
ELSEVIER Computer Communications 19 (1996) 1151-1160

Designing a multiway synchronization protocol

Joachim Parrowap*, Peter Sj6dinbTt

aKTHiTeleinfonaatics, Electrum 204, S-164 40 Kista, Sweden

bSICS, Box 1263, S-164.28 Kista, Sweden

Abstract

A multiway synchronization protocol makes it possible for several processes to synchronize in an environment where communication is
asynchronous. We present the design of such a protocol. The design methodology is based on formulating the behaviour of the entities as
transition systems. This admits a correctness proof: we show that the protocol is correct relatively an ‘ideal’ non-distributed algorithm, in the
sense that the protocol and the ideal algorithm cannot be separated by any amount of testing. The proof method is based on cs-equivalence.

Keywords: Synchronisation protocol; Design methodology; Correctness proof

1. Introduction

A multiway synchronization is a mechanism that allows
multiple parallel processes in a distributed environment to
communicate and coordinate their actions in a synchronous
way. Consider, for example, a distributed database where
data are replicated over several processes. In order to
guarantee that different processes have a consistent view
of the contents of the database, they need to synchronize
their interactions, e.g. several processes may not update the
same database item at the same time. Multiway synchroni-
zation was introduced in Hoare’s CSP [11, and has there-
after been used as a programming construct in several other
languages (2-61.

The purpose of a multiway synchronization protocol is
to implement multiway synchronizations in an environment
providing only binary, asynchronous communication where
messages arrive after a finite but unpredictable delay. This
paper presents such a protocol, focusing on the high level
design methodology and on the verification that no mistakes
have been made in the design.

In order to describe and reason about the entities in our
protocols, we shall present them as transition systems. This
means that we define the states that can be reached when the
entities execute, and the possible transitions between states.
Such systems can be represented as directed graphs, where
the nodes are states and the edges are transitions. They

* Emaik joachim@it.kth.se
+ peter@ics.se

0140-3664/96/$15.00 8 1996 Elsevier Science B.V. All rights reserved
HI: SO140-3664(96)01149-8

admit precise definitions of behaviours on a high level of
abstraction and general conclusions about the design, such
as deadlock freedom or conformance with intended
behaviour, before considering problems related to low-
level implementation. Several specification languages such
as LOTOS [7], SDL [8] and Statecharts [9] employ this idea,
and have automated tools for checking some of the correct-
ness properties. The protocol in the present paper can
easily be formulated in any of these languages but we
found it more straightforward to work directly with transi-
tion systems. Our correctness proof that the protocol works
well with an arbitrary number of participating processes
is beyond automatic verification in the available tools.

A multiway synchronization protocol communicates
with several client processes, each of which is prepared to
participate in a subset of the predefined multiway synchro-
nization actions. The task of the protocol is to select one
such action for execution. Our design approach is to begin
with an almost trivial, ideal, protocol that can always
schedule any enabled multiway synchronization. This is
formulated as a single transition system; we do not require
that it is distributed over a network. Although the ideal
protocol is therefore inapplicable in an asynchronous dis-
tributed environment, its behaviour serves as a reference for
other, more involved solutions. We will proceed to give a
distributed multiway synchronization protocol where it is
assumed that processes can only communicate asynchro-
nously. Again, this solution is formulated using transition
systems. We thus have two solutions to the same problem:
one ideal (and, hopefully, self-evidently correct) but

1152 J. Parrow, P. SjiidinlComputer Communications 19 (19%) 1151-1160

inapplicable; and one more complex but implementable.
Our verification effort is to show that the two solutions
are indistinguishable from the point of view of the clients.
Therefore, if the simpler solution is correct, so is the com-
plicated solution.

The transition systems will contain nondeterminism, in
the sense that if it is possible to schedule several actions then
there will be one transition corresponding to each choice.
The verification shows that no such possibility is lost, or an
additional (and faulty) one is gained, in the distributed
implementation. Of course, this will not rule out inadmissi-
ble behaviour on account of low-level design decisions
involving, e.g. the mechanism choosing between several
enabled decisions, or the mechanism for allocating memory
and processor capacity. The verification merely says that in
going from the ideal to the distributed solution we do not
introduce any design errors.

In an earlier paper [lo] we have used the same design
method; the present paper is different in that the distributed
protocol uses less communication overhead, and in that the
exposition is less technical. Many published verifications
of multiway synchronization algorithms assert that an algo-
rithm satisfies certain correctness properties [4, 11-151; our
verification methods yields a more general result: all pro-
perties of the ideal protocol, formulated in terms of
communication events with the clients, are also properties
of the distributed protocol.

The following section explains in more detail what we
mean by multiway synchronization. Section 3 gives a des-
cription of the ideal multiway synchronization protocol. We
proceed by presenting the distributed algorithm in Section 4,
and then explain our verification method in Section 5,
followed by an outline of the correctness proof. Section 6
concludes the paper.

2. A model of multiway synchronization

We assume that there are n processes, in the following
called client processes, communicating over a communi-

>
Communication Network

Fig. 1. System model: a set of client processes (1 to 5) communicating

over a network.

Multiway Synchronization Protocol
I

Fig. 2. Model of communication between client processes and the MSP.

cation network providing asynchronous point-to-point
connections (see Fig. 1). Thus, messages will arrive after
an unknown and variable delay, and the network never
loses messages.

We further assume that there are several multiway
synchronization actions, denoted a, b, in which client
processes may wish to engage. Each such action a involves
a fixed subset P(u) of the client processes, all of which
must agree to participate for the action to take place. For
example, we may have three actions a, b and c with

F(u)= (1,2} P(b)= {2,4,5) P(c)= (1,2,3,4,5}.

So action a will happen only if client processes 1 and 2
agree to do so, b will happen only if client processes 2, 4
and 5 agree, and c if all client processes agree. The different
actions compete for resources at the client processes, and
therefore each client process can only engage in one action
at a time. So in this example only one action can take place,
because the participation of client process 2 is required in
all three actions.

For a given client process i, at any given moment there is
a set of actions in which it is prepared to participate. This set
may vary over time. For example, client process 2 may first
want to do only action a, refusing to participate in b or c.
When a has been completed, client process 2 may change
state and be prepared to do either b or c. In this way a client
process can be thought of as a transition system where the

actions label the edges:
The multiway synchronization problem is to design a

part of the communication network, called the Multiway
Synchronization Protocol (MSP), communicating with the
client processes and helping them to achieve the multiway
synchronization actions. The client processes will tell the
MSP in which actions they are prepared to participate; based

.I. Parrow, P. SjiidinlComputer Communications 19 (1996) 1151-1160 1153

Table 1 3. An ideal MSP
State variables of the ideal MSP

RQ A set of pending requests from client processes. A request is a
pair (i, a), where i E P(a), and means that process i has said that
it is prepared to engage in action a.

CF A set of requests which should be granted because the corres-
ponding actions have been selected by the MSP. If (i, a) E CF
then it behooves the MSP to notify process i, along confi, that the
action a has been scheduled.

A top-down design of an MSP might begin by listing all
properties that the MSP should possess, perhaps formulated
in a (temporal) logic over the communication events reqi
and co&, but that turns out to be a complicated task. It is
difficult to be certain that no property has been forgotten.
Instead, we will formulate an ideal MSP to act as a reference
for all implementations. The idea behind the ideal MSP is
that it functions in the best possible way: it is always
prepared to receive requests from client processes, and it
can schedule any action to which all participants have
agreed. But it exhibits no internal structure in the form of
different entities distributed over a network. Therefore, it
is not applicable in a distributed environment, where differ-
ent clients may reside at different places. Fortunately, it
is possible to give distributed implementations that behave
in exactly the same way as the ideal MSP. This fact, together
with the simplicity of the ideal MSP, motivates our
approach.

on this information, the MSP will tell the client processes
which action it schedules. This action must be one to which
all processes in P(a) agree. For this to work in a distributed
system we need to impose a stability condition on client
processes: whenever a client has told the MSP that it is
offers to engage in a set of actions, it may not withdraw
that offer until an action in the set is scheduled by the MSP.
The reason is that when the MSP has informed one client
process that a is scheduled, the decision to do a cannot be
revoked by another client.

Since the network provides asynchronous communication,
we camrot rely on a global clock available to the client pro-
cesses. It is therefore meaningless to require that for an action
a all processes in P(a) execute their parts simultaneously. But
we do require consistency in the sense that if one process is
informed that a has taken place, then all processes in P(a)
will be so informed, and all these processes have actually
agreed to participate in a.

We can now make the model of the client processes more
precise. For the purposes of the MSP, each client process i
has two communication channels, called reqi and cunfi (see
Fig. 2). Along reqi, it will send to the MSP a set of action
names, namely the actions in which it is currently prepared
to participate. Along confi it will receive the action sched-
uled by the MSP. Because of the stability condition, a
request (along reqi) is valid until the next confirmation
(along conf;:). An example of the client process 2 in this
model:

Table 2
Transitions of the ideal MSP

To formulate the ideal MSP we must define the states it
can reach, and the transitions between states. A state of the
ideal MSP is determined by two parameters, or variables,

given in Table 1.
Even in the simple example of the previous section there

are 21° possible different combinations of requests, so the
corresponding ideal MSP has at least that many states.
Rather than drawing the ideal MSP as a transition graph,
we shall formulate the transitions in a table (Table 2). Here,
and in following similar tables, we group the transitions
into classes and give each class on a separate row in the
table. The tirst column gives the number of the transition
class. The ‘precondition’ column says from which states
the transitions go. The ‘event’ column says which commu-
nication (here reqi or conA), if any, is involved. The remain-
ing columns define the target state of the transitions in terms
of how it affects CF and RQ (‘-’ means that the variable is
unchanged). Free symbols in the precondition or event (like
A and i in the first row) are implicitly universally quantified
in the whole row. Thus, there is one transition in the class
for each instantiation of these symbols.

The ideal MSP has three classes of transitions. First, it
must be able to receive requests to participate in multiway
actions along reqi. Second, it must be able to schedule such
actions. Third, it must inform the processes (along confi)

Class Precondition Event RQ’ CF’

1 -3f:(i,1)ERQUCF RQU[(i,a):aEA) -

2 Vi:iEP(a)d
(i,a)ERQhl3b:(i,b)ECF

- RQ - ((i, b) : i E P(a)) CFU((i,a):iEP(a))

3 (i, a) E CP conh(a) CF - ((La))

1154

Table 3

J. Parrow, P. SjiidinlComputer Communications 19 (19%) 1151-1160

Channels for communication among ports and mediators

Channel Sender Receiver Meaning

rendyi,.

Ye&+3
“Oi,a

P-Ta.i

lmki,j(a)

COlW?liti, j

abOrti, j

Mediator i
Mediator i
Mediator i
Port a
Mediator i
Mediator i

Mediator i

Port a
Port a
Port a
Mediator i
Mediator j
Mediator j
Mediator j

Client i is ready to do action a
Action a has been scheduled
Action a could not be scheduled
Request to start negotiating action a
Request to lock mediator j for action a
Current action* has been scheduled
Current action* could not be scheduled

* The action in the last lock request from j.

of this. These classes are represented in the three rows of
the table. The first row says that a communication reqi(A),
where A is a set of actions, means that client t is prepared
to engage in any of the actions in A. As a consequence,
the requests (i, a) for all a E A will be added to RQ. A client
may only issue one set of requests at a time; it must wait
for one of the requested actions to be scheduled before it
may issue the next set of requests. Thus, this communication
is admissable as long as there are no requests from i in RQ
or CF.

The second class represents the scheduling of an action
a. This transition is internal to the MSP (so it does not
require a communication with a client), and it is available
in states where all processes in P(a) have requested the
action a, and none of them is yet scheduled for an action.
As a consequence, all requests from all those processes
are removed from RQ (ensuring that these processes cannot
simultaneously be scheduled for another action), and the
requests for a are added to CF, meaning that the MSP
will notify all processes in P(a). Finally, the third line
says that in any state where a request (i,a) is in CF, the

t -l/Mediator \

Fig. 3. The part of the distributed MSP for action a where P(a) = (1,2,3).

MSP can emit a confi(a) communication, thereby con-
firming action a to process i. That request is thereby
removed from CF to prevent it from being confirmed a
second time.

It should be obvious from this description that the ideal
MSP possesses all properties one could ever want from
any MSP. It can communicate with the client processes
except when such a communication would violate a princi-
ple behind multiway synchronization. It can schedule any
action that all involved processes have requested, and it
can schedule several (independent) actions in parallel. If
there is a choice of which action to schedule, that choice
is nondeterministic in the ideal MSP, meaning that in this
model we do not include the factors that determine the
outcome of the choice. Such factors could be that the first
request should have priority, or that a certain process or a
certain action should have priority. This must eventually
be included in any concrete implementation of an MSP,
but it permits a clearer description and more general correct-
ness proofs to delay the introduction of these factors until
they are necessary.

4. A distributed MSP

In principle, it is possible to derive an implementation
directly from the description of the ideal MSP. Such an
implementation would consist of a single, centralized pro-
cess, and might work well in a small system with few
processes and short distances, but it would be less suitable
in a large distributed environment. In particular, since this
requires that all multiway synchronizations are established
by a single process, this single process is likely to become
a communication bottleneck.

We therefore design our system so that the task of estab-
lishing multiway synchronizations is performed by a group
of cooperating processes, a distributed MSP. In the distrib-
uted MSP, scheduling of actions is negotiated in several
steps. This negotiation is carried out between two kinds of
processes: mediators and ports. There is one mediator per
client process; a mediator negotiates for actions on behalf of
its client. In a similar way, there is one port process per
action, and a port is responsible for taking the initiative to

J. Parrow, P. Sj6dinlComputer Communications 19 (1996) 1 I51 -1160 1155

Table 4
State variables of mediator i

E The set of actions client i currently has requested to engage in.
R A set of requested actions that i will forward, along ready channels, to ports.
L A set of actions that i has received lock requests for, but not yet processed.
c A set of actions that have been scheduled, and i will confhm along commit channels.
A A set of requests that i will deny, along abort channels.
W An action that is being negotiated, and i is waiting for the negotiation to complete.
c A scheduled action that will be confirmed to client i along con&

start a negotiation. Ports and mediators communicate along a
set of channels summarized in Table 3. We use the notation

ch%,, to represent a communication channel than from x
to y, where x and y can be integers or actions to signify the
corresponding mediator or port. When the channel carries a
value v from x to y it is written chan,,Jv). See Fig. 3 for an
illustration of the distributed MSP.

Mediator i receives synchronization requests from its
client process along reqi. The mediator forwards the
requests to the ports; mediator i uses channel reudyj,O to
forward requests to port a. When a port has received suffi-
ciently many requests to determine that the action is possi-
ble, it can initiate negotiation for scheduling the action.

A negotiation for an action is carried out by requesting
to lock each of the mediators involved in the action. Port a
starts a negotiation by requesting to lock mediator i by a
communication along channel query,+. If mediator i still is
prepared to participate in action a, it can accept to be locked
by a and sends in turn a lock request Zocki,j (a) to mediator j
(assuming that j is the next mediator involved in action a).
When the final mediator m accepts the lock, it sends an
indication along yes,,,0 to port a that the action has been
scheduled. Mediator m also confirms the action to the
mediator from which it received the lock request (mediator
k). This confirmation is sent along commit,,,,. A locked
mediator that receives a confirmation along a commit
channel forwards the confirmation to the mediator from

Table 5
Transitions of mediator i

which it received the lock request. This is repeated until
the confirmation reaches the mediator that sent the tirst
lock request. In addition, a mediator that learns that an
action has been scheduled confirms the action to its client
process (mediator i does this along conh).

It can happen, however, that when mediator i receives
a lock request (lockj,i(u) or query& it has already partici-
pated in some other action and therefore cannot be locked.
The mediator then informs port a that the action could not
be scheduled, through a communication along nOi,a, and
aborts the ongoing negotiation through a communication
along UbO?Ti,j* Like a confirmation, an abort signal is for-
warded between mediators until it reaches the first mediator
that sent the lock request.

Finally, while a mediator is locked it neither accepts nor
rejects to be locked for other actions - it waits for the out-
come of the ongoing negotiation before it makes any more
decisions. This means that lock requests received while
waiting are stored and processed later. But for this to
work, we must define carefully in what order mediators
can be locked. Otherwise the system may end up in a dead-
lock situation. Consider, for example, a system with two
ports a and b, and two mediators 1 and 2. Port a requests
to lock mediator 1, which accepts this and forwards the
lock request to mediator 2. At the same time, port b locks
mediator 2, which forwards the lock request to mediator 1.
Both mediators are waiting for the outcome of negotiations

Class Precondition Action C’ A’ R’ L’ E’ W’ C’

6

7

8
9

10
11
12
13
14

E=Bhc=l

aER

aELAaEEAw=l

A c = _L A j = next(i,a)

aELAaEEAw=l

Ac=IAI=nert(i,a)

aELAa4E

w = a hprev(i,a) = I

w = a Aprev(i,a) # I
aECAj=prev(i,a)

w=aAprev(i,a)=I
w=aAprev(i,a)#J_

aEAAj=prev(i,a)

cfl
Initial value

reqi (B 1
reWi, a

query,, i
Iockj,i (a)

l0cki.j (a)

Yesi..

4, (I

commitj,Ja)
COmmitj,i(a)
commiti,j (a)
aborti, i(a)
abortj,i (a)
aborti,j(a)
conh (d
-

-
-

-

-

B - B

R-[a) - -

- LU[a) -
- LU[a) -

- L-(a) -

CU[a} - -

AU(a) -
- -

CU{a] -
C-[a] -
-
- AU(a) -

A-{a) -

L - Ia) 0

L-[a) -
- 0

0
-

- -
- -

- - -

0 0 0 0 0

-

a

1

1
-

1

a

1156 J. Parrow, P. SjtidinlComputer Communications I9 (1996) 1151-1160

so none of them will respond to the second lock request, Table I

and a deadlock has occurred. Transitions of port a

Therefore, we define a total ordering relation for clients,
and require that mediators are always locked according to
that order. Thus, mediators can be thought of as forming
a directed chain of processes, where lock requests are sent
in the forward direction of the chain, and abort and commit
messages are returned in the opposite direction. Since we
use positive integers to enumerate client and mediator
processes, we can use the relation ‘ >’ (strictly greater
than) as our ordering relation. For example, mediator 1
comes before mediator 2, so both port a and b would request
to lock mediator 1 first, which would then forward one of
the lock requests to mediator 2 and delay the other. Thus,
there cannot be any deadlocks. In our description, we use
three functions on clients and their mediators: first(a) is the
client in P(a) that comes first in order; next(i,a) gives
the process in P(a) that comes after client i; and prev(i, a)
gives the client in P(u) that comes before client i. If the
value of a function is undefined, it is represented by
the symbol 1.

Class Precondition

1 - readYi,, TU{i] -
2 -nhP(a)=Thj=jirst(a) PeV9.j - true
3 n A j E P(a) Yesj.a 0 false
4 nhjEP(a) “0j.a P(a)- Ii1 false

Initial value 0 false

The transitions in class 7 say that lock requests for
actions not present in E are always rejected, by signaling
to the port along noi,, that the action cannot be scheduled,
and by moving the lock request from the L set to the A set
(for later communication along abort).

Each mediator has seven variables, described in Table 4,
and Table 5 specifies the transitions of mediator i. Transition
class 1 says that as long as a mediator does not have pending
requests from its client, a mediator is prepared to receive a
synchronization request from its client and assign the
requested actions to the R and E set of actions. The second
transition class specifies that the mediator can, for each
action in R, communicate along ready with the correspond-
ing port and then remove the action from the R set.

Transition classes 8 and 9 specify that a mediator that
is waiting for a negotiation (its w variable is not I) is
always prepared to receive a positive acknowledgement
of the action along the corresponding commit channel.
Upon reception of a commit, the mediator knows that the
scheduling is completed, and therefore clears its E and w
variables, and assigns the c variable the value of the action
(in analogy with transition class 6 above). If the mediator
is not first in the chain (transition class 9), it should forward
the acknowledgement to the previous mediator, and there-
fore also stores the action in the C set. Transition class 10
describes this forwarding of acknowledgements.

Transition classes 3 and 4 are receptions of lock requests:
3 is a lock request from a port (along a query channel), and
4 is a lock request from another mediator (along a lock
channel). A mediator is always prepared to receive a lock
request, and adds the corresponding action to the L set.

Similarly, transition classes 11,12 and 13 describe recep-
tion and forwarding of negative confirmations along abort
channels. Transition class 14, finally, defines how a media-
tor confirms an action to its client along a conf channel.

Transition classes 5 and 6 describe how mediators accept
to be locked for an action. A mediator can decide that it is
prepared to participate in an action provided that the action
is present in E, and that the mediator is not waiting for the
outcome of a negotiation or is about to confirm a scheduled
action to its client. If the mediator is not at the end of the
action chain (transition class 5), it forwards the lock request
to the next mediator. If it is at the end of the chain (transition
class 6), it signals to the port that the action has been sched-
uled (along yesi,a), moves the action from the L to the C set
(for later communication along a commit channel), and
stores it in c for confirmation to the client. In addition, the
mediator should now reject all locks (until the next request
appears from the client), and therefore clears the E variable.

The specification of a port process is much simpler. Its
state is determined by two variables, described in Table 6.
The transitions of port u are given in Table 7. Transition
class 1 specifies that a port is always prepared to receive
a ready announcement. Transition class 2 describes how a
port decides to initiate the negotiation for scheduling of
an action: if all client processes in P(u) have announced
that they are willing to do the action, and there is no ongoing
negotiation for it, then a negotiation can be started.

Transition class 3 says that when a port receives a positive
acknowledgement of an action, through a communication
along a yes channel, it ‘forgets’ all ready announcements
it has received by clearing the T variable, and then awaits
to receive new announcements. If the port receives a nega-
tive acknowledgement instead, along a 110 channel, it
restores the client processes into T except the process that
rejected the confirmation (since this process no longer is
prepared to participate in the action).

Table 6
State variables of port a

T The set of processes that have advertised that they are prepared to
do action a.

?I A flag indicating whether there is an ongoing negotiation for
action a.

Since a distributed MSP consists of port and mediator
processes running in parallel, a state of the distributed
MSP is given by the all the state variables of the ports
and mediators together. We write Ci for state variable C
of mediator i, etc. That is, for a system with II mediators
and m ports, the state is defined by the mediator variables
C1, ***, cl through C,,c., and the port variables Tl, nl

Action T’ II’

J. Parrow, P. Sj6dinlComputer Communications 19 (1996) 1151-1160 1157

through T,,,,n,. As a shorthand for this, we will represent
a state of the distributed MSP as (C,, c,, Tl, n,).

We define the parallel composition of port and mediator
processes in such a way that communications among these
processes yield internal transitions in the transition system
of the distributed MSP. That is, communications along
ready, query, lock, yes, no, abort and commit are internal
transitions to the distributed MSP, and do not involve (and
cannot be influenced by) the environment. These specifica-
tions are made in terms of synchronous communication
events along channels. Since the system being specified is
asynchronous, we specify our processes in such a way that
a process never refuses to participate in events that corres-
pond to receptions along a channel. Furthermore, a process
does not act immediately on a communication event. Instead
it stores information about the event in state variables, and
processes this information later.

5. Correctness of the distributed MSP

The distributed MSP is significantly more complex than
the ideal MSP, and it is not obvious from just studying the
specification that it actually works. But to demonstrate that
the distributed MSP is correct, we must first define what we
mean by correct, that is, we must define more precisely what
it means that the ideal and distributed MSP are indistin-
guishable from a client process’ point of view.

To obtain a method for establishing correctness, it turns
out to be convenient to formulate the correctness criteria in
terms of simulation relations between the states of the two
transition systems. In the most simple variety of simulation,
we say that a state Sr simulates another state SZ if whenever
there is a transition SZ 2 Si, there is a corresponding transi-
tion Sr ZSi such that S’, continues to simulate SL. This
implies that Sr can do all sequences of transitions that S2
can. But this simulation variety is too discriminating for our
purposes - the ideal and distributed MSPs cannot simulate
each other in this way. Consider, for example, a system with
two clients, client 1 and client 2, which request to synchro-
nize through an action a. The ideal MSP can when it
has received the two requests reql((a}) and req*({a)) do
a single internal transition and then be prepared to confirm
the action through confi(a) and confi(a). The distributed
MSP, on the other hand, must after reql({ a}) and
req2({ a}) do five internal communications (readyl,U,
ready2,., querya,l, Zockl,2 and yesa,J before it is prepared
to do conf*(a). It has to do yet another internal communica-
tion (commits,J before it can do confi(a). Because of this
difference in the amount of internal communication
between requests and cotirmations, the ideal and distribu-
ted MSP cannot simulate each other.

We therefore need a simulation relation that is less strict
with respect to internal communications. This variety is
called a weak simulation relation, written w-simulation,
which allows the simulating transition to be preceded and

succeeded by an arbitrary number of internal transitions.
More formally, a state Sr w-simulates a state S2 if when-
ever there is a transition S2 5 Sb, there is a sequence of
transitions from S1 consisting of zero or more internal tran-
sitions, followed by a, followed by zero or more internal
transition, leading toaa state S; such that Sl, w-simulates Sh.
We will write S2 *S; to represent such sequences of
actions. Furthermore, if a itself is an internal transition,
we allow S1 and S’, to be the same state.

If we could base our correctness criterion on w-simula-
tions, we would say that two transition systems are indis-
tinguishable if their initial states can w-simulate each other.
This is, however, a too weak criterion, since it does not take
non-determinism into account. Non-determinism appears
for instance in states where there are alternative internal
transitions: internal transitions can then be thought of as
representing decisions made internally by the system. For
example, a state in which a system decides whether to do
action a or action b is a state where two internal transitions
are possible, the first leading to a state where only a is
possible and the second to a state where only b is possible.
However, such a state w-simulates (and is w-simulated by)
a state in which both a and b are directly possible, that is, a
state in which the system allows its environment to control
which action should occur.

We want the ideal and distributed MSP to do their deci-
sion in the same way; a decision that is internal to one of
them should be internal also to the other. We achieve this
by requiring that some states in the two transition systems,
in addition to their initial states, are coupled to each other,
which means that the two states w-simulate each other.

The next question is: for what states do we require
coupling? The strongest requirement would be to say that
if a state Sr w-simulates a state &, then also S2 should
w-simulate Sr (the equivalence relation we then get is
Mimer’s observation equivalence [16]). This is, however,
too strong a requirement for our purposes; there exists
no such relation between the states of the ideal and the
distributed MSP. We therefore only require coupling for
states from which there are no internal transitions, that
is, states in which no internal decisions remain to resolve.
Such states are said to be stable.

We can now formulate the coupled simulation relation
(c-simulation) on states of transition systems. A coupled
simulation relation is a pair (LQ, x2) of relations where:

l Whenever Sr x1 S2 and there is a transition S, 5 Sk then
there is a state S’, and a sequence of transitions Sr %S’,
such that Si %‘r S;. Furthermore, if S2 is stable, then also

Sl x.2 s2*

l Whenever S1 !R2 S2 and there is a transition Sr LSi then
there is a state S; and a sequence of transitions S2 s S;
such that Si x2 Sk. Furthermore, if S1 is stable, then also

SlXlS2-

Finally, we say that two transition systems are coupled
simulation equivalent, or cs-equivalent, if their initial states

1158 .I. Parrow, P. SjiidinlComputer Communications 19 (1996) 1151-1160

are related by a coupled simulation relation. The cs-equiva-
lence has the property that two systems that are cs-equivalent
cannot be separated by any amount of testing [17]. For
example, they have the same deadlock properties, and the
same set of possible sequences of communication events.

The correctness criterion that the two MSPs are indis-
tinguishable by client processes then becomes: The ideal
MSP and the distributed MSP are es-equivalent.

In order to establish cs-equivalence between the two
MSPs, we formulate a coupled simulation in terms of
two functions over states of the distributed MSP:
RQ(C, ,..., c,,Tr ,..., n,) and CF(Cr ,..., c,,,Tr ,..., n,).
There is one function for each variable in the ideal MSP;
the idea is that the two functions should mimic the two state
variables of the ideal MSP. Roughly speaking, for states of
the distributed and ideal MSP that are related through the
coupled simulation, CF(Cr, . . ., c,, Tl, . . ., n,) equals CF and

RQW,,c.,Tl, . . ., n,) equals RQ.
The key to defining these functions is to identify a transi-

tion of the distributed MSP that corresponds to the internal,
second transition class of the ideal MSP - the transition by
which the ideal MSP definitely decides to schedule an
action. In the general case, we cannot pinpoint one single
transition in the distributed MSP that does this, since the
decision can be resolved gradually through a sequence of
internal transitions. Fortunately, the cs-equivalence gives us
some degree of freedom here, and we can pick any transition
after which the decision is irrevocable. For this we can
choose, for instance, the internal transition corresponding
to a communication along a yes channel. That is, we say that
the deciding transition is when the last mediator in the
chain moves the action from its L variable to its C variable
(transition class 6 in Table 5).

We formulate the two functions in the following way:

RQG . ..rc.,T~,d

={(i,u):iEP(u)huEEiA-Yj:(j>ihUECj)}

CF(C)l, c,,, TI, n,)

={(i,u):iEP(u)h(u=ciV3j:(j>iAaECj))}.

The first part of the coupled simulation relation (relation
Q), which says how the ideal MSP simulates the distrib-
uted MSP, is then straightforward:

Definition of Xl

(RQ,CFR,(G,~.,TI,%.A

if
(

RQ =RQG,cr.,Tl,G

) * ACF=CF(C1 ,..., c,,TI ,..., n,)

Note that, since the functions only depend on a subset
of the variables of the distributed MSP, a state of the ideal
MSP can simulate more than one state of the distributed
MSP. For instance, internal transitions in the distribu-
ted MSP corresponding to the forwarding of lock requests

(communications along lock channels) are simulated by
the ideal MSP remaining in the same state. For the second
simulation relation, we can use this fact to simplify the
forthcoming proof by reducing the number of states of
the distributed MSP that are covered by the relation. In
other words, for each state of the ideal MSP, it is sufficient
to find one simulating state in the distributed MSP. By
reducing the number of simulating states, we will reduce
the number of cases we need to examine in the proofs. In
addition, in this way we can again circumvent the problem
of pinpointing a decision in the distributed MSP, by
letting the simulation relation only cover states where we
know that the distributed MSP has not eliminated any poss-
ible actions. For this, we pick only those states where there
are no ongoing negotiations (i.e. no port or mediator has
outstanding lock requests), and all mediators have adver-
tised all their requests to ports (i.e. all mediators have an
empty R variable). The second simulation relation then
becomes:

Definition of Q

(RQ,WX.,W,,cn.T,, . ..vd

RQ =RQ(C,,...,c,,T,,...,n,)

if

(

A CF = CF(C1, . . ., c,, T,, n,)

Atli,a:(Ri=Li=Ai=Ci=8AWi=IA-n,) 1.

It is easy to see that the initial states of the ideal and
distributed MSP are related by x1 and R2. Thus, to show
cs-equivalence, we need to show that S1 and X2 together
form a coupled simulation relation. This proof is straight-
forward, but somewhat lengthy: for each of the transition
classes of the ideal and the distributed MSP, show that the
coupled simulation relation is preserved by the transition.
The details of the proof are omitted.

Finally, to complete a correctness proof we should show
that the distributed MSP does not have any non-terminating
internal loops, i.e. that it is free from live-locks. Absence
of live-locks is a desirable property in itself, since it guar-
antees that the MSP will always make progress. In addition,
this requirement makes sure that the second rule of the
c-simulation has effect: it guarantees that there are stable
states, and therefore some states in the two MSPs have to
be coupled.

To demonstrate that there are no potential live-locks, we
should show that the distributed MSP can only do a finite
number of internal transitions before it has to communicate
along req or conf. To do this, we formulate a well-founded
order on states of the distributed MSP. The idea here is
to assign a certain ‘weight’ to each state, and show that
each internal transition brings the distributed MSP to a
state with strictly less weight. We let the weight be a natural
number, so the decrease is always a (positive) integer
number. Furthermore, we define the weight in such a way
that it has a lower limit. These facts taken together guaran-
tee that there are no infinitely long sequences of internal

J. Parrow, P. SjdinlConputer Communications 19 (1994) 1151-1160 1159

transitions - whatever state the distributed MSP is in, it
an only do so many internal transitions as it takes to
bring its weight down to the minimum. The proof that the
weight strictly decreases is by case analysis over the indi-
vidual transition classes. The weight function is a polynomial
in number of elements in mediator and port state variables,
and in indices of mediators. The function is somewhat
involved, and we omit its presentation and the proof details.

6. Conclusions

We have presented a specification of a protocol for
multiway synchronization of processes. The algorithm is
designed for large-scale environments with many processes,
where it is not suitable to implement process synchroniza-
tion in a centralized manner. Many different algorithms
have been proposed for implementing multiway synchroni-
zation [2, 11-15, 181; the protocol presented here is an
improved version, in terms of the number of messages
needed to establish synchronization, of our previously pub-
lished algorithm [lo].

We have outlined a way of demonstrating the correctness
of the protocol, based on the cs-equivalence relation
between transition systems. As a starting point, we defined
the transition system for a simple algorithm, the ideal MSP,
and the intention is that this specification should be so
simple that it is obviously correct. We then specified our
algorithm, the distributed MSP, consisting of a set of pro-
cesses that cooperate to establish synchronizations. There-
after, we defined a relation between the states of the two
transition systems, and outlined that this relation is a
cs-equivalence relation. Thus, by showing that the behav-
iour of a complex, distributed algorithm is equivalent to
that of a simple, ideal algorithm, we can conclude that
the distributed algorithm is correct. Furthermore, to com-
plete the analysis, we show that the distributed MSP does
not have any live-locks, that is, that there are no non-
terminating internal loops. This property is desirable in
itself, but we also need to establish this since or definition
of cs-equivalence is only relevant for transition systems
without live-locks. A discussion of alternative character-
izations of cs-equivalence that apply also to transition
systems with infinite internal loops can be found in
Ref. [19].

The main difference between the behaviours of the ideal
and distributed MSP is that when there are alternative
synchronizations possible, the ideal MSP selects a synchro-
nization to schedule with a single, internal step, whereas the
distributed MSP resolves this choice gradually, through
sequences of internal transitions. This makes it impossible
to use, for instance, the popular observation equivalence
[16] as correctness criterion for our algorithm, since this
relation would require that internal decisions are resolved
in the same way in both MSPs.

There are equivalence relations that are less discriminat-

ing than weak observation equivalence with respect to inter-
nal decisions, for example testing equivalence [20] (for
systems without live-locks, cs-equivalence implies testing
equivalence). But testing equivalence has one drawback:
unlike observation equivalence and cs-equivalence, it
cannot be established through case analysis of individual
transitions, which is a proof method that is feasible even
for large transition systems. So, in summary, the advantages
of cs-equivalence are that it has a convenient proof method,
and that it is less discriminating than for example observa-
tion equivalence with respect to how internal decisions
are made.

References

[l] C.A.R. Hoare, Communicating Sequential Processes. Prentice-Hall
International, Englewood Cliffs, NJ, 1985.

[2] R.J.R. Back and R. Kurki-Suonio, Distributed cooperation with action
systems. ACM Trans. Programming Languages and Systems, lO(4)
(1988) 513-554.

[3] A. Charlesworth, The muhiway rendezvous. ACM Trans. Pmgram-
ming Languages and Systems, 9(2) (July 1987) 350-366.

[4] N. Francez, B. Hailpem and G. Taubenfeld, Script: A communication
abstraction mechanism and its verification. Science of Computer
Programming, 6(l) (January 1986) 35-88.

[5] D. Kumar, An implementation of N-party synchronixation using
tokens. Proc. 10th Int. Conf. Distributed Computing Systems,
pp. 320-327, 1990.

[6] S. Ramesh and S.L. Mehndiratta, A methodology for developing
distributed programs. IEEE Trans. Software Engineering, SE-13(8)
(August 1987) 967-976.

[7] T. Bolognesi, E. Najm and P. Tilanus, G-LOTOS: A graphical
language for concurrent systems. Computer Networks & ISDN
Systems, 26(9) (May 1994) 1101-1127.

[8] CCITT 1988, Recommendation 2.100: Specification and Description
Language SDL. Blue Book, Volume X.1.

[9] D. Harel, Statecharts: A visual formalism for complex systems.
Science of Computer Programming, 8(3) (1987) 231-274.

[lo] J. Parrow and P. Sjiidin, Multiway synchronization verified with
coupled simulation. In W.R. Cleaveland, ed., Proc. CONCUR ‘92,
vol 630 of Lecture Notes in Computer Science, pp. 518-533,
Springer-Verlag, 1992.

[ll] R. Bagrodia, Process synchronization: Design and performance
evaluation of distributed algorithms. IEEE Trans. Software Engineer-
ing, 15(9) (September 1989) 1053-1065.

[12] G.N. Buckley and A. Silberschatx, An effective implementation for
the generalized input-output constmct of CSP. ACM Trans. Program-
ming Languages and Systems, 5(2) (April 1983) 223-235.

[13] KM. Chandy and J. Misra, Parallel Program Design: a Foundation.
Addison-Wesley, Reading, MA, 1988.

[14] M. Choy and AK. Singh, Efficient implementation of synchronous
communication over asynchronous networks. J. Parallel and Dis-
tributed Computing, 26(2) (April 1995) 166-180.

[15] S. Ramesh, A new and efficient implementation of multiprocess
synchronization. In Parallel Architectures and Languages Europe,
vol 259 of Lecture Notes in Computer Science, pp. 387-401,
Springer-Verlag, 1987.

[16] R. Milner, Communication and Concurrency, Prentice Hall,
Englewood Cliffs, NJ, 1989.

[17] R.J. van Glabbeek, The linear times - branching time spectrum II.
In E. Best, ed., Proc. CONCUR ‘93, vol 715 of Lecture Notes in
Computer Science, pp. 60-80, Springer-Verlag, 1993.

[18] Y.-J. Joung and S.A. Smolka, Coordinating first-order multiparty

1160 J. Parrow, P. Sj6dinlComputer Communications 19 (1996) 1151-1160

interactions. ACM Trans. Programming Languages and Systems, STACS 94, ~01775 of Lecture Notes in Computer Science, pp. 557-
16(3) (May 1994) 954-985. 568, Springer-Verlag, 1994.

[19] J. Parrow and P. Sjiidin, The complete axiomatization of cs-con- [20] M. Hennessy, Algebraic Theory of Processes, The MIT Press,
gruence. In P. Enjalbert, E.W. Mayr and K.W. Wagner, eds., Proc. Cambridge, MA, 1988.

