivariant, and
in a given assertion, channel equivalent terms must have thesame unique priority level.

Definition 6 (Psi-calculi with priorities). A psi-calculus with priorities, ranged over byP,Q, is a tuple
(T,A,C,⊢,⊗,

.
↔,1, :) such that

1. (T,A,C,⊢,⊗,
.
↔,1) is a psi-calculus, and

2. : of typeT ×N⇒ C is an equivariant operator written in infix, i.e., we write M: p for : (M, p),
such that for allΨ,M,N, if Ψ ⊢ M

.
↔ N then there is a unique p∈ N such thatΨ ⊢ M : p and

Ψ ⊢ N : p.

The semantics of psi-calculi with priorities is as the semantics of psi-calculi, but with two changes.
The first is thatτ actions are replaced withτ : p actions, wherep is the priority level of the transition.
The second is that the rules are augmented with side conditions that prevent a process from taking low
priority actions. This has a natural formulation in terms ofnegative premises [5], but in order to make
implementation in Isabelle easier we instead define the semantics in two layers, following [9, 10, 22].

The bottom layer is denoted with the transition arrow−→b and is used to determine which transitions

would be available, disregarding priorities. The semantics of−→b is exactly as in Table1 with the sole
extension that the COM rule generates an action of kindτ : p, wherep is derived from the priority of
the channel. We then define a predicateH(α ,Ψ,P), which intuitively means that noτ transition whose

priority is higher than that ofα can be derived fromP in Ψ. Finally we define−→p to represent transitions
respecting priorities, where the CASE, PAR, and COM rules get side conditions usingH.

Definition 7.
H(α ,Ψ,P), ¬∃n P′

.(Ψ ✄ P
τ :n
−→b P′∧n< PRIO(Ψ⊗F (P),α))

wherePRIO(F,α) is defined to be p if eitherα = τ : p or F ⊢ subj(α) : p, and−→b is defined in
Definition8 below.

Definition 8 (Transitions with priorities). The transitions of psi-calculi with priorities are defined induc-

tively by the same rules as in Table1, but with all occurrences of−→ replaced with−→p, and theCASE,
COM andPAR rules replaced by the following:
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CASE
Ψ ✄ Pi

α
−→p P′ Ψ ⊢ ϕi

Ψ ✄ caseϕ̃ : P̃
α
−→p P′

H(α,Ψ,caseϕ̃ : P̃)

PAR
ΨQ⊗Ψ ✄ P

α
−→p P′

Ψ ✄ P | Q
α
−→p P′ | Q

H(α,Ψ,P | Q)
bn(α)#Q

COM

Ψ⊗ΨP⊗ΨQ ⊢ M
.
↔ K Ψ⊗ΨP⊗ΨQ ⊢ M : p

ΨQ⊗Ψ ✄ P
M(ν ã)N
−−−−→p P′ ΨP⊗Ψ ✄ Q

K N
−−→p Q′

Ψ ✄ P | Q
τ :p
−−→p (ν ã)(P′ | Q′)

H(τ : p,Ψ,P | Q)
ã#Q

The transition relation−→b is defined by the same rules as−→p, but with all side conditions involv-
ing H omitted.

Strong bisimulation and strong congruence on psi-calculi with priorities can be obtained from Defi-

nitions4-5 by replacing all occurrences of−→ with −→p. The meta-theory pertaining to strong bisimu-
lation from the original psi-calculi carries over to psi-calculi with priorities, and formal proofs in Isabelle
have been carried out:

Theorem 1. Strong congruence∼ on psi-calculi with priorities is a congruence, and satisfies

P ∼ P | 0
P | (Q | R) ∼ (P | Q) | R

P | Q ∼ Q | P
(νa)0 ∼ 0

(νa)(νb)P ∼ (νb)(νa)P
!P ∼ P | !P

P | (νa)Q ∼ (νa)(P | Q) if a#P
M N.(νa)P ∼ (νa)M N.P if a#M,N

M(λ x̃)N.(νa)P ∼ (νa)M(λ x̃)N.P if a#M, x̃,N

caseϕ̃ : (̃νa)P ∼ (νa)caseϕ̃ : P̃ if a#ϕ̃

As an example, Versari’sπ@ [22] is an extension of the pi-calculus with priorities. Input and output
prefixes inπ@ are of formµ : k(y) andµ : k〈z〉, whereµ is the subject,k is the priority level andy and
z are the objects. The semantics is the standard reduction semantics of the pi-calculus, augmented with
side conditions stating that no higher-priority reductionis possible, similar to our use of theH predicate.

π@ can be recovered in our framework as follows. For simplicity we consider only monadic synchro-
nisation. Let the terms be the union ofN (corresponding to objects inπ@) and{a : n|a∈ N ,n∈ N}
(corresponding to subjects annotated with their priority level), let the conditions be the booleans and the
assertions be{1}. Define channel equivalence and : so thata : n is equivalent to itself and has priorityn.

As an immediate consequence, we equipπ@ with a labelled semantics and a theory of strong bisim-
ulation; no labelled semantics or bisimulation theory has been previously developed forπ@.

Note that in our representation ofπ@, it is possible to write agents where the terma : n occurs in
object position. We can rule out such ill-formed agents by using the sort system for psi-calculi described
in [6], the details of which are beyond the scope of the present paper.
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For a slightly more involved example, we consider dynamic priorities. We define a psi-calculus with
priorities based on the pi-calculus, with the addition thatchannels may have one of two priority levels:
0 (high) and 1 (low). Rather than annotating prefixes with a priority level, we let channels have high
priority by default, and let our assertions be the set of channels whose priority have been flipped to low
priority. If a channel is asserted to be flipped twice, the assertions cancel each other and the channel
is flipped back to high priority. Thus we may flip the priority of a channela dynamically by asserting
{a}. Similarly, asserting{a,b} flips the priorities of botha andb. Composition of assertions is exclusive
or, e.g.{a}⊗{a,b} = {b}. To illustrate how this calculus can be used, suppose we wantto enforce a
fairness scheme such that synchronisations on two channelsx andy are guaranteed to interleave. This
can be achieved by swapping the priorities ofx andy after every such synchronisation, as in the following
derivation sequence, where for allz∈ {x,y} we letPz = L{z}M | !x.L{x,y}M | !y.L{x,y}M.

1 ✄ Py | x.x.x | y
τ :0
−→p Px | x.x | y
τ :0
−→p Py | x.x
τ :0
−→p Px | x
τ :1
−→p Py

Note that the aboveτ sequence is the only possibleτ sequence — as long as bothx andy are available
they are guaranteed to be consumed alternatingly.

Formally, we define this psi-calculus by lettingT = N , C = {x = y | x,y ∈ T} ∪ {M : n | M ∈
T ∧n∈ N} and by lettingA be the finite sets of names. Moreover, let1 be the empty set andA⊗B=
(A∪B)− (A∩B). Entailment is defined so thatΨ ⊢ x= y iff x= y, Ψ ⊢ x : 1 iff x∈ Ψ, andΨ ⊢ x : 0 iff
x 6∈ Ψ. Finally, we let channel equivalence be syntactic equalityon names.

The definition of composition as the pairwise exclusive or onthe elements of its arguments achieves
the priority flip in a manner that is associative, commutative and compositional. This is a useful general
technique for constructing psi-calculi where facts can be retracted.

4 Encoding priorities

In this section we present a translation from psi-calculi with priorities to the original psi-calculi. The
main idea is that we augment the assertions with informationabout prefixes, and ensure that the frame
of a process records precisely its enabled prefixes. TheH predicate is thus obtained from the entailment
relation.

The main technical complication with this idea is that whenP takes a transition toP′, some of the
top-level prefixes ofP may be absent inP′. The frame ofP′ will always be the frame ofP composed with
assertions that are guarded inP and unguarded inP′; in other wordsF (P′)≃ (ν b̃P′)(ΨP⊗Ψ). It follows
that composing with thisΨ must in effect retract the prefixes no longer available inP′ from ΨP. For this
purpose we use a non-monotonic logic, where assertions contain multisets with negative occurrence [4].

4.1 Preliminaries: integer-indexed multisets

Intuitively, an integer-indexed multiset is like a regularmultiset, except that the number of occurrences of
an element may be negative. We usefinite integer-indexed multisets with a maximum element(henceforth
abbreviatedFIMM ), ranged over byE. LetZ∞ denoteZ∪{∞}. Formally, the FIMMs over a setS is the
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set of functionsE : S⇒ Z∞ such that for all but finitely many elementss∈ S, E(s) = 0. We define some
of the usual operations on sets as follows:

x∈ E , E(x)> 0 /0 , λx.0 E∪E′ , λx.(E(x)+E′(x))

The maximal element∞ will be used to represent prefixes under a replication operator (these are
permanently enabled and cannot ever be retracted). We will write {(z0)x0, . . . , (zn)xn} for the multisetE
such thatE(xi) = zi if 0 ≤ i ≤ n, andE(xi) = 0 otherwise. We will sometimes writexi to mean(1)xi and
−xi to mean(−1)xi .

4.2 Preliminaries: Requisites and guarding elements

From this point in the paper, we restrict attention to psi-calculi with separate choice and prefix-guarded
replication. In other words, case statements have the formcaseϕ̃ : α̃ .P, where either everyαi is an input,
or everyαi is an output. Moreover, replications are of the form !α .P. These restrictions significantly
simplify our definitions and proofs. In the conclusion we briefly discuss what would be involved to lift
them.

We also require that substitution has no effect on terms where the names being substituted do not
occur, i.e. that if̃x#M thenM[x̃ := T̃] = M. This natural requirement on substitution is found in the
original publication on psi-calculi [2], but is often omitted since it is not needed for the standardstructural
and congruence properties of bisimulation.

Further, for convenience we will assume that the psi-calculus under consideration has a condition⊤
that is always true in every context, i.e. it is such that∀Ψ.Ψ ⊢ ⊤, ∀σ .⊤σ = ⊤ andn(⊤) = /0. If such a
condition is absent, it can simply be added.

A guarding elementis simply a prefix guarded by a condition. Enriching the assertions with FIMMs
of guarding elements will provide all the information necessary to encodeH in the entailment relation.
Definition 9 (guarding elements). The set ofguarding elementsof a psi-calculusP = (T,A,C,⊢,⊗,

.
↔

,1) is denotedF(P) and defined as

F(P) = C× ({MN : M,N ∈ T}∪{M(λ x̃)X : M,N ∈ T})

We consider guarding elements as implicitly quotiented by alpha-equivalence, where the namesx̃ in
the input prefix M(λ x̃)X bind into N. We will sometimes writeα to mean(⊤,α).

4.3 The encoding

Assume a psi-calculus with prioritiesP = (T,A,C,⊢,⊗,
.
↔,1, :). We shall encode it in the psi-calculus

Q = (T,A′,C′,⊢′,⊗′,
.
↔′

,(1, /0)), whose parameters are defined as follows:

A′ = A × (F(P)⇒ Z∞)

C′ = C⊎ (Z∞×F(P))⊎{M
.
↔′ N : M,N ∈ T}

(Ψ,E)⊗′ (Ψ′,E′) = (Ψ⊗Ψ′,E∪E′)

(Ψ,E) ⊢′ ϕ = Ψ ⊢ ϕ if ϕ ∈ C
(Ψ,E) ⊢′ (z)(ϕ ,α) = E(ϕ ,α) = z
(Ψ,E) ⊢′ M

.
↔′ N = Ψ ⊢ M

.
↔ N∧¬∃M′ N′ n m X Kx̃ L̃ ϕ ϕ ′.Ψ ⊢ M′ .

↔ N′

∧Ψ ⊢ M : m∧Ψ ⊢ M′ : n∧n< m∧ (ϕ ,M′(λ x̃)X) ∈ E
∧(ϕ ′,N′K) ∈ E∧K = X[x̃ := L̃]∧Ψ ⊢ ϕ ∧Ψ ⊢ ϕ ′
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Assertions inA′ augment the original assertions with FIMMs of guarding elements, representing
the top-level prefixes of a process. The conditions are augmented with multiplicity tests on elements
of the FIMMs (only needed for technical reasons concerning the compositionality of⊗′), as well as
channel equivalence statements. Composition and entailment of multiplicity tests and conditions inC
are straightforward. The definition of entailment of channel equivalence statements intuitively means
that two channelsM,N are equivalent in(Ψ,E) if (1) they are equivalent inΨ, and (2)E does not
contain prefixes that can communicate with each other with a priority higher than that ofM,N. This is
the mechanism by which we prevent lower-priority actions inthe translations: those actions that would
be ruled out byH in P are ruled out inQ by not being channel equivalent to anything.

In order to avoid bogging down the notation with brackets, weintroduce some syntactic sugar for
assertions inA′. We will sometimes writeΨ for (Ψ, /0) andE for (1,E). Further, we will sometimes
write single-element multisets without the curly brackets, ie. (z)x for {(z)x}. For an example, com-
bined with the previously introduced syntactic sugar for multisets and guarding elements, we may write
(1,{(1)(⊤,α)}) as simplyα , and(1,{(−1)(⊤,α)}) as−α .
Lemma 2. Q is a psi-calculus, meaning that it satisfies the requisites outlined in Section2.

The translation of agents fromP to Q is defined by the functionJ K : P(P) ⇒ P(Q). The main
idea is that in parallel to every prefix, we add the prefix as an assertion (recall thatLΨM denotes the
assertionΨ occurring as a process), so that it can be used when deciding channel equivalences. The
continuation after the prefix contains the same prefix negatively, and since{α}∪ {−α} = /0 the effect
is to retract the prefix from the frame once it has been used, and thus ensures that the frame of an agent
JPK contains an up-to-date copy of the top-level prefixes ofP. Since replicated prefixes are permanently
enabled, a replicated prefix is asserted with infinite multiplicity to ensure that it is never retracted. For
casestatements, we make sure to retract the guarding elements associated with the other branches after
a particular branch has been chosen.

J0K = 0
JLΨMK = L(Ψ, /0)M

JP | QK = JPK | JQK
J(νx)PK = (νx)JPK

Jα .PK = LαM | α .(JPK | L−αM)
J! α .PK = L(∞)αM | ! α .(JPK | L−αM)

Jcaseϕ̃ : α̃ .PK = L(ϕ̃ , α̃)M | caseϕ̃ : α̃.(J̃PK | L(−1)(ϕ̃ , α̃)M)

Recall that we require that substitution has no effect on terms where the names being substituted
do not occur. To see why, consider the encoding of the input prefix α = M(λ x̃)N, wherex̃ is chosen

to be fresh inM. If the encoding takes a transitionJαK
M N[x̃:=L̃]
−−−−−→ LαM | L−α [x̃ := L̃]M, we need that

α [x̃ := L̃] = α to achieve a retraction ofα . This follows from our requirement sincẽx does not occur
freely in α .

5 Quality of the encoding

In this section, we show that the encoding presented in Section4.3satisfies strong operational correspon-
dence, and briefly discuss two other quality criteria: Gorla’s framework [13] and full abstraction.

Let ≡, pronouncedstructural congruence, be the smallest congruence on processes that satisfies the
commutative monoid laws with respect to( | ,0) and the rules !P≡ P | !P and0≡ L1M andLΨM | LΨ′M ≡
LΨ⊗Ψ′M.
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The main result of this paper is a one-to-one transition correspondence between agents inP and
their encodings inQ:

Theorem 3(Strong operational correspondence).

1. If Ψ ✄ P
α
−→p P′ andbn(α)#P andα 6= τ : p, then there exists P′′ such that(Ψ, /0) ✄ JPK

α
−→ P′′

andJP′K ≡ P′′.

2. If Ψ ✄ P
τ :p
−−→p P′, then there exists P′′ such that(Ψ, /0) ✄ JPK

τ
−→ P′′ andJP′K ≡ P′′.

3. If (Ψ, /0) ✄ JPK
α
−→ P′ and bn(α)#P and α 6= τ , then there exists P′′ such thatJP′′K ≡ P′ and

Ψ ✄ P
α
−→p P′′.

4. If (Ψ, /0) ✄ JPK
τ

−→ P′, then there exists p and P′′ such thatJP′′K ≡ P′ andΨ ✄ P
τ :p
−−→p P′′.

Note that a simplification of the encoding withJ! α .PK = L(∞)αM | ! α .JPK would render the above
theorem false, since we would then lose the property thatJ! α .PK ≡ Jα .P | ! α .PK, and transitions may
unfold replications.

Gorla [13] proposes a unified approach to encodability results, wherein a translation function is
considered an encoding if it satisfies the five propertiescompositionality, name invariance, operational
correspondence, divergence reflection, andsuccess sensitiveness.

Because our encoding satisfies strong operational correspondence, the three last criteria follow im-
mediately. Name invariance is immediate since our encodingis equivariant, and compositionality holds
with the caveat that we must consider replicated prefixes !α .P as an operator in itself, rather than con-
sidering the replication and the prefix as separate operators, and likewise forcase-guarded prefixes.

Full abstraction means that two agents are equivalent iff their translations are equivalent. The en-
coding presented in Section4.3 is not fully abstract with respect to strong bisimilarity. This is because
we require bisimilar agents to be statically equivalent, but the translation function introduces assertions
such that the translation of bisimilar agents may not be statically equivalent. For a simple example,
consider the agentsP = α .0 and Q = α .P, whereα is an output prefix. ClearlyP | P

.
∼p Q holds,

but for JPK = LαM | α .(0 | L−αM) and JQK = LαM | α .(JPK | L−αM), we haveF (JP | PK) ⊢′ (2)α but
F (JQK) 6⊢′ (2)α and henceJP | PK 6

.
∼ JQK.

At first glance, this difference betweenJP | PK andJQK seems to be an unimportant technicality: the
conditions(2)α and(1)α are not intended to be used as guards incase-statements. Their only use is in
the evaluation of channel equivalences, butF (JP |PK) andF (JQK) entail the same channel equivalences
since the set of prefixes available coincides. To motivate that they must be considered different, consider
the distinguishing contextR= L−αM | Lβ M | γ .0, whereβ is an input that can synchronise withα , andγ
has lower priority thanα ; we have thatR | JQK can take an action onγ , butR | JP | PK cannot. This high-
lights an interesting difference betweenP andQ: in P, a prefix describes both an interaction possibility
and a constraint on other (lower-priority) interactions; in Q, the interaction possibility and interaction
constraint are two separate syntactical elements. This means that inQ we may writeLαM, which is a pro-
cess with no transitions that blocks lower-priority transitions as though it had anα-transition; conversely
α .P has a non-blockingα-transition that may be blocked by higher-priority transitions.

Note that in the counterexample to full abstraction presented above, the contextR is not in the range
of J·K. Thus our encoding may well satisfy weak full abstraction [19], meaning that full abstraction holds
if we restrict attention to contexts in the range ofJ·K. An investigation of this is deferred to future work.

A related question is whether a fully abstract encoding ofP into some psi-calculus exists. The
following theorem, inspired by recent work by Gorla and Nestmann [14] and Parrow [20] , shows that
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because of the generality of the psi-calculi framework a trivial fully abstract “encoding” with strong
bisimilarity as the target equivalence always exists, regardless of the source language and source equiv-
alence under consideration.

Let S be a set ranged over bys, and∼ be an equivalence onS. Then there is a psi-calculusS with
no terms, with elements ofS as assertions and conditions, where entailment is∼. Define the encoding
J KS : S⇒ P(S ) by JsKS , LsM.

Theorem 4. s∼ s′ iff JsKS
.
∼ Js′KS

This “encoding” simply embeds both the source language and source equivalence into a target lan-
guage with no transition behaviour at all. We conclude that ameaningful approach to full abstraction
would have to impose additional criteria. For an example, ifwe consider Gorla’s criteria presented earlier,
this “encoding” satisfies name invariance and divergence reflection, but fails to satisfy compositionality,
operational correspondence and success sensitiveness.

6 Conclusion

In this paper, we have defined an extension of the psi-calculiframework with dynamic action priorities,
and translated it to the original framework. This illustrates the high expressiveness of the assertion
mechanism in psi-calculi: usually, it is necessary to introduce negative premises or define a multi-layered
transition system in order to obtain action priorities in a given calculus; for psi-calculi, what is already
there suffices.

The extension with explicit priorities is interesting in its own right despite the encoding. Expres-
siveness is not usefulness. Modelling a system with priorities in terms of the translation would be more
cumbersome than representing priorities directly. Also, strong bisimulation in the extension is useful for
proving equivalences that fail to hold in the encoding.

The most closely related development to psi-calculi with priorities is theattributed pi-calculus with
priorities, writtenπ(L ) [17]. It is designed as a generalisation ofπ@ [22] and the stochastic pi-calculus.
Input and output prefixes take the forme1[e′1]?̃x ande2[e′2]!ỹ, wheree1 ande2 are subjects,̃x and ỹ are
objects ande′1 ande′2 are interaction constraints, which may be instantiated to priorities or stochastic
rates. e ranges over expressions in anattribute language, which is a kind of call-by-valueλ -calculus
equipped with a big-step reduction relation. The idea in thecase of priorities is that if the expressionse1

ande2 reduce to the same channel name, andẽ reduces to some values̃v, and the applicatione′1e′2 reduces
to the priority levelr, thene1[e′1]?̃x.P | e2[e′2]!ẽ.Q reduces toP[x̃ := ṽ] | Q, unless another pair of prefixes
can similarly communicate on a higher priority level. The focus is on developing type systems to prevent
mismatches, on showing how the calculus can be applied to model phenomena in systems biology, and
on the development and implementation of a stochastic simulation algorithm.

While π(L ) and our approach both generaliseπ@, the way the priorities are set up have several
interesting differences that suggest incomparable expressive power in general. Priority levels inπ(L )
are taken from an arbitrary partial order, whereas our priorities are natural numbers. Thus inπ(L ) we
may have systems where actions have mutually incomparable priority levels, unlike psi-calculi with pri-
orities. The reason we use natural numbers is that the proof of Theorem1 uses induction and successor
arithmetic on the priority level; for future work we would like to investigate alternative proof strate-
gies that would permit a generalised notion of priorities. In psi-calculi, priority levels are associated to
communication channels, whereas inπ(L ) they are associated with a particular pair of prefixes. The
priority level of a particular pair inπ(L ) is however static and cannot be influenced by the environment
in any way, whereas in our approach priorities are dynamic and may change arbitrarily as the assertion
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environment evolves. While psi-calculi has no explicit notion of computation on data such as that given
by the attribute language, the substitution function can bechosen so that it performs explicit computation
on data, or implicit computation can be performed during theevaluation of entailments. For a detailed
discussion of how to express computation on data in psi-calculi we refer to [6].

The translation assumes separate choice and prefix-guardedreplication. An interesting question is
if these assumptions can be relaxed. Allowing mixed choice is possible, but a different definition of
guarding elements must be made, that records which prefixes occur in different branches of the same
case-statement. With the current definition,Jcase⊤ : M []⊤ : MK has the same guarding elements as
JM | MK, meaning that the former erroneously blocks other transitions as if a communication onM could
be derived. Allowing unguarded choice and replication would be more difficult, but we conjecture that
it is possible at the expense of compositionality. The solution would involve extending the guarding
elements to contain whole syntax trees, including binders.We then lose compositionality since if e.g.
Jcase⊤ : P []⊤ : QK takes a transition fromQ, the derivative must contain an assertion that retracts all
interaction possibilities offered byP. Hence the translation ofQ depends onP, violating compositional-
ity.

Another way to introduce priorities in process calculi is with apriority choiceoperatorP+〉Q, as is
done for CCS in [8]. It is like the standard choice operator, with two exceptions. First,P andQ may
for technical reasons not contain unguarded output prefixes. Second, transitions fromP take precedence
over Q. More precisely, its semantics is defined so that it may always act asP, but may act asQ only
if no synchronisation on the prefixes ofP is possible in the current environment. This operator could
be encoded in psi-calculi using techniques similar to thosepresented in this paper. The main idea is to
augment the assertions with information about output prefixes as in Section4.3, and to translate priority
choice asJP+〉QK = case⊤ : JPK [] ϕP : JQK, whereϕP is a condition that holds if no output prefixes
matching the inputs ofP are enabled in the current environment. A more detailed investigation of this
idea is deferred to future work.

We would also like to investigate if a result by Jensen [16], that broadcast communication can be
encoded in CCS with priority choice up-to weak bisimulation, can be adapted to our setting. If broadcast
psi-calculi [7] can be encoded in psi-calculi with priorities, then by transitivity so can the original psi-
calculi. This would contrast with the situation in the pi-calculus, where broadcast communication cannot
be encoded [11].

Since both the original psi-calculi and their extension with priorities have been formalised in Nominal
Isabelle, we aim to formalise the correspondence results inthis paper, in order to be more certain of their
correctness. As a first step, it would be necessary to developa formalisation of FIMMs in Isabelle, and
integrate it with the nominal logic package.
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hannesÅman Pohjola & Joachim Parrow (2011):Broadcast Psi-calculi with an Application to
Wireless Protocols. In: Software Engineering and Formal Methods: SEFM 2011, Lecture Notes in
Computer Science7041, Springer-Verlag, pp. 74–89, doi:10.1007/s10270-013-0375-z.

[8] Juanito Camilleri & Glynn Winskel (1991):CCS with priority choice. In: Proceedings Sixth Annual
IEEE Symposium on Logic in Computer Science, IEEE Comput. Sco. Press, pp. 246–255, doi:10.

1109/lics.1991.151649.

[9] Rance Cleaveland & Matthew Hennessy (1988):Priorities in Process Algebras. In: LICS, IEEE
Computer Society, pp. 193–202, doi:10.1109/lics.1988.5118.
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