
The Expressive Power of Monotonic Parallel
Composition

Johannes Åman Pohjola and Joachim Parrow

Department of Information Technology, Uppsala University, Uppsala, Sweden
{johannes.aman-pohjola,joachim.parrow}@it.uu.se

Abstract. We show a separation result between on the one hand models
of concurrency that contain solutions to the consensus problem, where
many identical concurrent processes must reach agreement; and on the
other hand models with monotonic parallel composition, where processes
always have the possibility to act independently of other processes in
their environment. Our definitions and proofs are easy to instantiate in
order to obtain particular separation results. We illustrate this point
by strengthening several results from the literature, and proving some
new ones. Highlights include a separation between unreliable and reliable
broadcast π, between the ρ-calculus and cc-pi, and between the full
psi-calculi framework and its restriction to monotonic assertion logics.

1 Introduction

There is today a plethora of modelling formalisms for concurrent programs,
focusing on different aspects and using different kinds of semantics. In order to
compare two such formalisms it is natural to investigate their expressive power.
If a certain behaviour can be expressed in one formalism but not in another we
say that the behaviour separates the formalisms.

In this paper we present a simple method for separation results between
transition systems with parallel composition, based on little more than whether
parallel components may act independently or not. This allows us to strengthen
several known separation results, and obtain new ones with pleasingly little effort.
Our inspiration and examples come from process calculi, but we believe the
arguments to be simple and general enough to be applicable to other models of
concurrency also. The proof strategy is based on a simplification of the leader
election problem which we call the consensus problem. It can be intuitively
formulated as follows:

n observationally equivalent greasers walk into a bar. The greasers may,
possibly after conferring with each other, non-deterministically declare that
either Elvis Presley or Jerry Lee Lewis is the greatest singer of all time. Once
either Elvis or Jerry has been declared, the other may not be declared; otherwise
a bar fight will break out. A solution to the consensus problem is to find a process
P , representing a greaser, such that no matter what n is, both Elvis and Jerry
are possible outcomes and it can be guaranteed that a fight will never break out.
Such a solution we call a consensus process.

In this paper, we show that the consensus problem is unsolvable with
monotonic composition. The most natural example, and a mainstay in process
calculi, is a parallel operator | on processes that admits independent behaviour
via the rule

par
P −→ P ′

P | Q −→ P ′ | Q

This says that whatever P can do alone it can also do if Q sits inert at its side.
There can additionally be other rules for interaction between P and Q; a parallel
operator counts as monotonic if the rule par holds, i.e. if a parallel context cannot
hinder a transition. Examples of the myriad transition systems with monotonic
parallel composition operators include CCS, the π-calculus, the ρ-calculus [1],
and the fusion calculus [2]. Developments that include transition priorities may
use non-monotonic composition; for example a high priority transition in Q may
mean that P cannot take any transition in parallel with Q.

We exhibit several examples of transition systems where parallel composition
does not satisfy par, and where consensus processes can indeed be expressed:
the broadcast π-calculus [3], CCS with priorities [4], cc-pi [5], TPL [6], and some
instances of psi-calculi [7]. We also exhibit two sets of criteria on encodings
that both preserve the property of being a consensus process. It then follows
immediately that there can exist no encoding of these languages satisfying
our criteria if we only use monotonic composition in the target language. By
this approach we strengthen the separation results from [3,8,9]. We also obtain
several hitherto unseen results; highlights are a separation between unreliable
broadcast (where messages may be lost) and reliable broadcast (where they may
not), a separation between concurrent constraint formalisms based on whether
inconsistent stores are reachable, and between the full psi-calculi framework [7]
and its restriction to monotonic assertion logics (where connectivity between
channels cannot decrease).

In order to increase confidence in the correctness of our developments, we
have mechanised the proofs of our main results in the interactive theorem prover
Isabelle/HOL [10]. The proof scripts are available online [11].

Our work is in the tradition of leader election-based separation results of
Bougé [12] and Palamidessi [13]. In the leader election problem, n parallel
processes must reach agreement among themselves to elect one (and only one) of
them to act as their leader. In particular we are inspired by Ene and Muntean’s
separation between the π-calculus and the broadcast π-calculus [3]. They show
that if the n participants are allowed to differ only by alpha-renaming and
are not allowed to know n in advance, the π-calculus cannot solve the leader
election problem, but the broadcast π-calculus can. Hence there can be no
encoding from broadcast π to π, if we require that the encoding translates leader
election systems into leader election systems. Their proof relies on the fact that
the π-calculus allows local synchronisation independently of the environment
via its monotonic parallel operator; hence the election can be split into two

cliques that independently reach different election results. By contrast, the global
synchronisation imposed by broadcast communication precludes such behaviour
and allows the leader election problem to be solved. Variations of this argument
have been used to show separation results between process calculi with priorities
and their unprioritised counterparts [8,9].

The consensus problem we consider is reminiscent of — yet distinct from —
the well-studied binary distributed consensus problem in distributed computing
(see e.g. [14]). Both problems are concerned with n parallel processes reaching
agreement on some value. Our problem formulation is stronger in the sense that
the participants do not a priori know the value of n, while in distributed consensus
n is known. Intuitively we may think of this as our formulation allowing for
additional greasers to enter the bar while the discussion is still ongoing, while
distributed consensus requires that everyone is present at the start. On the other
hand, our formulation is weaker in the sense that we do not insist on eventual
termination, so crash failures are not a concern; we accept solutions that may
crash or livelock as long as disagreement is avoided.

The main message of this paper is a method to obtain separation results, and
it is presented so that it can be understood without knowledge of any particular
process calculus, or indeed without any background in process calculi at all. In
applications and examples, while we do give brief informal introductions to most
languages under consideration, we will often use process calculi without formally
defining them: divulging all details would seriously bog down the presentation with
background material that is independent of our main message. The unacquainted
reader is referred to the cited literature on the particular calculi for background;
alternatively, she may safely skip examples pertaining to areas where she lacks
background.

2 Definitions

2.1 Transition Systems and Composition

We consider the standard notion of non-labelled transition systems:

Definition 1 (Transition systems). A transition system is a tuple (P,−→)
where

1. P is a set of processes, ranged over by P,Q,R, S, T , and

2. −→ ⊆ P × P is called the transition relation.

We write P −→ Q for (P,Q) ∈ −→, and let ==⇒ denote the reflexive and

transitive closure of −→.

Definition 2 (Composition). Let (P,−→) be a transition system. A function
⊗ : P × P → P is a composition if (P,⊗) is a commutative semigroup, i.e. if it
is associative and commutative. For n > 1 we write Pn⊗ to mean P ⊗P ⊗ · · · ⊗P
where P occurs n times.

Definition 3 (Monotonic composition). A composition is monotonic if for

all P,Q,R ∈ P, P ==⇒ Q implies P ⊗R ==⇒ Q⊗R. A composition that is not
monotonic is called non-monotonic.

Most examples discussed in this paper are on languages with a parallel
operator denoted | as part of their syntax; unless otherwise specified, this is
the composition that we have in mind. But formally ⊗ need not be part of the
process syntax. This makes our results applicable in non-algebraic models of
concurrency. It also strengthens our separation results since we do not insist that
the parallel operator is translated homomorphically. For example, consider ⊗
as the disjoint union of place-transition nets. This operation is monotonic since
any enabled transition will still be enabled if another net is put on its side. On
the other hand, if ⊗ is ordinary (non disjoint) union it is non-monotonic, since a
transition can become disabled by adding a precondition without a token.

2.2 Consensus Processes

We will separate transition systems based on their ability to represent consensus
processes. The idea is that P is an f, g-consensus process, where f, g are process
predicates, if arbitrarily many copies of P in parallel can reach a state where f
holds or a state where g holds, but once either has been reached the other cannot
be reached. This captures the intuitive notion of consensus: that the participants
can never disagree about whether f or g holds.

Definition 4 (Process predicates). A process predicate of a transition system

(P,−→) is a function f : P → B.
A predicate f is

– P,⊗-extensible if f(Q) implies f(P ⊗Q);

– P,⊗-stable if for all P ′, n such that Pn⊗ ==⇒ P ′, f is P ′,⊗-extensible.

If the choice of ⊗ is clear from the context we often write P -stable to mean
P,⊗-stable. Intuitively it means that for all n, the composition with any derivative
of Pn⊗ preserves f . Stable predicates are used to signal consensus; in this context
stability means that once a clique of greasers decide to declare for either Elvis or
Jerry, their decision remains firm in the presence of other greasers who did not
partake in the decision.

Definition 5 (Consensus process). Let (P,−→) be a transition system with
composition ⊗. A process P is an f, g-consensus process over ⊗ if f, g are P -stable
predicates such that for all n > 1:

1. (can choose f) there exists P ′ such that Pn⊗ ==⇒ P ′ and f(P ′) holds;

2. (can choose g) there exists P ′ such that Pn⊗ ==⇒ P ′ and g(P ′) holds; and

3. (no conflict) whenever Pn⊗ ==⇒ P ′ ==⇒ P ′′, f(P ′) implies ¬g(P ′′), and
g(P ′) implies ¬f(P ′′)

We say that a process P is a consensus process over ⊗ if there are f, g such
that P is an f, g-consensus process over ⊗.

When the choice of ⊗ is clear from the context or irrelevant, we will often
write consensus process to mean consensus process over ⊗.

To continue the informal example of place-transition nets: with disjoint union
there exists no consensus process. This is a consequence of Theorem 15 in Sect. 3
since disjoint union is monotonic. With ordinary union we have a trivial consensus
process: a net where a place with one token is precondition for two different
transitions with postconditions f and g. Since union is idempotent Pn∪ = P (in
other words, taking any number of greasers results in just the one greaser), and
the three requirements above are satisfied.

Note that our requirements are weak in the sense that we allow P to diverge
and to reach a deadlocked state. In this sense a consensus process is not of
much practical use. We could add more requirements to make it more realistic,
but using weak requirements strengthens our separation results: non-monotonic
composition cannot solve consensus even if we admit “solutions” that do not
always terminate with a result. Note that all examples of consensus processes
that we exhibit in this paper are guaranteed to eventually reach consensus, and
all save for Examples 8,9 are guaranteed to eventually terminate. In those two
examples, there are other consensus processes that do terminate.

2.3 Examples of Consensus Processes

Example 6 (Test-and-set).
A multiset of anonymous threads run on a CPU with two shared memory

cells x, y, both initially set to 0. The threads have the following two instructions,
both of which are executed atomically:

test-and-set(x, n, z) Put value n at cell x, and put the old value of x at z.
exit-if(x, n) If the value at memory cell x is n, terminate.

Let P (n) be a process that runs the following instruction sequence, where z
is a private memory cell:

1 test-and-set(x, 1, z)
2 exit-if(z, 1)
3 test-and-set(y, n, z)

Then {P (1), P (2)} is a consensus process over multiset union for predicates
y = 1 and y = 2. What makes this possible is that the test-and-set instruction
allows processes to detect whether or not they won the initial data race on x.
The winner then writes her value of choice to y, while the losers all terminate.

Below, we show several examples of process calculi whose parallel operators
are non-monotonic composition operators that can express consensus processes.

Note that the requisite that composition is associative and commutative means
that for applications to process calculi, we consider processes to be implicitly
quotiented by structural congruence.

For predicates we will often use barbs, denoted ↓x. We write P ↓x to mean
that the process P offers a potential synchronisation on the channel x to the
environment.

Example 7 (Broadcast π). In broadcast π [3], a sender process a x sends x on
the channel a; when this happens, every listener a(z).P on channel a instantly
receives x and continues as P [z :=x]. The following is a consensus process over |
in (asynchronous) broadcast π:

a x | a y | a(z).z

where the process predicates are ↓x and ↓y. The idea is that consensus is reached
on whichever of x or y gets sent on a first. Further outputs on a can happen,
but are immaterial since nobody listens. We use the non-labelled semantics for
broadcast π given in [9].

Example 8 (CBS). In the broadcast calculus CBS as presented in [15], there
are no channels; all messages are broadcast on the same unnamed ether. This
example illustrates how to use predicates other than barbs in consensus processes,
suggesting a way to connect our work to Gorla’s criteria on correct encodings [16],
where barbs are absent. CBS offers a guarded choice operator x?p & a!q that
works as follows: if the environment broadcasts a message b, the process receives
it and proceeds as p[x :=b]. It may alternatively broadcast a to the environment
and proceed as q. We can exploit this operator to define a consensus process over
| in CBS as follows:

x?0 & a!Ω | x?0 & a!X

Here Ω is a divergent process, X is the successful process, and 0 is a process
with no outgoing transitions. The process predicates are “the process has diverged”
and “the process has reached success”.

Example 9 (CCS with priorities). In CCS with priorities [4], underlined actions
have high priority and no low-priority action can be taken if a high-priority action
is possible. Let P (x) = τ.(x | fix X.(τ .X)). The process

P (x) | P (y)

is an ↓x,↓y-consensus process over | in CCS with priorities. The intuition is that
once a choice has been made between x and y, all further choices are blocked
because the process fix X.(τ .X) takes precedence indefinitely.

Example 10 (cc-pi). cc-pi [5] is a calculus for specifying and negotiating quality of
service requirements. It combines and extends elements of the name passing and
concurrent constraint programming paradigms. The cc-pi agent tell c can take
a step that consists in adding the constraint c to the constraint store; however,
this step may only be performed if the resulting constraint store is consistent.

Let c, c′ be two constraints such that their composition c× c′ is inconsistent.
Then the process

tell c | tell c′

is a consensus process over | in cc-pi, with process predicates ` c (meaning that
the store implies c) and ` c′.

Example 11 (Psi-calculi). Psi-calculi [7] is a family of pi-calculus extensions that
is parameterised on assertions. Assertions are facts about the environment in
which processes execute. They may occur as part of the process syntax, and
influence which transitions may be taken.

Consider a psi-calculus that has assertions Ψ, Ψ ′ that disable all further
transitions. Further, let this psi-calculus have two distinct conditions φ, φ′ such
that Ψ ` φ and Ψ ′ ` φ′. Then

τ.(|Ψ |) | τ.(|Ψ ′|)

is a consensus process over |, where the predicates are `φ and `φ′. There will
only ever be one transition; this transition will also unguard assertions such
that exactly one of `φ and `φ′ holds. Note that the assertion logic for this
psi-calculus is non-monotonic.

Example 12 (FAP). The calculus FAP [9] is a minimal fragment of CCS with
priorities that contains only input, output, nil and parallel composition. Output
does not have continuations, but can have either high or low priority; x denotes
high priority output on channel x, which preempts synchronisations involving
low priority outputs y on all names y. Let P (x) = a.b.(x | c). Then the following
is a consensus process in FAP for predicates ↓x and ↓y.

a | b | c.(b | c) | P (x) | P (y)

Initially, the only available transition is a synchronisation on a, in which either
P (x) or P (y) takes a step. At this point the choice between x and y has already
been made, but not yet communicated with the world. The synchronisation
on b acts as a lock (which is initially unlocked) to make sure no other choice
has already been communicated. Once a process has communicated its choice,
it initiates a chain reaction of synchronisations on c, which closes all locks by
consuming all the available outputs on b. After that, the remaining participants
may still choose between taking steps from either P (x) and P (y), yet a conflict
is avoided because the locks prevent this choice from being communicated by
exposing x or y.

Example 13 (CPG). CPG [8] augments CCS with priority guards U : α.P , where
α is an action and U is a set of actions. The intuition is that U : α.P may act as
α.P unless the environment offers an action in U . In the latter case U : α.P is
blocked from proceeding until the environment ceases to offer actions from U . A
consensus process in CPG with predicates ↓x and ↓y can be written

P (x) | P (y) | a

where P (x) = {u} : a.(u|x). The intuition is that once a synchronisation on a
where either P (x) or P (y) participates has been performed, all other processes
are blocked from doing so by the offer being made on u.

Example 14 (TPL). Hennessy and Regan’s Temporal Process Language [6] (TPL
for short) extends CCS with a notion of discrete time. The main addition is the
prefix σ.P , meaning that P will execute after one unit of time has passed. The
time model of TPL assumes that time can only pass when there are no possible
synchronisations; this is a common feature of timed calculi known as the maximal

progress assumption. Formally, P
σ−→ P ′ can only happen if P

τ−−6→ . The effect
of the σ-transition on P is to consume all top-level σ prefixes — this means that
TPL assumes all agents to have synchronised clocks.

We define a non-labelled transition relation for TPL as −→ , τ−→ ∪ σ−→.
The following is an ↓x, ↓y-consensus process over | in TPL:

rec X.(σ.(τ.x+ τ.y) + a+ a.X)

Intuitively, a synchronisation on a means that the sender waives the choice
between ↓x and ↓y. These synchronisations continue until all but one process
have waived. At that point no further synchronisations are possible, and time
passes for the one remaining process, unguarding the choice between x and y.

3 A Method for Separation Results

In expressiveness it is common to distinguish absolute expressiveness, where
languages are compared based on their ability to solve certain problems; and
relative expressiveness, where languages are compared based on whether it is
possible to define an encoding between them satisfying certain quality criteria.
The following theorem yields an absolute expressiveness result:

Theorem 15. Let (P,−→) be a transition system with monotonic composition
⊗. Then there is no consensus process over ⊗.

Proof (Mechanised in Isabelle). By contradiction. Assume that P is an f, g-
consensus process over ⊗, and let n > 1. By Definition 5.1-2 there exists P ′, P ′′

such that Pn⊗ ==⇒ P ′ and Pn⊗ ==⇒ P ′′, where f(P ′) and g(P ′′). By monotonicity

of ⊗, we get Pn⊗ ⊗ Pn⊗ ==⇒ P ′ ⊗ Pn⊗ and P ′ ⊗ Pn⊗ ==⇒ P ′ ⊗ P ′′. Hence

P 2n
⊗ ==⇒ P ′⊗P ′′. By the definition of stability we get f(P ′⊗P ′′) and g(P ′⊗P ′′),

contradicting Definition 5.3.

The main use of this theorem is to obtain relative separation results between
a source language S and a target language T , by the following method:

1. Exhibit a consensus process in S.
2. Show that the composition under consideration in T is monotonic.

3. Obtain non-encodability of S in T by applying the corollaries of Theorem 15
to be introduced in Sections 3.1 and 3.2.

The two corollaries yield non-encodability with two different kinds of
encodings: uniform and observation-respecting. The rest of this section is devoted
to defining them, and proving that they map consensus processes to consensus
processes.

3.1 Uniform Encodings

We here consider a weakening of the criteria used by Ene and Muntean [3] to
separate the π-calculus and the broadcast π-calculus.

Definition 16 (Invariant predicates). A process predicate f is P -invariant

if for all Q,Q′ such that P ==⇒ Q ==⇒ Q′ and f(Q) it holds that f(Q′).

Definition 17 (Uniform encoding).
A relation ≺ on states is f -preserving if P ≺ Q and f(P) implies f(Q). An

encoding J·K : P ⇒ Q between transition systems (P,−→P) and (Q,−→Q) is
f, g,⊗P ,⊗Q-uniform for the predicates f, g : P ⇒ B and composition operators
⊗P ,⊗Q if there exists f̂ , ĝ : Q ⇒ B with an f̂ , ĝ-preserving relation ≺ and:

1. P −→P P ′ implies JP K ==⇒Q Q′ � JP ′K for some Q′.

2. If JP K ==⇒Q Q then there exists P ′, Q′ such that P ==⇒P P ′ and

Q ==⇒Q Q′ ≺ JP ′K.

3. If f is P -stable then f̂ is JP K-stable, if f is P -invariant then f̂ is JP K-
invariant, and f(P) iff f̂(JP K).

4. If g is P -stable then ĝ is JP K-stable, if g is P -invariant then ĝ is JP K-invariant,
and g(P) iff ĝ(JP K).

5. JP ⊗P P ′K = JP K⊗Q JP ′K.

Clauses 17.1 and 17.2 are called operational correspondence, and capture
the intuition that an encoding should preserve and reflect the source language’s
transition behaviour. The role of the relation ≺ is to perform garbage collection
of junk terms that the encoding may produce. In the literature on relative
expressiveness a behavioural equivalence is typically used for the same purpose;
we do not insist on equivalences since weaker conditions yield stronger separation
results. The extra catch-up transition from Q in Clause 17.2 allows for the
encoding to mimic behaviour with protocols whose intermediary states have no
direct counterpart in the target language.

Clauses 17.3 and 17.4 state that the process predicates used to signal consensus
in the source language must have some corresponding predicates in the target
language.

Clause 17.5 states that the encoding must be strongly compositional w.r.t. the
composition operators under consideration. This requisite captures the intuition
that the encoding must preserve the degree of distribution of the source language.

Definition 18 (Power-invariant predicates). A process predicate f is P,⊗-
power-invariant if for all n, f is Pn⊗-invariant.

Thus power-invariance means that for all derivatives of Pn⊗, if f becomes true it
stays true.

Theorem 19. If P is an f, g-consensus process over ⊗P , and if J·K is an
f, g,⊗P ,⊗Q-uniform encoding, and if f, g are P,⊗P -power-invariant, then JP K
is an f̂ , ĝ,⊗Q-consensus process.

Proof (Mechanised in Isabelle). We discharge each clause of Definition 5 as
follows:

1. By the definition of consensus process, for all n > 1 there exists P ′ such

that Pn⊗P
==⇒P P ′ and f(P ′). Since J·K is uniform there exists Q such that

JP Kn⊗Q
= JPn⊗P

K ==⇒Q Q � JP ′K. By definition of uniform encoding we get

f̂(JP ′K), and since JP ′K ≺ Q, f̂(Q) follows.
2. The same, except substitute g for f .

3. By contradiction. Assume JP Kn⊗Q
= JPn⊗P

K ==⇒Q Q ==⇒Q Q′ with f̂(Q)

and ĝ(Q′). By uniformity of J·K there exists P ′, Q′′ such that Pn⊗P
==⇒P P ′

and Q′ ==⇒Q Q′′ ≺ JP ′K. By invariance, we get f̂(Q′′) and ĝ(Q′′); since

Q′′ ≺ JP ′K we get f̂(JP ′K) and ĝ(JP ′K). By uniformity of J·K it then follows
that f(P ′) and g(P ′), contradicting Definition 5.3.

Corollary 20. If there exists an f, g-consensus process P over ⊗P , and if ⊗Q
is a monotonic composition, and if f, g are P,⊗P -power-invariant, then there is
no f, g,⊗P ,⊗Q-uniform encoding from P to Q.

Remark 21. The invariance side conditions imposed on all process predicates
used in this section are necessary to prevent a scenario where f̂ or ĝ may hold in
some intermediate state of the target language, but ceases to hold once a state
corresponding to a source language state is reached.

In practice this restriction is not severe. Of the consensus processes we consider
in this paper, all but one satisfy it. The exception is the consensus process for
broadcast π from Example 7, where the output x that signals consensus is non-

blocking; hence it may take the transition x −→ 0, causing the predicate ↓x to
no longer hold. Fortunately, the example can be adjusted so that ↓x and ↓y are
power-invariant by simply replicating the consensus signals:

a x | a y | a(z).!z

3.2 Observation-Respecting Encodings

Definition 22 (Computations). Given a transition system (P,−→), the
computations, ranged over by C, are finite or infinite sequences of processes

such that for every process P in C that has a successor Q, it holds that P −→ Q.
A computation is maximal if it cannot be extended, i.e. either the computation is
infinite or there are no transitions from the tail.

We overload process predicates so that we may also apply them to computations.
Let f(C), where C = P0, P1, . . . mean that there exists i such that f(Pi).

Definition 23 (Observation-respecting encodings). An encoding J·K : P ⇒
Q between transition systems (P,−→P) and (Q,−→Q) is f, g,⊗P ,⊗Q-respecting
for the predicates f, g : P ⇒ B and composition operators ⊗P ,⊗Q if there are
predicates f̂ , ĝ : Q ⇒ B such that

1. For every maximal computation C starting from P , there exists a maximal
computation C′ starting from JP K such that f(C) iff f̂(C′), and g(C) iff ĝ(C′).

2. For every maximal computation C starting from JP K, there exists a maximal

computation C′ starting from P such that if f̂(C) then f(C′), and if ĝ(C) then
g(C′).

3. If f is P -stable then f̂ is JP K-stable.
4. If g is P -stable then ĝ is JP K-stable.
5. JP ⊗P P ′K = JP K⊗Q JP ′K.

This set of criteria is a simplification of the criteria considered in [9], where the
term observation-respecting is used with a similar meaning.1 The intuition behind
Clauses 23.1 and 23.2 is that a process and its encoding should have computations
with the same observable behaviour. This requisite is often formulated in terms
of the computations having the same barbs, but since we are only interested
in observing the predicates f, g used to signal consensus we require no more.
Clause 23.2 allows target language computations to mimic only a subset of its
corresponding source language computation’s observables; this means that we
admit encodings that may introduce divergence and other failures.

The remaining criteria are similar to the criteria used for uniform encodings,
with the notable exception that we do not require invariant predicates in this
section.

Theorem 24. If P is an f, g-consensus process over ⊗P , and if J·K is an

f, g,⊗P ,⊗Q-respecting encoding, then JP K is an f̂ , ĝ-consensus process over
⊗Q.

Proof (Mechanised in Isabelle). We discharge each clause of Definition 5 as
follows:

1. By the definition of consensus process, for all n > 1 there exists P ′ such that

Pn⊗P
==⇒P P ′ and f(P ′). Then for all maximal computations C from Pn⊗P

through P ′ (of which there must be at least one), f(C) holds. Since J·K is

f, g-respecting there exists C′ starting from JP Kn⊗Q
such that f̂(C′).

1 Confusingly, the same criteria are referred to as “uniform” by Palamidessi [13] and
Phillips [8].

2. The same, except substitute g for f .

3. By contradiction. Assume JP Kn⊗Q
= JPn⊗P

K ==⇒Q Q ==⇒Q Q′ with f̂(Q)
and ĝ(Q′). Then for all maximal computations C from JP Kn⊗Q

through Q and

Q′ (of which there must be at least one), f̂(C) and ĝ(C) holds. Since J·K is
f, g-respecting there exists C′ starting from Pn⊗P

such that f(C′) and g(C′).
Then Pn⊗P

cannot be a consensus process and we have a contradiction.

Corollary 25. If there exists an f, g-consensus process over ⊗P , and if ⊗Q is
a monotonic composition, then there is no f, g,⊗P ,⊗Q-respecting encoding from
P to Q.

3.3 Comparing the criteria

All separation results presented in this paper apply to both uniform and
observation-respecting encodings. This may lead the reader to wonder whether
the criteria are in fact equivalent; in this section we demonstrate that this is not
the case by exhibiting counterexamples.

L1 A

B C

L2 D

E F G

L3 H

I J

K

Fig. 1. The transition systems L1,L2,L3.

Consider the transition systems L1,L2,L3 whose states and transitions are
shown in Fig. 1. For state predicates we will use explicit sets of states. We identify
a set S with its membership function λx.x ∈ S.

We assume that each of L1,L2,L3 additionally has an unreachable junk state
⊥ where all predicates under consideration implicitly hold. For ⊗ we use the
function λ(x, y).⊥ that maps every pair of states to the junk state. Note that this
means that all predicates are stable, and renders all our requisites on encodings
that concern composition trivially satisfied; hence we ignore composition for the
remainder of this section.

There is a {B}, {C}-respecting encoding from L1 to L3: choose {I}, {J} as
target language predicates, and map A,B,C respectively to H, I, J . However,
there can be no {B}, {C}-uniform encoding from L1 to L3 since no choice of target
language predicates can simultaneously satisfy all conjuncts of Definition 17.3-4.
The reason is that B and C must be mapped to different states, and since {B}

and {C} are invariant the corresponding predicates in L3 must also be invariant,
meaning they must both hold in K and thus cannot be disjoint.

There is an {E}, {F}-uniform encoding from L2 to L1: we may choose target
language predicates {B} and {C}, and let the encoding map G to A. However,
there can be no {E}, {F}-respecting encoding because unlike L2, there are no
maximal computations in L1 where neither predicate holds.

4 Applications

In this section, we demonstrate the applicability of the method described in
Sect. 3 by using it to strengthen several separation results from the literature,
and obtain several new separation results.

4.1 Strengthened Results from the Literature

Recall from Example 7 that broadcast π can express consensus processes. Since
our requirements on encodings are weaker than Ene and Muntean’s, we strengthen
their result that there is no uniform encoding from broadcast π to π [3]. More
precisely, our notion of uniform encoding is weaker in the following ways:

– They require operational correspondence of labelled transitions, whereas we
only require operational correspondence of non-labelled transitions.

– They require that JP Kσ = JPσK for all substitutions σ, whereas we make no
such requirement.

– They do not admit the use of a behavioural equivalence or preorder for
garbage collection in the definition of operational correspondence.

– They require that JP | QK = JP K | JQK, whereas we require only that
JP | QK = JP K ⊗ JQK for some monotonic composition ⊗. For an example,
our result also holds if we translate parallel composition with a context,
i.e. JP | QK = C[JP K, JQK], where the choice of C may depend on P and Q,
given that the context is monotonic, associative and commutative.

From the consensus process exhibited in Example 12, we recover the result of
Versari et al. [9] that there is no observation-respecting encoding of FAP in the
π-calculus. Again, we achieve a strengthening by not insisting on homomorphic
translation of parallel composition. A further strengthening is achieved since they
require that observables used to signal the result of a leader election be exactly
preserved by the translation, whereas our criteria allow the encoding to use a
different signalling mechanism entirely.

From the consensus process exhibited in Example 13, we recover the result of
Phillips [8] that the π-calculus has no observation-respecting encoding of CPG.
We achieve a strengthening by relaxing their requirements on homomorphic
translation of parallel composition, and their requisite that JP Kσ = JPσK for all
substitutions σ.

4.2 Reliable and Unreliable Broadcast

By reliable broadcast we mean that everyone who can listen to a broadcast
must listen; this is the communication model of CBS, broadcast π and others.
By contrast unreliable broadcast means that each potential listener may non-
deterministically either hear the broadcast or not; this is the communication
model used in CMN [17], broadcast psi-calculi [18] and others. It has been
observed by Fehnker et al. that reliable broadcast is more practical for protocol
verification, because without it we cannot prove any guarantees about eventual
successful message delivery [19]. In this section, we lend additional support to
their preference by showing that reliable broadcast is strictly more expressive
than unreliable broadcast.

In order to obtain a separation, it suffices to observe that reliable broadcast
requires non-monotonic parallel composition, but unreliable broadcast does not.
For a slightly informal example, the labelled semantics of broadcast π as presented
in [20] contains a rule that looks like this:

P
α−→ P ′ Q does not listen to α

P | Q α−→ P ′ | Q
bn(α) 6∈ fn(Q)

An unreliable version of broadcast π is obtained by replacing this rule with
the usual Par rule:

P
α−→ P ′

P | Q α−→ P ′ | Q
bn(α) 6∈ fn(Q)

Since transitions are considered up to alpha-equivalence of bound names this
rule is monotonic parallel; it follows immediately by Corollaries 20,25 that there
is no observation-respecting or uniform encoding of (reliable) broadcast π in
unreliable broadcast π.

Corollary 26. There is no ↓x, ↓y, |, |-respecting or -uniform encoding from
broadcast π to unreliable broadcast π.

However, an encoding in the other direction is possible. It is homomorphic on
all operators except input, which is encoded as

Ja(z).P K = (rec X.(a(z).X + a(z).P))

Intuitively, the encoding mimics message loss by receiving the message, then
pretending it never happened. This encoding enjoys a very tight operational
correspondence:

Theorem 27. For all processes P of unreliable broadcast π it holds that:

1. If α is not an input action, then

(a) If P
α−→ P ′ then JP K α−→ JP ′K.

(b) If JP K α−→ P ′ then there exists P ′′ such that P
α−→ P ′′ and JP ′′K = P ′.

2. If P
a x−−→ P ′ then JP K a x−−→ JP ′K.

3. If JP K a x−−→ P ′ then either P ′ = JP K or there exists P ′′ such that P
a x−−→ P ′′

and JP ′′K = P ′.

Proof. The proof of each clause is by induction on the derivation of the transition.
The clauses must be proved in reverse order: the derivation of an output or τ
may have premises that depend on the derivation of inputs, but not the other
way around.

Hence reliable broadcast communication is strictly more expressive than
unreliable broadcast communication. Finally, note that Ene and Muntean’s study
of the expressiveness of point-to-point versus broadcast communication [3] applies
only to reliable broadcast communication; hence the relative expressiveness of
point-to-point communication and unreliable broadcast is still an open problem.

4.3 Consistency in Concurrent Constraint Formalisms

In Example 10 we exhibited a consensus process in cc-pi [5], that relies on the
fact that cc-pi forbids steps that would lead to an inconsistent constraint store.
The ρ-calculus [1] handles inconsistency in a different way: failure (denoted ⊥)
may be reached; once reached, it can be detected and any further computation
may be aborted. Since there is no need to check the environment for potential
inconsistencies when taking steps in the ρ-calculus, its parallel operator is
monotonic; a separation between the ρ-calculus and cc-pi follows immediately.

Corollary 28. There is no ` c,` c′, |,∧-respecting or -uniform encoding from
cc-pi to the ρ-calculus, where c, c′ are consistent but c× c′ is not.

∧ is ρ-calculus notation for the parallel operator. This result illustrates
that insisting on consistent stores increases the expressive power of concurrent
constraint formalisms.

4.4 Psi-Calculi with Non-Monotonic and Monotonic Logics

The psi-calculi framework [7] is parameterised on an arbitrary logic, whose
judgements are of the form Ψ ` ϕ. Here Ψ ranges over assertions and ϕ ranges
over conditions, and ` is the entailment relation; all three are parameters that
may be chosen freely when instantiating the framework. Assertions may occur
in processes, and influence the behaviour of processes in two ways. First, they
influence the evaluation of guards in conditions. For an example, the agent

(|Ψ |) | if ϕ then P may take a transition to (|Ψ |) | P ′ iff P −→ P ′ and Ψ ` ϕ.
Assertions also influence which prefixes are deemed to be channel equivalent,

i.e. which prefixes represent the same communication channel for the purposes

of synchronisation. For an example, the agent (|Ψ |) | a(x).P | b y may take a
transition to (|Ψ |) | P [x := y] iff Ψ ` a

.↔ b, where the condition a
.↔ b is

pronounced “a is channel equivalent to b”.
Another parameter is the binary operator ⊗ on assertions, called composition.

It determines the influence of parallel assertions upon each other. Let us return

to the example above, where (|Ψ |) | if ϕ then P −→ (|Ψ |) | P ′, and suppose
P ′ ≡ (|Ψ ′|) | P ′′. Only unguarded assertions influence behaviour; so now that (|Ψ ′|)
has become unguarded, further transitions from P ′′ with preconditions ϕ will
require that Ψ ⊗ Ψ ′ ` ϕ rather than Ψ ` ϕ.

A psi-calculus is monotonic if its logic is monotonic, i.e. if for all Ψ, Ψ ′, ϕ it
holds that Ψ ` ϕ implies Ψ ⊗Ψ ′ ` ϕ. Intuitively this means that once a condition
becomes true, it will remain true forever. Hence, in a monotonic psi-calculus,
adding more assertions to a process may only increase its possible behaviours,
and never decrease it. By contrast, in a non-monotonic psi-calculus it may be the
case that adding an assertion removes behaviour, if doing so causes the retraction
of a condition that was necessary for some transition.

Previous results indicate that monotonic and non-monotonic psi-calculi
are fundamentally different beasts: monotonic psi-calculi admit a far simpler
treatment of weak equivalences than their non-monotonic counterparts [21], and
non-monotonic psi-calculi allow priorities to be encoded [22]. Here, we lend weight
to this intuition by obtaining a formal separation result.

Recall the consensus process for non-monotonic psi-calculi from Example 11.
We obtain a separation between monotonic and non-monotonic psi-calculi by
observing that monotonic psi-calculi have monotonic parallel composition. The
rule

P −→ P ′

P | Q −→ P ′ | Q

is not in general valid in a non-monotonic calculus, because it may be the case
that Q contains assertions that retract the necessary conditions for the transition

P −→ P ′. However, in monotonic psi-calculi it can be derived, since if P itself
already contains all necessary assertions for the derivation, then by monotonicity
no assertions in Q may invalidate it. Hence

Corollary 29. There is no `ϕ,`ϕ′, |, |-respecting or -uniform encoding from
the psi-calculus of Example 11 into a psi-calculus with a monotonic logic.

4.5 Explicit Fusion with Mismatch

The π-calculus is sometimes presented with a mismatch operator [x6=y]P , that
may behave as P as long as x and y are different. Clearly the π-calculus parallel
operator remains monotonic if we add mismatch, since the equality of these names
depends on nothing but themselves. However, if we add a mismatch operator

to the explicit fusion calculus [23] the situation is different. The explicit fusion
calculus has monotonic parallel composition, but with the mismatch operator
added, parallel composition becomes non-monotonic: two names that differ in
P may be equivalent in P | Q if Q fuses them. Indeed, we may then write an
↓a, ↓b-consensus process as follows:

x y | [y6=z]xz.a | [y6=z]xz.b

In light of the thus obtained separation between explicit fusion with and
without mismatch, and the separation between ρ-calculus and cc-pi obtained in
Sect. 4.3, an interesting direction for future work would be to revisit Victor and
Parrow’s result that the ρ-calculus can be encoded in the fusion calculus [2]. As
a concluding remark, the authors note that “the question whether more complex
constraint systems can be handled in the same way is largely open” [2, p. 469];
the results in this paper suggest that constraint systems allowing only consistent
stores are beyond the reach of the fusion calculus. It would be interesting to
investigate if adding mismatch allows a good encoding of such constraint systems.

4.6 SCCS: Beyond Monotonic Composition

In this section we consider SCCS [24] as a non-trivial example of a language
where the product operator × is non-monotonic, yet there is no reasonable
consensus process over ×. To our minds, a reasonable consensus process should
use predicates f, g that are stable under strong bisimulation, i.e. f(P) and P ∼ Q
implies f(Q), and analogously for g. Using predicates that are not stable under
bisimulation would mean that an observer cannot distinguish between states
where f holds and where it does not, which would rather defeat the intuition
that f, g signal consensus to the outside world.

SCCS is a variant of CCS where all parallel processes proceed in lockstep,
rather than asynchronously as in CCS. It is parameterised on a commutative
monoid (Act, ·) of actions, ranged over by α, β. The derivation rule that can infer
transitions from P ×Q is the product rule:

P
α−→ P ′ Q

β−→ Q′

P ×Q′ α·β−−→ P ′ ×Q′

SCCS also has a process 0, called inaction, with no outgoing transitions. An
immediate consequence of this is that 0×P also has no outgoing transitions, since
the product rule is inapplicable. Hence 0×P ∼ 0, where ∼ is strong bisimulation.

There are two reasonable ways to define a non-labelled transition relation

−→ from the standard LTS for SCCS: we can either let it be
1−→, where 1 is the

identity of the action monoid, or
⋃
α

α−→. What follows is independent of which
one we choose.

We say that Q may deadlock if there is Q′ such that Q ==⇒ Q′ and Q′ ∼ 0.

Theorem 30. Suppose that f, g are stable under strong bisimulation. Then there
is no f, g-consensus process over × in SCCS.

Proof. By contradiction; suppose Q is an f, g-consensus process over ×, and fix
n > 1. We proceed by case analysis on whether Qn× may deadlock.

– Suppose that Qn× may deadlock. By the definition of consensus processes we

have that there is Q′ such that Qn× ==⇒ Q′ and f(Q′); analogously there is

Q′′ such that Qn× ==⇒ Q′′ and g(Q′′). Since Qn× may deadlock we also have

that Qn× ==⇒∼ 0; by Q-stability of f, g and since f, g are stable under ∼, it
follows that f(Q′ × 0) = f(0) and g(Q′′ × 0) = g(0). Hence, Qn× may reach a
(deadlocked) state where both f and g holds, which contradicts the definition
of consensus process.

– Suppose that Qn× may not deadlock. By definition of consensus processes

there exists R0, . . . , Ri, S0, . . . , Sj such that Qn× −→ R0 −→ . . . −→ Ri and

Qn× −→ S0 −→ . . . −→ Sj , where f(Ri) and g(Sj). Without loss of generality
we may assume that i ≤ j. Since Qn× may not deadlock there is Ri+1, . . . , Rj

such that Ri −→ Ri+1 −→ . . . −→ Rj . By applying the product rule j times

we get Q2n
× ==⇒Ri × Si ==⇒Rj × Sj . By Q-stability we have f(Ri × Si) and

g(Rj × Sj), contradicting Definition 5.3.

Intuitively, × alone cannot express consensus processes since despite its non-
monotonicity, it affords no way for one operand to constrain the behaviour of the
other — unless it stops the world by unguarding 0, but in a stopped world we
cannot observe what the consensus is. In SCCS the capability to constrain the
behaviour of others is instead found in the interplay between the product and
restriction operators. Theorem 30 does not contradict Holmer’s result that there
is a fully abstract encoding from CBS to SCCS [25]; what it does mean is that if
we insist on encodings that satisfy JP | QK = JP K× JQK, Holmer’s encodability
result becomes a separation result.

4.7 Maximal Progress in Timed Calculi

In this section we revisit the result of Corradini et al. [26] that TPL is strictly
more expressive than Moller and Toft’s loose Temporal CCS [27] (abbreviated
lTCCS). Our result has fewer conditions on how the encoding preserves semantics.

Recall from Exampe 14 that by using the maximal progress assumption of
TPL [6] we may write a consensus process. Some calculi eschew the maximal
progress assumption, and allow time to pass even if there are synchronisations
that could happen; lTCCS is an example. There are two main technical differences
from TPL:

– lTCCS uses an explicit time domain ranged over by s, t, and has a prefix
(t).P , meaning that P will execute after t units of time have passed.

– A transition labelled t represents the passage of t time units. Every process
may always take a t-transition.

Analogously with TPL, the non-labelled transition relation for lTCCS is the
union of the τ transitions and the time elapsing steps. The parallel operator of
lTCCS is non-monotonic — clocks are synchronised, as modelled by the only
rule for inferring t-transitions from P | Q:

P
t−→ P ′ P

t−→ Q′

P | Q t−→ P ′ | Q′

Nonetheless, there is no consensus process in lTCCS:

Theorem 31. There exists no consensus process over | in lTCCS.

Proof (Sketch). By contradiction. Assume P is an f, g-consensus process and fix

n > 1. We have that Pn ==⇒ P ′ and Pn ==⇒ P ′′ such that f(P ′) and g(P ′′).
Then there exists R,S such that there is a transition sequence from P 2n that

goes through both P ′ | R and S | P ′′, where Pn ==⇒ R and Pn ==⇒ S. By
P -stability of f, g we obtain a contradiction with the definition of consensus
process.

Note that the transition sequences from Pn to P ′ must be inferred from
synchronisations interspersed with time elapsing, i.e. it performs an action
sequence with labels α̃ = τ̃ s0τ̃ s1 . . . τ̃ snτ̃ . The transition to P ′′ analogously
looks like β̃ = τ̃ t0τ̃ t1 . . . τ̃ tnτ̃ .

A transition sequence from P 2n = Pn | Pn containing both P ′ | R and S | P ′′
is then constructed via the following algorithm:

1. Perform all τ steps occurring before the first time steps of α̃, β̃, applied
respectively to the LHS and RHS of the outermost parallel operator.

2. If s0 ≤ t0, perform an s0-step. Then iterate these steps for α̃ = τ̃ s1 . . . τ̃ snτ̃
and β̃ = t′0τ̃ t1 . . . τ̃ tnτ̃ , where t0 = s0 + t′0, until both sequences are empty.

If t0 < s0 do the same except swap α̃, β̃ and s, t.

When α̃ is empty, the LHS of the resulting process is exactly P ′. When β̃ is
empty the RHS is exactly P ′′.

Corollary 32. There is no ↓x, ↓y, |, |-respecting or -uniform encoding from TPL
to lTCCS.

Intuitively the separation holds because with maximal progress, processes can
gain information about other processes through the passage of time. A process
offering a synchronisation on a will know, once time passes, that no other process
was willing to meet the offer. When time may pass at any time, processes learn
nothing from its passage.

Corradini et al. [26] exhibit an encoding in the reverse direction that is
fully abstract wrt. strong bisimulation. They then show that there can be no

encoding J·K from lTCCS to TPL such that JP K ∼ JQK implies P ∼ Q, if we
additionally require that the encoding preserves labelled transitions exactly,

i.e. P
α−→ Q implies JP K α−→ JQK. For a separation result, this is a very strong

semantic correspondence that rules out a priori any encoding that uses a non-
trivial protocol. From Corollary 32 we obtain a separation result for encodings
with a significantly weaker semantic correspondence, at the expense of requiring
homomorphic translation of the parallel operator.

5 Isabelle Implementation

In order to obtain increased confidence in the correctness of our developments,
we have formally proved Theorems 15, 19 and 24 and their Corollaries 20 and
25 in the interactive theorem prover Isabelle/HOL [10]. The proof scripts are
available online [11]. This accounts for all the results presented in this paper that
do not pertain to particular languages; mechanising those proofs would require
that we first mechanise the languages under consideration, an arduous task that
would justify a paper of its own.

Our mechanisation consists of 1000 lines of code and took less than a week
in total to develop, meaning that the marginal cost of mechanising these results
has been rather small. Perhaps surprisingly, the most challenging work was the
proof of a technical lemma concerning computations: namely, that for every
process P there is a maximal computation starting from P . We have chosen to
mechanise computations using Lochbihler’s formalisation of coinductive lists [28].
This allows us to handle finite and infinite computations in a uniform way, and
grants access to the powerful proof technique of coinduction. Since we do not have
a concrete transition system to work with, obtaining a witness to the existence
of a maximal computation is problematic. We achieve this using iteration over
the Hilbert choice function ε, which given a predicate A returns an arbitrary
witness to the predicate if one exists (using the axiom of choice). We then prove
by coinduction that the sequence P0, P1, . . . is a maximal computation from P ,

where P0 = P , and Pn+1 = ε(λP ′. Pn −→ P ′), and the candidate predicate is the
set of all such iterations from P . It is unclear to us if a proof exists that avoids
using the axiom of choice, at least if we insist on carrying out the proof in an
abstract setting.

Isabelle’s locale mechanism [29] allows us to define a local context that states
what constants must be defined and what axioms they must satisfy. The proofs
of our main results are carried out in this context. A locale may be interpreted
by instantiating the constants of the locale with concrete transition systems,
and showing that they satisfy the axioms; Isabelle then automatically generates
concrete instances of all theorems proven in the abstract within the locale. This
means that our Isabelle developments are easy to re-use and build upon.

6 Conclusion

We have defined a method for separation results between non-monotonic and
monotonic composition operators, based on their ability or inability to express
consensus processes. We have demonstrated the wide applicability of our method
by improving on several results from the literature, and exhibiting several
novel separation results. Machine-checked proofs of our main results yield high
confidence in the correctness of the method.

The idea of providing methods for separation results without committing
to the precise languages under comparison has been previously introduced by
Gorla [16], who offers two methods. One is for separation between languages that
contain inert P such that P | P may take transitions, and those that do not; the
other is for separation between languages based on their matching degree (the
least upper bound on how many names must match to yield a transition), where
greater matching degrees lead to greater expressiveness. These methods allow
many well-known separation results from the literature to be proved in a simple
and uniform way. However, Gorla’s methods are not applicable to the separation
results considered in this paper.

Palamidessi’s result that mixed choice π-calculus is more expressive than
separate choice π-calculus [30] was derived using leader election-based techniques;
Peters and Nestmann achieved a stronger version of the same result by abstracting
away from leader election and focusing instead on the problem of breaking
symmetries in general [31]. Similarly to our work, Peters and Nestmann can
then drop Palamidessi’s requirement that the translation respects substitutions,
i.e. that for all P, σ it holds that JP Kσ = JPθK for some substitution θ.

While our criteria on encodings and the languages under consideration are
remarkably weak, different criteria may of course yield different results. For an
example, there is an encoding of CBS into CCS due to Prasad [32], so clearly
our separation results cannot hold if we weaken our criteria so that they are
compatible with his. Prasad’s encoding works by introducing a handler for every
parallel operator that is responsible for distributing transmitted messages to
the left, right and to the environment. These three activities are performed on
distinct channels, so the encoding of a subterm will differ depending on whether
it occurs to the left or to the right of the innermost parallel operator, meaning
that it is not a composition in our sense. Further, neither JP K nor JQK occur
as subterms of JP | QK, so the encoding is not compositional in the sense of
Gorla [16].

Traditionally, many separation results have been proven with homomorphic
translation of the parallel operator as a criterion. This is usually justified by the
intuition that an encoding should preserve the degree of distribution of the source
language. We agree with this intuition. Our criterion that JP | QK = JP K⊗ JQK
for some monotonic composition ⊗ is weaker, and can be seen as a less syntactic
way to state that the degree of distribution should be preserved.

Another way to obtain a weaker criterion that still guarantees preservation
of the degree of distribution has been proposed by Peters et. al [33]. Their
approach is more focused on syntactic distributability, and more specifically

tailored towards process calculi. It assumes that the process languages have
a syntax where subprocesses can be composed with operators in an algebraic
manner, and have capabilities, i.e. parts of a process that are removed when it
transitions (such as prefixes in process calculi). Distributability is then a syntactic
property of processes, where (roughly stated) a process is distributable into its
set of top-level capabilities. An encoding preserves distributability if whenever
a source process is distributable into some components, the target process is
distributable into the same number of components, where each component of the
target process is behaviourally equivalent to a corresponding component of the
source process.

Hence our approach offers more flexibility in the kind of languages it can be
applied to, and in designing encodings that are semantically but not syntactically
distributable. For example, a normal form of a π-calculus process P is an
equivalent process on the form Σi αi.Pi, where each Pi is also on normal form.
An encoding that translates every agent of the finite fragment of the π-calculus
to its normal form would satisfy our criterion that parallel must be translated by
monotonic composition, but does not preserve the degree of distribution in the
sense of Peters et. al. On the other hand, they do not insist on associativity and
commutativity of the contexts that parallel translates into, which offers some
flexibility in designing encodings that is not available with our criteria. For future
work, it would be interesting to investigate if a fruitful synthesis can be achieved.

Acknowledgments

We are grateful to the anonymous reviewers for their many constructive comments.

References

[1] Niehren, J., Smolka, G.: A confluent relational calculus for higher-order
programming with constraints. In: Constraints in Computational Logics.
Springer (1994) 89–104

[2] Victor, B., Parrow, J.: Concurrent constraints in the fusion calculus. In:
Automata, Languages and Programming. Springer (1998) 455–469

[3] Ene, C., Muntean, T.: Expressiveness of point-to-point versus broadcast
communications. In Ciobanu, G., Paun, G., eds.: Proceedings of FCT’99.
Volume 1684 of Lecture Notes in Computer Science., Springer-Verlag (1999)
258–268

[4] Cleaveland, R., Hennessy, M.: Priorities in process algebras. In: LICS, IEEE
Computer Society (1988) 193–202

[5] Buscemi, M.G., Montanari, U.: CC-Pi: A constraint-based language for
specifying service level agreements. In De Nicola, R., ed.: Proceedings of
ESOP 2007. Volume 4421 of Lecture Notes in Computer Science., Springer-
Verlag (2007) 18–32

[6] Hennessy, M., Regan, T.: A process algebra for timed systems. Inf. Comput.
117 (1995) 221–239

[7] Bengtson, J., Johansson, M., Parrow, J., Victor, B.: Psi-calculi: Mobile
processes, nominal data, and logic. In: Proceedings of LICS 2009, IEEE
(2009) 39–48

[8] Phillips, I.: CCS with priority guards. In Larsen, K.G., Nielsen, M., eds.:
CONCUR 2001 — Concurrency Theory. Volume 2154 of Lecture Notes in
Computer Science. Springer Berlin Heidelberg (2001) 305–320

[9] Versari, C., Busi, N., Gorrieri, R.: On the expressive power of global and
local priority in process calculi. In: CONCUR. (2007) 241–255

[10] Nipkow, T., Paulson, L.C., Wenzel, M.: Isabelle/HOL: a Proof Assistant
for Higher-Order Logic. Volume 2283 of Lecture Notes in Computer Science.
Springer-Verlag (2002)

[11] Åman Pohjola, J.: The expressive power of monotonic parallel composition.
http://www.it.uu.se/research/group/mobility/theorem/monopar.

tgz (2015) Isabelle2014/HOL formalisation of the definitions, theorems
and proofs.

[12] Bougé, L.: On the existence of symmetric algorithms to find leaders in
networks of communicating sequential processes. Acta Inf. 25 (1988) 179–
201

[13] Palamidessi, C.: Comparing the expressive power of the synchronous and
the asynchronous π-calculus. In: Proceedings of the 24th ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages. POPL ’97,
New York, NY, USA, ACM (1997) 256–265

[14] Fischer, M.J., Lynch, N.A., Paterson, M.S.: Impossibility of distributed
consensus with one faulty process. J. ACM 32 (1985) 374–382

http://www.it.uu.se/research/group/mobility/theorem/monopar.tgz
http://www.it.uu.se/research/group/mobility/theorem/monopar.tgz

[15] Prasad, K.V.S.: A calculus of broadcasting systems. Science of Computer
Programming 25 (1995) 285–327

[16] Gorla, D.: Towards a unified approach to encodability and separation results
for process calculi. In: CONCUR. Volume 5201 of Lecture Notes in Computer
Science., Springer (2008) 492–507

[17] Merro, M.: An observational theory for mobile ad hoc networks (full version).
Journal of Information and Computation 207 (2009) 194–208

[18] Borgström, J., Huang, S., Johansson, M., Raabjerg, P., Victor, B., Pohjola,
J.Å., Parrow, J.: Broadcast psi-calculi with an application to wireless
protocols. In Barthe, G., Pardo, A., Schneider, G., eds.: Software Engineering
and Formal Methods: SEFM 2011. Volume 7041 of Lecture Notes in
Computer Science., Springer-Verlag (2011) 74–89

[19] Fehnker, A., van Glabbeek, R.J., Höfner, P., McIver, A., Portmann, M.,
Tan, W.L.: A process algebra for wireless mesh networks used for modelling,
verifying and analysing AODV. CoRR abs/1312.7645 (2013)

[20] Ene, C., Muntean, T.: A broadcast-based calculus for communicating systems.
In: Proceedings of the 15th International Parallel & Distributed Processing
Symposium. IPDPS ’01, Washington, DC, USA, IEEE Computer Society
(2001) 149–

[21] Johansson, M., Bengtson, J., Parrow, J., Victor, B.: Weak equivalences in
psi-calculi. In: LICS, IEEE Computer Society (2010) 322–331

[22] Åman Pohjola, J., Parrow, J.: Priorities without priorities: Representing
preemption in psi-calculi. In Borgström, J., Crafa, S., eds.: Proceedings
Combined 21st International Workshop on Expressiveness in Concurrency,
EXPRESS 2014, and 11th Workshop on Structural Operational Semantics,
SOS 2014, Rome, Italy, 1st September 2014. Volume 160 of EPTCS. (2014)
2–15

[23] Gardner, P., Wischik, L.: Explicit fusions. In Nielsen, M., Rovan, B., eds.:
Proceedings of MFCS 2000. Volume 1893 of Lecture Notes in Computer
Science., Springer-Verlag (2000) 373–382

[24] Milner, R.: Calculi for synchrony and asynchrony. Theoretical Computer
Science 25 (1983) 267 – 310

[25] Holmer, U.: Interpreting broadcast communication in SCCS. In Best, E.,
ed.: CONCUR. Volume 715 of Lecture Notes in Computer Science., Springer
(1993) 188–201

[26] Corradini, F., D’Ortenzio, D., Inverardi, P.: On the relationships among
four timed process algebras. Fundam. Inf. 38 (1999) 377–395

[27] Moller, F., Tofts, C.: Relating processes with respect to speed. In Baeten,
J.C., Groote, J.F., eds.: CONCUR ’91. Volume 527 of Lecture Notes in
Computer Science. Springer Berlin Heidelberg (1991) 424–438

[28] Lochbihler, A.: Coinductive. Archive of Formal Proofs 2010 (2010)
[29] Ballarin, C.: Locales: A module system for mathematical theories. J. Autom.

Reasoning 52 (2014) 123–153
[30] Palamidessi, C.: Comparing the expressive power of the synchronous and

asynchronous pi-calculi. Mathematical Structures in Computer Science 13
(2003) 685–719

[31] Peters, K., Nestmann, U.: Breaking symmetries. In Fröschle, S.B., Valencia,
F.D., eds.: Proceedings 17th International Workshop on Expressiveness in
Concurrency, EXPRESS’10, Paris, France, August 30th, 2010. Volume 41 of
EPTCS. (2010) 136–150

[32] Prasad, K.V.S.: Broadcast calculus interpreted in CCS upto bisimulation.
Electr. Notes Theor. Comput. Sci. 52 (2001) 83–100

[33] Peters, K., Nestmann, U., Goltz, U.: On distributability in process calculi.
In Felleisen, M., Gardner, P., eds.: Programming Languages and Systems
- 22nd European Symposium on Programming, ESOP 2013, Held as Part
of the European Joint Conferences on Theory and Practice of Software,
ETAPS 2013, Rome, Italy, March 16-24, 2013. Proceedings. Volume 7792 of
Lecture Notes in Computer Science., Springer (2013) 310–329

	The Expressive Power of Monotonic Parallel Composition
	References

