Erratum for Extended pi-Calculi

Magnus Johansson, Joachim Parrow, Björn Victor, and Jesper Bengtson
Department of Information Technology, Uppsala University

Erratum for Johansson et al, Extended pi-calculi, Proc. ICALP 2008, LNCS 5126 pp 87-98.

Theorem 1 and possibly also Theorem 2 are not correct as stated. They need an additional assumption about the EF-relation. This fact was discovered after publication of the paper in connection with the mechanisation of the proofs. We here account for the counterexample and provide a solution in form of one further assumption on the EF-relation. The terminology and definitions are as in the paper.

Counterexample

Assume a unary function symbol f. For any name a, let the alias $F(a)$ be $\left\{{ }^{f(a)} / a\right\}$. Thus $F(a)$ only contains the name a, and by convention also denotes the frame $\left\{{ }^{f(a)} / a\right\}$. Define an EF-relation \vdash by $F(a) \vdash f(a)=a$, and additionally $F(a) \cup F(b) \vdash a=b$. Let \vdash be closed under the assumptions equivariance, equivalence, strengthening, weakening, and scope introduction. The relation then also satisfies scope elimination, idempotence, and union, i.e. it satisfies all the assumptions on an EF-relation.

Let N be any term such that $a, b \# N$, and consider the agent P defined as

$$
P=(\nu a, b)(F(a)|F(b)| \bar{a} N . \mathbf{0} \mid b(N) . \mathbf{0})
$$

Here P has a τ action since $F(a) \cup F(b) \triangleright \bar{a} N . \mathbf{0}|b(N) . \mathbf{0} \xrightarrow{\tau} \mathbf{0}| \mathbf{0}$
Using the structural rules of Theorem 1, notably scope extension and commutativity and associativity of parallel, we have $P \sim Q$ where

$$
Q=((\nu a)(F(a) \mid \bar{a} N . \mathbf{0})) \mid((\nu b)(F(b) \mid b(N) . \mathbf{0}))
$$

However, it is not the case that Q has a tau action. Therefore P and Q are not bisimilar, and Theorem 1 must be false.

The proof of Theorem 2 relies on Theorem 1. We believe Theorem 2 also to be false.

A solution

The counterexample relies on a highly unintuitive EF-relation, and a solution is to introduce an additional assumption about EF-relations to eliminate the undesired ones. The additional assumption is called interpolation:

Suppose $a \# M, F$ and $b \# N, G$ and $F \cup G \vdash M=N$. Then there exists K such that $a, b \# K$ and $F \cup G \vdash M=K$.

The precondition is about a frame that can be split into two parts F and G, where F is free from a and G free from b. The frame equates M and N where M is free from a and N is free from b. As an example consider the situation in the counterexample above, where $F=F(b), M=b, G=F(a), N=a$. The conclusion is that there exists a term K, free from both a and b, and equated to M. If this holds, in the counterexample above also Q would have a τ transition since its two components can interact using this K as subject.

With this additional assumption Theorems 1 and 2 hold. These results have been verified in Isabelle. There remains the question of whether a more concise assumption would suffice. We have abandoned work on this particular formalism in favour of the more general psi-calculi (proc. LICS 2009, pp39-48).

