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Abstract. We demonstrate a general framework for extending the pi-
calculus with data terms. In this we generalise and improve on several
related efforts such as the spi calculus and the applied pi-calculus, also
including pattern matching and polyadic channels. Our framework uses a
single untyped notion of agent, name and scope, an operational semantics
without structural equivalence and a simple definition of bisimilarity. We
provide general criteria on the semantic equivalence of data terms; with
these we prove algebraic laws and that bisimulation is preserved by the
operators in the usual way. The definitions are simple enough that an
implementation in an automated proof assistant is feasible.

1 Introduction

The pi-calculus [1] is a foundational calculus for describing communicating sys-
tems with dynamic connectivity. Allowing only names of communication chan-
nels to be transmitted between processes, it is still expressive enough to encode
other types of data such as booleans, integers, lists etc. Such data structures
are convenient when modelling protocols, programming languages, and other
complicated applications. However, having to work with encodings muddles the
models and complicates their analysis – and constructing correct encodings can
be quite difficult. To overcome these difficulties, extensions of the pi-calculus
have been introduced, where higher-level data structures (and operations on
them) are given as primitive. Our contribution in this paper is to establish a
unifying untyped framework where a range of such calculi can be formulated,
using a lean and symmetric semantics that is well suited for an automated proof
assistant.

Perhaps the simplest and oldest of data structures for the pi-calculus is to
allow tuples of names to be transmitted, leading to the polyadic pi-calculus [2]
and its typed variants. This is a quite mild extension where for example the agent
(or process) a〈b, c〉 . P can send the two names b and c to a receiving a(x, y) . Q in
one go. This needs to be faithful to the pi-calculus principle of scope extrusion,
which says that if a name is transmitted outside its scope then that scope is
extended to include the receiver. If for example both b and c are scoped, as in
(νb, c)a〈b, c〉 . P , then the scope of both b and c are extended to encompass Q.
In this way the effect is the same as sending b and c individually in subsequent
transmissions.
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With subsequent advances of calculi for cryptographic applications another
view has emerged, where a fresh key is represented as a scoped name, and a data
structure such as enc(m, k) represents the encryption of m by the key k. Two
main examples are the spi calculus [3] and the applied pi-calculus [4].

The spi calculus is equipped with encryption/decryption primitives. An ex-
ample process

P = (νk,m)a〈enc(m, k)〉 . P ′ where P ′ = b(x) . if x = m then c〈m〉

sends out, over a, the fresh name m encrypted with the fresh key k, and then
receives a value x over b. If the received value is m, an output is sent on c.
Intuitively, since the environment does not know k (or m), P ′ can never receive
m, and the output on c can never happen.

However, a labelled transition for the process is P (νk,m)a〈enc(m,k)〉−−−−−−−−−−−−→ P ′. Al-
though the label contains the names m and k, and therefore their scopes are
opened by the transition, the names should not become known to the environ-
ment since it cannot decrypt the message and find them. Thus, any reasonable
equivalence must explicitly keep track of which names are known. There are
several bisimulation equivalences of varying complexity for the spi calculus – see
[5] for an overview.

The applied pi-calculus [4] improves the situation in several ways. Firstly, it
is more general since the calculus is parameterised by a signature and an equa-
tion system for data structures. Secondly, and more importantly, the transition
labels expose only what should be revealed. This is achieved by introducing vari-
ables with so called active substitutions {M/x} of data terms for variables, the
structural rule {M/x} | P ≡ {M/x} | P [x := M ], and by disallowing the sending
of complex data directly – it must be sent using an alias variable such as x. Let
us return to the process P above; we have P ≡ Q where

Q = (νk,m, z)({enc(m,k)/z} | a〈z〉 . P ′)
(νz)a〈z〉−−−−−→ (νk,m)({enc(m,k)/z} | P ′)

Here, the transition label only reveals that a (fresh) value is sent, but not how the
value is constructed; the scope of k and m is not opened, and their confidentiality
to the environment is clear; the bisimulation definition is correspondingly simple.
However, sending out a tuple of channel names as in the polyadic pi-calculus is
not possible in the labelled semantics of the applied pi-calculus – see Section 3.

In this paper we define a generalisation of the (applied) pi-calculus where we
allow both possibilities: data terms can be sent using an alias, not revealing the
construction of the value, or as the text or syntax tree for the term, exposing all
details. The process needs to explicitly use one form or the other, unlike the case
in the applied pi-calculus where a term in an object position is always implicitly
rewritten using an alias. Which form to use is up to the intended purpose of the
term: to keep secrets the alias form must be used, while to extrude the scope of
e.g. communication channels, the explicit form should be used. P and Q are not
at all equivalent, and the structural rule from the applied pi-calculus mentioned
above is neither needed nor valid. It is even possible to mix the different modes
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by including an alias in an explicit data structure; the parts represented by the
alias remain hidden.

Our new framework allows pattern matching inputs: e.g., a(f(x, y)) . P ′ can
only communicate with an output a〈f(M,N)〉 for some data terms M,N . This
can be seen as a generalisation of the polyadic pi-calculus where inputs of a
certain arity can only communicate with outputs of the same arity. Another
significant extension is that we allow arbitrary data terms also as communication
channels. Thus it is possible to include functions that create channels and also
polyadic synchronisation, cf. [6], where a channel may be composed of several
names.

A reader might fear that to achieve all this the framework must be a com-
plicated union of all work cited above, with a plethora of primitives. This is not
the case. We use a single basic framework for extended pi-calculi, with a single
untyped notion of agent and a single-level structural operational semantics that
does not rely on any structural equivalence to rewrite agents, a single notion
of name and scope, and a simple definition of bisimilarity. We provide general
criteria on the semantic equivalence of data terms; with these we prove alge-
braic laws and that bisimulation is preserved by the operators in the usual way.
Our framework facilitates comparisons between different approaches, and proofs
about the calculi can be conducted using straightforward inductions over tran-
sitions. In this way we improve on existing definitions of the applied pi-calculus.
The framework is lean enough that it is profitable to use an automated proof
assistant and our preliminary efforts in this direction (using Isabelle [7]) hold
promise.

Related Work. The different bisimulation definitions for the spi calculus are pre-
sented in [8–10, 5] and an overview can be found in [5]. Another example of an
environment sensitive equivalence can be found in [11]. In [12], a spi calculus pa-
rameterised by a data signature and evaluation function is defined. The relation
between the applied pi-calculus and extended pi-calculi is explored in Section 3.

The applied pi-calculus has been used for analysis of several security proto-
cols, e.g. [13–15]. Ad-hoc variants of the applied pi-calculus have also been used
to prove non-security properties, e.g. in [16] correctness of network based storage
is shown using a variant of an applied pi-calculus with polyadicity (but without
labelled semantics).

Polyadic synchronisation in the pi-calculus [6] is a subcalculus of an extended
pi-calculi as discussed in Section 3. In [17] a Spi calculus with pattern matching
is presented.

Disposition. In Section 2 we present the syntax and operational semantics of
extended pi-calculi. In Section 3, we illustrate by examples how these can be
put to use, and relate informally to other variants of the pi-calculus. Section 4
presents the labelled bisimulation relation, and our main results about it. Sec-
tion 5 concludes with suggestions for further work.
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2 Definitions

Assume a signature with a set of symbols f, g, each with a nonnegative arity.
Among the symbols there is a countably infinite set of names a, b, . . ., all with
arity 0. (There may also be other symbols with arity 0.)

Definition 1 (Terms). The data terms, or for short just terms, ranged over
by M,N, . . ., are defined by M ::= f(M1, . . . ,Mn) where f has arity n.

If f has arity 0 we write just f for f(); in particular a name is a term. The
substitution of a term N for a name a in a term M , written M [a := N ] is defined
by a[a := N ] = N and f 6= a =⇒ f [a := N ] = f , extending homomorphically to
all terms.

In the following we shall define agents, actions, transitions etc. in the style
of nominal datatypes [18] building on our previous experience of nominal types
for the π-calculus [19]. It is not necessary to understand nominal datatypes to
appreciate the work presented here; suffice it to say that all alpha-equivalent
agents, actions etc. are considered equal.

The set of free names (i.e. the names with an non-bound occurrence) of an
object X is written as fn(X), and we abbreviate fn(X) ∪ fn(Y ) to fn(X,Y ) etc.
We write n(X) for the names (bound and free) in X. We also write a#X (“a is
fresh in X”) to mean a /∈ fn(X). Name permutation of a and b (exchanging all
a for b and vice versa) in P is written (a b) •P . In the following ã means a finite
(possibly empty) sequence of distinct names, a1, . . . , an. When occurring as an
operand of a set operator, ã means the corresponding set of names {a1, . . . , an}.
Concatenation of sequences ã and b̃ is written ã · b̃ and the empty sequence is
written ε.

Definition 2 (Agents and aliased names). The agents, ranged over by P,Q,
are the following:

0 Nil (νa)P Restriction
M N.P Output P |Q Parallel
M(N).P Input !P Replication
if M = N then P else Q Conditional {M/a} Alias

We say that a is the aliased name of {M/a}, and define the aliased names an(P )
of an agent P to be the set of free names aliased in any subagent in P . In the
input M(N).P it is required that n(N) ∩ an(P ) = ∅. Input and restriction are
binding occurrences of n(N) and a.

All operators except Alias are familiar from the pi-calculus (we omit the sum
operator but inclusion of guarded sum would not greatly affect our results). The
Alias is similar in intention to what in the applied pi-calculus is called an “active
substitution”, though semantically it is a bit different in that our Alias will not
always enforce a substitution. An aliased name cannot be bound by input. The
reason is that with an input bound alias we can express aliasing of terms for
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terms: M(a).{N/a} can receive a term K to replace a, becoming {N/K}, which is
not a syntactically correct agent.

Note that an aliased name is not a binder. Suppose we would restrict to a sub-
calculus with a construct like “alias a = M in P” to represent (νa)({M/a} |P ),
i.e., the construct binds a. In this sub-calculus it is impossible to directly express
an agent such as (νa)(((νk)({enc(M,k)/a} | P )) | Q). This agent could represent
that a term M encrypted with key k has been sent to P and Q, and that only P
has the key. So Q cannot use M until it receives k in a communication (opening
the scope of k). In order to express aliases that become usable only when their
“keys” are received, it seems that a binding “alias. . . ” construct is not enough.

The Input construct contains an implicit pattern matching. For example
M (f(a, b)).P can input objects only of shape f(K,L), thereby substituting K
for a and L for b in P . We shall use the silent prefix τ.P , which can be thought
of as a shorthand for (νa)(a a.0 | a (c).P ) for some a, c#P , and let γ range over
prefixes. A generalised restriction (νã)P means (νa1) · · · (νan)P , or just P if
n = 0.

The substitution of M for a in the agent P is written P [a := M ], and is
defined if a 6∈ an(P ); in other words it is not possible to substitute something for
an aliased name. Substitution is defined in the usual way, homomorphic on all
operators and renaming bound names to avoid captures. When Z is a term or
agent, ã = a1, . . . an are pairwise distinct and L̃ = L1, . . . , Ln we write Z[ã := L̃]
to mean the simultaneous substitution of each Li for ai in Z.

Definition 3 (Frames). A frame F is of kind (νãF )RF , where ãF is a sequence
of names and RF is a finite relation between names and terms. The names in
ãF are binding occurrences in the frame. The domain dom(F ) is defined to be
dom(RF )−ãF , i.e. the domain of the relation but not including the bound names.

The intuition is that a frame contains information about what terms should be
considered equal, by relating aliases to terms. The bound names in a frame rep-
resent local placeholders, and cannot be contained in the terms to be compared
for equality. Frames may be nondeterministic in that two different terms have
the same alias (in that case the alias can represent either term) and even circular
— we have found no reason to forbid such aliases even though in some contexts
they would not make sense.

We abbreviate the empty frame (νε)∅ to ∅ when no confusion can arise. We
also write (νa)F for ν(a · ãF )RF , and {T/a} for (νε){(a, T )}, and F ∪ G for
ν(ãF · ãG)(RF ∪RG), as always alpha-converting to avoid clashes.

Definition 4 (Equal-in-Frame relation). An Equal-in-Frame relation ( EF-
relation) is a ternary relation between a frame F and two terms M and N ,
written F `M = N .

The intuition is that F `M = N means that given the knowledge of the aliases
in F , it is possible to infer M = N . We shall not now define exactly how such
inferences are done; rather, we shall give a set of conditions (in Section 4 below)
on the EF-relation for our results to hold.
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In
F `M = K

F BM(N).P
KN [ã:=L̃]−−−−−−−→ P [ã := L̃]

ã = n(N) Out
F `M = K

F BM N.P
K N−−−→ P

Then
F `M = N

F B if M = N then P else Q
τ−→ P

Else
¬(F `M = N)

F B if M = N then P else Q
τ−→ Q

Com
F ∪ F(Q) B P

(νã)M N−−−−−→ P ′ F ∪ F(P ) BQ
M N−−−→ Q′

F B P |Q τ−→ (νã)(P ′ |Q′)
ã#Q

Par
F ∪ F(Q) B P

α−→ P ′

F B P |Q α−→ P ′ |Q
bn(α) ∩ fn(Q) = ∅

Scope
F B P

α−→ P ′

F B (νa)P
α−→ (νa)P ′

a#α, F

Open
F B P

(νb̃1·b̃2)M N−−−−−−−−→ P ′

F B (νa)P
(νb̃1·a·b̃2)M N−−−−−−−−−→ P ′

a ∈ n(N),

a#M,F, b̃1, b̃2
Rep

F B P | !P α−→ P ′

FB!P
α−→ P ′

Table 1. Structural operational semantics. Symmetric versions are elided.

Definition 5 (Static equivalence). Two frames F and G are statically equiv-
alent, written F w G, when dom(F ) = dom(G) and when for all terms M and
N we have F `M = N iff G `M = N .

Definition 6 (Actions). The actions ranged over by α, β are of the following
three kinds: An output of kind (νã)M N , where ã are binding occurrences, an
input of kind M N , and the silent action τ .

For an output action (νã)M N it will hold that n(M) ∩ ã = ∅ and ã ⊆ n(N). If
ã is empty we write the action as just M N ; this corresponds to a free output
in standard pi. In the actions above we will refer to M as the subject, corre-
sponding to the channel over which communication takes places, and N as the
object transferred in the communication. Note that the subject is a term and
not necessarily a name. This admits functions in the signature that construct
channels. When an output object N is syntactically complicated we sometimes
write M〈N〉 for M N , to facilitate reading, in both actions and prefixes.

The frame of an agent is, intuitively, what the agent contributes to its envi-
ronment for resolution of aliases. It contains all the unguarded aliases, preserving
the scope of names.
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Definition 7 (Frame of an agent). The function F from agents to frames is
defined inductively as follows.
F(0) = F(γ.P ) = F(if M = N then P else Q) = ∅, F({M/a}) = {M/a},
F((νa)P ) = (νa)F(P ), F(P |Q) = F(P ) ∪ F(Q), F(!P ) = F(P )

Definition 8 (Transitions). A transition is of kind F B P
α−→ Q, meaning

that when the environment contains the frame F the agent P can do an α to
become Q. The transitions are defined inductively in Table 1.

The frame is used to determine the action subjects. So if the EF-relation equates
the different terms M and N in every frame then the agents MK.P and NK,P
are bisimilar. In contrast, the frame does not affect objects, so the agents KM.P
and K N,P are not bisimilar, and can indeed be distinguished by the agent
K (a) . (b 〈t2(a,M)〉 .0 | b (t2(c, c)) . Q), where the non-linear pattern matching
along b succeeds only if the corresponding output is a tuple of two identical
terms. We have experimented with versions where the prefix rules, or the Com-
rule, or the definition of bisimilarity (and combinations thereof) use the frame to
generate or compare objects. In all cases we have encountered technical problems
in that the scope extension law (νa)(P |Q) ∼ P |(νa)Q if a#P fails, or restriction
fails to preserve bisimilarity.

3 Examples

We will now show how the extended pi-calculi relate to a few other calculi and
give some examples.

The pi-calculus and the polyadic pi-calculus. Any monadic pi-calculus
agent [1] is also an extended pi-calculus agent. Using only names as symbols,
and with an EF-relation with only identity on names, the extended pi semantics
directly corresponds to an early operational semantics for the pi-calculus (with-
out sum). The frame of a pi agent will always be empty since there is no aliasing
in the pi-calculus.

Adding tupling symbols tn for tuples of arity n, we can also easily encode the
polyadic pi-calculus [2] in the extended pi-calculus. The encoding [[ · ]]P2E uses
pattern matching in the input rule:

[[a(b1, . . . , bn).P ]]P2E = a(tn(b1, . . . , bn)).[[P ]]P2E

[[a〈c1, . . . , cn〉.P ]]P2E = a〈tn(c1, . . . , cn)〉.[[P ]]P2E

Pi-calculus with polyadic synchronisation. In [6] the subject of an action
can be a vector of names. This is useful if we want a couple of processes to
atomically communicate only if they share a set of parameters. Example ap-
plications of polyadic synchronisation given in [6] are modelling e-services [20]
where a client and a server can only communicate if they agree on a set of ser-
vice parameters, and simple representations of localities and cryptography. Using
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polyadic synchronisation we can gradually enable a communication by opening
the scope of names in a subject.

Using tuples of names as subjects in an extended pi-calculus we gain the
expressiveness of polyadic synchronisation (strictly greater than standard pi-
calculus). With the tupling symbols above, we can, e.g., encode if a = b then P
else 0 as (νc)(t2(c, a)〈c〉 | t2(c, b)(d) . P where c, d#P , and the underlining is
intended to clarify the input subject.

The applied pi-calculus. Our work is inspired by the applied pi-calculus [4].
For the most part the applied pi-calculus is a subset and can be translated
directly into an extended pi-calculus, but there are a few noteworthy issues.
Firstly, in the applied pi-calculus there is a distinction between variables and
names (collectively called atoms) where only variables can be substituted. Sec-
ondly, as seen in Section 1, in the applied pi-calculus there are limitations on
what can be output in an output action. For example the agent a M.P , where
M is not an atom, has no transitions since the only allowed output actions are
of the form a u or (νu)a u where u is an atom. In order to derive a transition
from a M.P it must first be rewritten using rules for structural equivalence:
a M.P ≡ (νx)({M/x} | a x.P ) (νx)a x−−−−→ {M/x} | P . In a similar fashion names are
the only subjects in the applied pi-calculus. Any other term in subject position
in a prefix must be rewritten to a name using structural equivalence before a
transition can be derived.

Assuming an EF-relation which, as in the applied pi-calculus, is based on a
set of user supplied equations, given an agent A in the applied pi-calculus, let
[[A]]A2E be a translation into an extended pi-calculus. [[ · ]]A2E maps variables to
names and is a homomorphism except for the output prefix which is translated
as follows:

[[uM.P ]]A2E = (νa)({M/a} | u a.[[P ]]A2E), a /∈ atoms(uM.P ) (M not an atom)
[[uM.P ]]A2E = uM.[[P ]]A2E (when M is an atom)

In the applied pi-calculus we have that u M.P ≡ (νx)({M/x} | u x.P ) where
x /∈ atoms(u M.P ), which exactly matches our translation. Assuming a well
sorted original process and well sorted inputs, this translation gives rise to a
process that has the same transitions as the original, except for outputs of names
that are not channels, which in applied pi-calculus can be output both literally
and as aliases. To handle this in an extended pi-calculus we would need a choice
operator.

As indicated in the introduction, we can express cryptographic operations,
given an appropriate signature and EF-relation. Using aliases for cryptographic
terms, we can protect the secrecy of keys and encrypted messages. In contrast
to the applied pi-calculus, we also have the possibility to send data terms as
is, without using aliases. This is important to be able to directly represent the
polyadic pi-calculus. Consider an example based on our encoding of polyadic pi
above, where z is a variable in the applied pi-calculus represented as a name in
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our framework:

P = [[(νc, d)a〈c, d〉.c(z).P ′]]P2E = (νc, d)a〈t2(c, d)〉.c(z).P ′′

In an extended pi-calculus, P (νc,d)a〈t2(c,d)〉−−−−−−−−−−→ c(z).P ′′ and c(z).P ′′ cM−−→ P ′′[z :=
M ] for some M . In the applied pi-calculus, to have a transition, P must first be
rewritten to Q = (νc, d, x)({t2(c,d)/x} | a x . c(z) . P ′′). This rewritten process can,
however, not open the scopes of c and d, but has the only transition Q

(νx)a x−−−−→
(νc, d)({t2(c,d)/x} | c(z) . P ′′). This process is deadlocked.

The spi calculus. If we assume an EF-relation based on an equation system
and a signature with primitives for encryption and decryption, similarly to what
we did for the applied pi-calculus above, we can encode the spi calculus [3] using
the translation used above for the applied pi-calculus. Note in particular that
the encoding ensures that encryptions are always sent as aliases.

4 Theory

This section gives our main results: our labelled bisimulation is preserved by the
operators in the usual way, and although we do not use structural congruence
in our operational semantics, the usual structural rules are sound.

Definition 9 (Bisimulation). A bisimulation R is a ternary relation between
frames and pairs of agents such that R(F, P,Q) implies all of

1. Static equivalence: F(P ) w F(Q)
2. Symmetry: R(F,Q, P )
3. Extension of arbitrary frame: ∀G. R(F ∪G,P,Q)
4. Simulation: for all α, P ′ such that the bound names in α are disjoint from

n(Q,F ) there exists Q′ such that

F B P
α−→ P ′ =⇒ F BQ

α−→ Q′ ∧ R(F, P ′, Q′)

We define P ∼ Q to mean that there exists a bisimulation R such that R(∅, P,Q).

Because of the universal quantification of G in clause 3, bisimilarity corresponds
to equal behaviour in all frames.

In order to establish properties of ∼ we will need to make assumptions about
the EF-relation.

Equivariance: F `M = N =⇒ (a b) • F ` (a b) •M = (a b) •N.
Equivalence: {(M,N) : F `M = N} is an equivalence relation.
Strengthening: a#(F,M,N) ∧ F ∪ {T/a} `M = N =⇒ F `M = N.
Weakening: F `M = N =⇒ F ∪ {T/a} `M = N.
Scope Introduction: F `M = N ∧ a#(M,N) =⇒ (νa)F `M = N.
Scope Elimination: (νa)F `M = N =⇒ F `M = N.
Idempotence: F w F ∪ F
Union: F w G =⇒ F ∪H w G ∪H.
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Weakening and strengthening say that no fewer equalities can be proved
by adding to the frame or by subtracting an alias that is never used. Scope
introduction and elimination similarly say that by removing a scope no less can
be proved (here the bound name a is guaranteed to be distinct from anything
in M or N), and likewise for adding a scope that does not capture anything in
M and N . Note that a property for restriction, F w G =⇒ (νa)F w (νa)G,
follows from scope introduction and elimination.

P ≡ P | 0
P | (Q |R) ≡ (P |Q) |R

P |Q ≡ Q | P
!P ≡ P | !P

(νa)0 ≡ 0
P | (νa)Q ≡ (νa)(P |Q) if a#P

M N.(νa)P ≡ (νa)M N.P if a#M,N
M(N).(νa)P ≡ (νa)M(N).P if a#M,N

if M = N then P else (νa)Q ≡ (νa)(if M = N then P else Q) if a#M,N,P
if M = N then (νa)P else Q ≡ (νa)(if M = N then P else Q) if a#M,N,Q

(νa)(νb)P ≡ (νb)(νa)P (νa){M/a} ≡ 0 {M/a} ≡ {N/a} if ∅ `M = N

Table 2. Structural rules.

With these conditions on EF we can prove the following:

Theorem 1. If P ≡ Q from the structural laws in Table 2 then P ∼ Q.

Bisimilarity is preserved by all operators except input. Interestingly, the reason
that it is not preserved by input is not the same as in the ordinary pi-calculus. Let
a 6= b and consider the agent P = if a = b then P ′ else 0; in the ordinary pi-
calculus (where this if is represented by a match) we have P ∼ 0 and c (a).P 6∼
c (a).0, since the input may instantiate a to b. But in our framework we do
not have that P ∼ 0. The reason is that a frame can identify a and b, as in
{a/b}B P

τ−→ P ′. Instead, the counterexample is

P = (νa)(a b .0 | a (f) .0)

where f is a symbol that is not a name. Here P has no transitions because
the pattern matching will never succeed (remember that the frame is not used
when comparing the objects in a communication). So P ∼ 0. But d(b) . P can
instantiate b in P to f , so d(b) . P 6∼ d(b) .0.

Theorem 2.

1. P ∼ Q =⇒ P |R ∼ Q |R.
2. P ∼ Q =⇒ (νa)P ∼ (νa)Q.
3. P ∼ Q =⇒!P ∼ !Q.
4. P ∼ R∧Q ∼ S ⇒ if M = N then P else Q ∼ if M = N then R else S.
5. P ∼ Q =⇒M N.P ∼M N.Q.
6. (∀L̃. P [ã := L̃] ∼ Q[ã := L̃]) =⇒ M (N).P ∼M (N).Q, where ã = n(N).
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5 Further Work

Our framework for extended pi-calculi has been designed to facilitate formalisa-
tion with a theorem prover. We intend to extend our previous work [19] where
we formalised a significant part of the pi-calculus using the nominal datatype
package [21] of the interactive theorem prover Isabelle [7].

A few generalisations of the current framework will be considered. In par-
ticular, we would like to generalise the notion of a frame so that it can contain
more than just aliases. In a typed version of the applied pi-calculus [22], pro-
cesses are extended with first order logical predicates which are used to prove
correspondence assertions of cryptographic protocols. This mechanism could be
modeled by allowing the frame to include such predicates.

There are several versions of applied pi-calculi focusing on cryptographic
properties of agents, where type checking rather than bisimilarity proves a pro-
cess secure [23, 24, 22]. By typing extended pi-calculi we will include this kind of
reasoning.

We intend to add weak bisimulation to our framework. Moving from strong
early to weak early bisimilarity is usually not difficult and we do not anticipate
any problems here. We also intend to explore barbed bisimilarity.

We have given some preliminary encodings of other calculi into our frame-
work but we have not formally proved any properties about them. It would
be interesting to investigate in a formal fashion how they relate and see what
equivalences are preserved by the encodings.

Finally, we aim to give a symbolic semantics for our framework. Non-symbolic
semantics suffer from problems with exploding state spaces making it difficult
for automatic tools such as the Mobility or Concurrency Workbenches [25, 26] to
reason about them. A symbolic semantics could make use of the generalisations
mentioned above to let the frame contain conditions on symbolic values.
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