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Abstract
Psi-calculi is a parametric framework for process calculi similar to
popular pi-calculus extensions such as the explicit fusion calculus,
the applied pi-calculus and the spi calculus. Remarkably, machine-
checked proofs of standard algebraic and congruence properties of
bisimilarity apply to all calculi within the framework.

Bisimulation up-to techniques are methods for reducing the
size of relations needed in bisimulation proofs. In this paper, we
show how these bisimulation proof methods can be adapted to psi-
calculi. We formalise all our definitions and theorems in Nominal
Isabelle, and show examples where the use of up to-techniques
yields drastically simplified proofs of known results. We also prove
new structural laws about the replication operator.

Categories and Subject Descriptors F.3.1 [Logics and Meanings
of Programs]: Specifying and Verifying and Reasoning about Pro-
grams; F.4.1 [Logics and Meanings of Programs]: Semantics of
Programming Languages

General Terms Languages, Theory, Verification

Keywords Bisimulation up-to, process calculus, psi-calculi, Is-
abelle, Nominal Isabelle, nominal logic

1. Introduction
Bisimilarity is a common method to establish behavioural equiva-
lence in labelled transition systems, and can be defined as follows.
Let a transition labelled α from P to P ′ be written P α−→ P ′; a
binary relation R is a bisimulation if the following diagram com-
mutes:

P R Q

α

y yα
P ′ R Q′

i.e. whenever P R Q and P α−→ P ′ there exists Q′ such that
Q

α−→ Q′ and P ′ R Q′, and symmetrically for the transitions
of Q. To establish that two agents P and Q are bisimilar, written

P ∼ Q, we must find a bisimulation R that relates them. On one
hand we want thisR to be small in order to have few transitions to
explore from the upper part. On the other hand we wantR to be large
in order to facilitate the proof of the lower part P ′ R Q′. In informal
proofs there is a tempting shortcut around this dilemma: we can
always just elide the boring parts (“the other cases are similar“). In
formal proof, however, such shortcuts requires rigorous justification.
The so called up-to techniques introduced by Milner [16] permit us
to use a small relation in the upper part (the source relation) and a
large relation in the lower part (the target relation), leading to more
efficient proofs. The contribution of the present paper is a systematic
way to define sound up-to techniques for the psi-calculi framework,
meaning that such techniques become easily available for a large
number of advanced process calculi.
Milner’s original idea is called “bisimulation up-to∼” [16], meaning
that the following diagram commutes:

P R Q

α

y yα
P ′∼ R ∼Q′

and the result is that if a relation is a bisimulation up-to ∼ then
it is included in ∼. As a consequence all known results about ∼
may be re-used when establishing the target relation. Sangiorgi [26]
develops a general theory through a notion of respectfulness to
increase the size of the target relation without increasing the size
of the source relation in a bisimulation proof. Respectfulness is
preserved by useful constructors such as union, composition and
chaining. The main point is that the soundness of elaborate up-
to techniques then follows immediately from the soundness of
smaller building blocks. These results apply to the pi-calculus,
and Hirschkoff implemented them as part of his Coq formalisation
thereof [12]. There is also a Coq formalisation by Pous of up-to
techniques for weak bisimulation that applies to calculi without
binders [25]. The notion of respectfulness has since been refined,
generalised and rebranded as compatibility by Pous [24].
Psi-calculi [5] is a family of applied process calculi that generalises
the pi-calculus in three ways. First, instead of single names, the
subjects and objects of input and output actions may be terms taken
from an arbitrary set. Second, equality tests on names are replaced
by tests of predicates called conditions, taken from an arbitrary logic.
Finally, the process syntax is extended with assertions, which can
be seen as facts about the environment in which a process executes.
The assertions of a process influence the evaluation of conditions
and the connectivity between channel terms. The environment can
change dynamically during process execution.
For every psi-calculus, the standard congruence properties and struc-
tural laws of both strong and weak bisimulation familiar from the pi-
calculus hold. These results have been formalised by Bengtson [3, 4]
in the interactive theorem prover Isabelle [19], yielding very high
confidence in the correctness of these developments.
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Since its original publication, the psi-calculi family has been ex-
tended to include advanced language features such as higher-order
data [20] and broadcast communication [6]. As extensions of psi-
calculi grow in complexity, so do the bisimulation up-to techniques
used to prove their meta-theory. In the Isabelle formalisation of
psi-calculi by Bengtson, bisimulation up-to ∼ is the most compli-
cated technique used. In broadcast psi-calculi, bisimulation up to the
transitive closure of a relation is used to prove that binders commute.
In higher-order psi-calculi, an up-to technique composed from the
transitive closure, the union with bisimilarity, and the closure under
binding sequences of a relation is used to show that higher-order
bisimilarity is preserved by the parallel operator.
Of course each new such proof technique must be proven to be
sound. Until now, these soundness proofs have been done on a
case-by-case basis. Since these up-to techniques often have many
similar elements some proof re-use would be desirable, but it is not
clear how to combine old soundness results to derive new ones in
general. This leads to duplicated effort in both the soundness proofs
themselves, and in the bisimulation proofs in lieu of more advanced
proof techniques.
We improve on this state of affairs by adopting the idea of compati-
bility mentioned above. The main difficulty in extending the results
to the psi framework is the treatment of environmental assertions.
Since the transition relation is parameterised on an assertion envi-
ronment, so is bisimulation. Two processes with exactly the same
transition behaviour need not be bisimilar, since their assertions
may have different impact on the evaluation of parallel processes.
In order to acquire a sound and compositional theory of compatible
functions, this must be taken into account.
All definitions and proofs in this paper have been formalised and
machine-checked in Nominal Isabelle [30]. The presentation here
closely follows the formalisation, while attempting to abstract away
from some of the more tedious details. Formal text in this font has
been generated by Isabelle. The reader who is interested in further
details is referred to the proof scripts, which are available online [1].
The structure of this paper is as follows. In Section 2 we will
recapitulate necessary background on the syntax, semantics and
bisimulation of psi-calculi. In Section 3 we develop bisimulation up-
to techniques for psi-calculi. In Section 4 we apply this framework
to simplify bisimulation proofs from the psi-calculi proof archives,
and to prove a new result. In Section 5 we discuss alternative ways to
build a framework for up-to techniques, and the trade-offs involved.
In Section 6 we conclude and discuss related work.

2. Psi-Calculi
The following is a quick recapitulation of the psi-calculi framework
as implemented in Isabelle/HOL-Nominal. For in-depth introduc-
tions with motivations and examples we refer the reader to [5] for
psi-calculi, and to [3] for its Isabelle formalisation.
There is a countably infinite type of atomic names name ranged over
by a, b, . . . , z. Intuitively, names are the symbols that can be scoped
and can be subject to substitution. A nominal set [10, 21] is a type
equipped with a formal notion of what it means to swap names in
an element; this leads to a notion of when a name a occurs in an
element X, written a ∈ supp X (pronounced “a is in the support of
X”). A nominal set is finitely supported if all its elements have finite
support. We write a ] X, pronounced “a is fresh for X”, for a /∈
supp X, and if A is a set or list of names we write A ]* X to mean
∀ a∈A. a ] X. In the following as, bs, . . . , zs ranges over lists of
names. The empty list is written [] and the concatenation of xs and
ys is written xs @ ys. We use the same convention for lists of other
nominal sets. A name swap is a pair of names; when applied to an
element of a nominal set it replaces all occurences of any of the two

names with the other. A sequence of name swaps is a permutation.
Let p range over permutations. p · X denotes the application of the
permutation p to the element X ; its result is to sequentially apply all
name swaps in p to X.
We say that a constant symbol X is equivariant if p · X = X for all
p. A function symbol f is equivariant if p · f X = f (p · X) for
all p, X. We say that a set X is equivariant, denoted eqvt X, if ∀ x∈X.
∀ p. p · x ∈ X.
A nominal datatype is an inductively defined datatype that is a
nominal set. Nominal Isabelle supports binding occurences of names
in such inductive definitions, with the main benefit that nominal
datatypes are automatically quotiented by alpha-conversion of bound
names. For a simple example, the lambda-calculus can be defined
as follows:

nominal datatype lam =
Var name

| App lam lam
| Abs "�name� lam"

Here �name� denotes a binding occurence of a name. Nominal Is-
abelle will automatically derive: strong induction principles that can
avoid most name clashes in induction proofs, akin to Barendregt’s
variable convention; lemmas characterising the equivariance, fresh-
ness and support of terms; and distinctness and injectivity lemmas.
Injectivity is formulated up-to alpha so that we may easily derive
e.g.

y ] T =⇒ Abs x T = Abs y ([(x, y)] · T)

A psi-calculus is defined by instantiating three nominal sets and four
operators; technically these are represented as locale parameters [2].

Definition 2.1 (Psi-calculus parameters). A psi-calculus requires
the three finitely supported nominal sets:

’t the (data) terms, ranged over by M, N
’a the assertions, ranged over by Ψ

’c the conditions, ranged over by ϕ

and the four equivariant operators:

↔ : ’t ⇒ ’t ⇒ ’c Channel Equivalence
⊗ : ’a ⇒ ’a ⇒ ’a Composition
1 : ’a Unit
` : ’a ⇒ ’c ⇒ bool Entailment

and substitution functions [as::=Ms], substituting the terms Ms for
names as, on each of ’t, ’a, and ’c.

The substitution functions can be chosen freely, but must satisfy
certain natural laws regarding the treatment of names; see [5] for
details. The binary functions above will be written in infix. Thus, M
↔ N is a condition, pronounced “M and N are channel equivalent”.
Intuitively, two terms are channel equivalent if they represent the
same communication channel. We pronounce Ψ ` ϕ as “Ψ entails
ϕ”. If Ψ and Ψ’ are assertions then so is Ψ ⊗ Ψ’, which intuitively
represents the conjunction of the information in Ψ and Ψ’.
A term is something that can be sent and received; it may also be
used as a communication channel whenever it is channel equivalent
to some term. A condition is a test that agents may perform. An
assertion is a fact about the environment that agents run in; it influ-
ences the evaluation of conditions through the entailment relation,
and influences the communication topology through channel equiv-
alence. The assertion environment is dynamic and may change as
processes execute.
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We say that two assertions are statically equivalent, written Ψ '
Ψ’ if they entail the same conditions, i.e. for all ϕ we have that Ψ
` ϕ iff Ψ’ ` ϕ.
We impose certain restrictions on the choice of parameters:

Definition 2.2 (Requisites on psi-calculi parameters). The parame-
ters of a psi-calculus must be chosen so that they satisfy:

1. (Symmetry) Ψ ` M ↔ N =⇒ Ψ ` N ↔ M

2. (Transitivity) [[Ψ ` M ↔ N; Ψ ` N ↔ L ]] =⇒ Ψ ` M ↔ L

3. (Compositionality) Ψ ' Ψ’ =⇒ Ψ ⊗ Ψ’’ ' Ψ’ ⊗ Ψ’’

4. (Identity) Ψ ⊗ 1 ' Ψ

5. (Associativity) (Ψ ⊗ Ψ’) ⊗ Ψ’’ ' Ψ ⊗ Ψ’ ⊗ Ψ’’

6. (Commutativity) Ψ ⊗ Ψ’ ' Ψ’ ⊗ Ψ

These simple requisites suffice to guarantee that for all psi-calculi,
the usual congruence and structural laws about bisimulation hold.
Three properties that seem to be natural requisites turn out to be
unnecessary for this purpose, and by not insisting on them psi-calculi
gain significant expressive power. First, we do not assume reflexivity
of channel equivalence. The main consequence of this that not every
term must be a communication channel. However, since we require
associativity and commutativity, Ψ ` M ↔ K implies Ψ ` M ↔
M ; e.g. every communication channel is equivalent with itself. It
is also possible for a term to act as a communication channel in
some environments, but not others. Moreover, notice that we do
not require idempotence nor weakening of assertion composition,
i.e. there may be conditions and assertions such that Ψ ` ϕ holds,
but Ψ ⊗ Ψ’ ` ϕ or Ψ ⊗ Ψ ` ϕ do not. This means that we can
accomodate e.g. logics to represent resource use.
The names of an assertion may be scoped by the ν-binders familiar
from the pi-calculus; this can be used to make the information in
an assertion private, e.g. if Ψ contains information about a private
key k, then (νk)Ψ restricts processes outside the scope of k from
accessing this information. We refer to such scoped assertions as
frames. A frame is an assertion together with a sequence of names
that bind into it: it is of the form 〈xs, Ψ〉 where xs binds into the
assertion Ψ. We use F, G to range over frames. We overload Ψ to
also mean 〈[], Ψ〉, and ⊗ to composition on frames defined by

〈AF , ΨF 〉 ⊗ 〈AG, ΨG〉 = 〈(AF @ AG), ΨF ⊗ ΨG〉

where AF ]* AG, AF ]* ΨG and AG ]* ΨF . We write (νx)(〈xs,
Ψ〉) to mean 〈(x · xs), Ψ〉.
We extend static equivalence to frames by letting F ` ϕ iff

∃ AF ΨF . F = 〈AF , ΨF 〉 ∧ AF ]* ϕ ∧ ΨF ` ϕ

We also define F ' G to mean that for all ϕ it holds that F ` ϕ =

G ` ϕ. Intuitively a condition is entailed by a frame if it is entailed
by the assertion and does not contain any names bound by the frame,
and two frames are equivalent if they entail the same conditions.

Definition 2.3 (Psi-calculus agents). Given psi-calculus parameters
as in Definition 2.1, the agents (’t, ’a, ’c) psi, ranged over
by P, Q, . . ., are defined inductively as a nominal datatype with
constructors:

0 Nil
M N.P Output
M(λxs)N.P Input
P ‖ Q Parallel
(|Ψ|) Assertion
Cases Cs Case
(νa)P Restriction
!P Replication

Here Cs is of type (’c × (’t, ’a, ’c) psi) list.
(νa)P binds a in P and input M(λxs)N.P binds xs in both N and P.
An occurrence of a subterm in an agent is guarded if it is a proper
subterm of an input or output term. An agent P is assertion guarded,
denoted guarded P, if it contains no unguarded assertions. An agent
is well-formed if in M(λxs)N.P it holds that xs is a sequence
without duplicates, that in a replication !P the agent P is assertion
guarded, and that in Cases [(ϕ0,P0), . . .,(ϕn,Pn)], the agents
P i are assertion guarded for all i ≤ n.

In pen-and-paper reasoning, we normally only consider well-formed
agents. In the Isabelle formalisation we admit ill-formed agents in
the sense that they inhabit the type (’t, ’a, ’c) psi ; this is not a
problem since the operational semantics will be defined so that we
cannot derive transitions from ill-formed agents.
The case statement is a form of non-deterministic guarded choice.
Its semantics is that Cases Cs may act as any process P such that
(ϕ, P) ∈ Cs and ϕ holds in the current assertion environment.
Otherwise, the process constructs are standard.
In the literature, the parallel operator is often denoted | instead —
here we use a different notation because ‖ results in less ambiguous
Isabelle syntax.

The frame F P of an agent P is defined inductively as follows:

F (0) = 1
F M(λxs)N.P = 1

F M N.P = 1
F (Cases Cs) = 1

F (P ‖ Q) = F P ⊗ F Q

F ((|Ψ|)) = Ψ
F ((νx)P) = (νx)F P

F (!P) = 1

Intuitively, its assertion component is the composition of all un-
guarded assertions of P, and its binders are the top-level binders of
P. Note that we do not admit unguarded assertions in replication and
case statements, so their frames are always 1. The motivation for
this design choice is discussed in [14, pp. 60-61].
The actions ranged over by α, β are of the following three kinds:
Output M (νxs)N , input M N , and silent τ . Here we refer to M as
the subject and N as the object. We define bn α as follows:

bn (M N) = []

bn (M (νxs)N) = xs
bn (τ) = []

As in the pi-calculus, the output M (νxs)N represents an action
sending N along M and opening the scopes of the names xs. Note
that the names xs are not binding in M (νxs)N ; thus M (ν[a])N
and M (ν[b])([(a, b)] · N) are different actions. However, they are
binding when they occur in a transition:

Definition 2.4 (Transitions). A transition is written Ψ � P
α−→ P ′,

where bn α binds into both P’ and the object of α. meaning that in
the environment Ψ, P can do α to become P ′. The transitions are
defined in Figure 1.

The semantics of Figure 1 closely follows the labelled semantics
of the pi-calculus, with some additional complexity introduced to
account for assertions occurring as agents.
For an example, the premise in the PAR rule intuitively requires that
the transition from P can be derived in the frame of Q, because Q

may contain assertions that influence the evaluation of conditions oc-
curring in P. Analogously, the COM rule requires that the transitions
from P and Q can be derived in each others’ frames, and that the
channels on which they send and receive are equivalent in the frame
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Ψ ` M ↔ K

distinct xs set xs ⊆ supp N |xs| = |Ts|

Ψ � M(λxs)N.P
K N [xs::=Ts]−−−−−−−−−→ P [xs::=Ts]

IN

Ψ ` M ↔ K

Ψ � M N.P
KN−−−→ P

OUT

Ψ � P
α−→ P

(ϕ, P) ∈ Cs Ψ ` ϕ guarded P

Ψ � Cases Cs
α−→ P

CASE

Ψ ⊗ ΨQ � P
α−→ P ′ bn α ]* Q

F Q = 〈AQ, ΨQ〉 AQ ]* (Ψ, P, α)

Ψ � P ‖ Q α−→ P ′ ‖ Q
PAR

Ψ ⊗ ΨQ � P
M N−−−→ P ′

Ψ ⊗ ΨP � Q
K (νxs)N−−−−−−−→ Q′

Ψ ⊗ ΨP ⊗ ΨQ ` M ↔ K

xs ]* P F P = 〈AP , ΨP 〉 F Q = 〈AQ, ΨQ〉
AP ]* (Ψ, P, Q, M, AQ) AQ ]* (Ψ, P, Q, K)

Ψ � P ‖ Q τ−→ (νxs)(P ′ ‖ Q′)
COM

Ψ � P ‖ !P
α−→ P guarded P

Ψ � !P
α−→ P

REP

Ψ � P
α−→ P ′ x ] Ψ x ] α

Ψ � (νx)P
α−→ (νx)P ′

RES

Ψ � P
M (ν(xs @ ys))N−−−−−−−−−−−−−→ P ′ x ∈ supp N

x ] Ψ x ] M x ] xs x ] ys

Ψ � (νx)P
M (ν(xs @ [x] @ ys))N−−−−−−−−−−−−−−−−−→ P ′

OPEN

Figure 1. Structured operational semantics. Symmetric versions of
COM and PAR are elided.

of P ‖ Q. The somewhat intimidating freshness conditions serve to
guarantee that ΨP and ΨQ are sufficiently fresh representatives of
these frames. As in the pi-calculus, processes may tell each other
secrets: a process may send messages containing restricted names to
outside their scope. This extrudes the scope, so that it encapsulates
also the receiver of the message; in the COM rule these are the names
xs.
The OPEN rule may look intimidating, but on closer inspection it is
essentially the same as in the pi-calculus. It says that if the agent P
can send a message containing the name x on a channel that does
not contain x, then so can (νx)P. This opens the scope of x, so that
it may eventually be closed by the COM rule. In the conclusion,
the name x may be inserted anywhere in the sequence xs @ ys of
opened names. If we insist that x always goes at the front of the
sequence, we lose an important algebraic law: (νx)((νy)P) and
(νy)((νx)P) may exhibit transitions with different labels.
Let R,S range over ternary relations on assertions and pairs of
agents, i.e. an element of R is of kind (Ψ, P, Q).

Definition 2.5 (Simulation). We say that P simulates Q in Ψ to R,
written Ψ � P ;[R] Q, if for all α, Q’ such that Ψ � Q

α−→ Q′,
bn α ]* Ψ and bn α ]* P it holds that

∃ P’. Ψ � P
α−→ P ′ ∧ (Ψ, P’, Q’) ∈ R

Definition 2.6 (Strong bisimulation). A relation R is a strong
bisimulation if (Ψ, P, Q) ∈ R implies

1. Static equivalence: F P ⊗ Ψ ' F Q ⊗ Ψ

2. Symmetry: (Ψ, Q, P) ∈ R; and

3. Extension of arbitrary assertion: ∀Ψ’. (Ψ ⊗ Ψ’, P, Q) ∈
R; and

4. Simulation: Ψ � P ;[R] Q

Bisimilarity, denoted ∼, is the largest bisimulation relation. We
abbreviate (Ψ,P,Q) ∈ ∼ as Ψ � P ∼ Q, and write P ∼ Q for 1

� P ∼ Q.

We give the intuition behind the clauses in reverse order. The
simulation clause is the same as in the pi-calculus, with freshness
conditions in the definition of simulation to ensure that the choice
of concrete representatives for the bound names of α does not
impact the derivation of the matching transition in Q. Extension
of arbitrary assertion represents changes in the environment caused
by some external process; intuitively it means that bisimilarity must
be preserved by all possible changes to the environment. Without
this requisite, bisimilarity is not preserved by the parallel operator.
The symmetry clause is simply a convenience that lets us avoid
having two simulation clauses. Finally, static equivalence states that
two bisimilar processes must have equivalent frames; intuitively this
means that their impact on the behaviour of other processes must be
the same.
We say that a relation is statically equivalent if it satisfies the
static equivalence clause of Definition 2.6, and that a relation is
extensible if it satisfies the extension of arbitrary assertion clause of
Definition 2.6.
The following are some of the congruence properties and algebraic
laws of ∼ proved in [5]:

Theorem 2.1 (Congruence properties of ∼).

1. Ψ � P ∼ Q =⇒ Ψ � M N.P ∼ M N.Q

2. [[Ψ � P ∼ Q; x ] Ψ]] =⇒ Ψ � (νx)P ∼ (νx)Q

3. Ψ � P ∼ Q =⇒ Ψ � P ‖ R ∼ Q ‖ R

4. [[Ψ � P ∼ Q; guarded P; guarded Q ]] =⇒ Ψ � !P ∼ !Q

Bisimulation is not preserved by input, for the same reasons as
in the pi-calculus. It is preserved by case, but we elide the exact
formulation of this result since the details are unimportant.

Theorem 2.2 (Structural laws of ∼).

1. Ψ � P ∼ P

2. Ψ � P ∼ Q =⇒ Ψ � Q ∼ P

3. [[Ψ � P ∼ Q; Ψ � Q ∼ R ]] =⇒ Ψ � P ∼ R

4. Ψ � P ‖ Q ∼ Q ‖ P

5. Ψ � P ‖ Q ‖ R ∼ P ‖ (Q ‖ R)

6. Ψ � P ‖ 0 ∼ P

7. Ψ � (νx)((νy)P) ∼ (νy)((νx)P)

8. x ] P =⇒ Ψ � (νx)(P ‖ Q) ∼ P ‖ (νx)Q

9. guarded P =⇒ Ψ � !P ∼ P ‖ !P

As usual in name-passing calculi, we may obtain a congruence
relation that is contained in bisimilarity, called simply strong con-
gruence, by closing bisimilarity under all substitution sequences.
The usual approach to proving that two processes P, Q are strongly
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congruent is to exhibit a bisimulation relation such that for all sub-
stitutions σ it contains the pair ((Pσ, Qσ)); in such cases the up-to
techniques introduced in this paper can be used to aid congruence
proofs also. We will not use strong congruence in this paper: it is of
scant interest from an up-to techniques perspective, since it is not
defined coinductively.

3. Up-To techniques
In this section — or more precisely, in Section 3.2 — we develop
bisimulation up-to techniques for psi-calculi. Before that, we begin
by recapitulating the general theory of compatible functions on
arbitrary complete lattices in Section 3.1.

3.1 Up-To Techniques and Complete Lattices

Pous [24] discovered that many of the basic ingredients of up-to
techniques can be developed in a setting that abstracts away from
bisimulation, and instead considers arbitrary coinductive objects,
taking the view that a coinductive object is the greatest fixed point
of a monotone function on a complete lattice. This is useful for our
purposes since bisimulation for psi-calculi is different from standard
LTS bisimulation, yet we may still reuse these foundations without
making any particular adaptations for psi-calculi.
In this section, let f, g, b range over functions of type ’l ⇒ ’l,
where ’l is a complete lattice. We say that a function f is b-
compatible if f ◦ b ≤ b ◦ f. We write mono f to mean that f
is monotonic, and gfp f for the greatest fixed point of f.
The following two lemmas are due to Pous; we contribute their
Isabelle implementation. First, we show that compatibility yields
sound up-to techniques, in the sense that in order to prove something
about gfp b, it suffices that we can prove it about gfp (b ◦ f) for
some b -compatible f.

Lemma 3.1 (Soundness of compatible functions).
[[mono f; mono b; f ◦ b ≤ b ◦ f ]] =⇒ gfp (b ◦ f) ≤ gfp

b

The main benefit of compatibility is that it has nice compositionality
properties. Already in this very abstract setting we can show that
compatibility is preserved by function composition and supremum.
We can also show that the identity function, and the constant func-
tions that always return some post-fixed point of b, are compatible.

Lemma 3.2 (Compatible functions).

1. [[mono f; mono g; mono b; f ◦ b ≤ b ◦ f; g ◦ b ≤ b ◦
g ]] =⇒ f ◦ g ◦ b ≤ b ◦ (f ◦ g)

2. [[mono b;
∧
f. f ∈ F =⇒ f ◦ b ≤ b ◦ f ]] =⇒

⊔
F ◦ b

≤ b ◦
⊔

F

3. mono b =⇒ id ◦ b ≤ b ◦ id

4. [[mono b; c ≤ b c ]] =⇒ (λx. c) ◦ b ≤ b ◦ (λx. c)

3.2 Up-To Techniques for Psi-Calculi

Recall that R,S range over ternary relations on assertions and pairs
of agents. Adopting the terminology of Sangiorgi [26], we will use
f, g to range over endofunctions on such relations, which we will
call first-order functions. A ranges over sets of first-order functions.
Functions that have first-order functions as both arguments and
return values will be called constructors.
We define extended simulation, which intuitively is a simulation step
followed by an extension of the environment:

Definition 3.1 (Extended simulation). We say that P simulates and
extends Q in Ψ to R, written Ψ � P ;[R]ext Q, if for all α, Q’
such that Ψ � Q

α−→ Q′, bn α ]* Ψ and bn α ]* P it holds that

∃ P’. Ψ � P
α−→ P ′ ∧ (Ψ, P’, Q’) ∈ R ∧ (∀Ψ’. (Ψ ⊗

Ψ’, P’, Q’) ∈ R)

In the definition of extended simulation, we could do without
the conjunct (Ψ, P’, Q’) ∈ R since up-to static equivalence,
its effect can be obtained by extending with the unit assertion.
We include it for convenience — it ensures that every extended
simulation is also a simulation so that results about simulation can
be easily lifted, and also serves to make the definition workable
when not reasoning up-to static equivalence.
A foundation for bisimulation up-to techniques for psi-calculi is ob-
tained immediately by instantiating the function b from Section 3.1
with a functional of bisimilarity, i.e. a function whose greatest fixed
point is ∼. There are in fact several sensible candidates, leading to
different trade-offs between what compatible functions are admit-
ted and what proof obligations arise in bisimulation proofs, as we
discuss in Section 5.
Our preference is for the functional B:

Definition 3.2. The bisimilarity functional B is defined in Isabelle
as follows:

definition B :: "(’a × (’t, ’a, ’c) psi × (’t, ’a, ’c)
psi) set ⇒ (’a × (’t, ’a, ’c) psi × (’t, ’a, ’c) psi)
set"
where "B R = {(Ψ,P,Q) | Ψ P Q.
F P ⊗ Ψ ' F Q ⊗ Ψ ∧
Ψ � P ;[R]ext Q ∧
Ψ � Q ;[R−1]ext P ∧
(∀Ψ’. (Ψ ⊗ Ψ’, P, Q) ∈ R)}"

Intuitively, if R ⊆ B S then playing one round of the bisimulation
game from a triple in R leads to a triple in S ; in particular we
have that if R ⊆ B R, then the symmetric closure of R is a
bisimulation relation. There are two differences between B and
the functional (implicitly) used in Definition 2.6: first, we use a
second simulation clause for transitions from Q, rather than insist on
symmetry. This allows us to use smaller candidate relations in proofs,
and allows for up-to techniques that do not necessarily preserve
symmetry. The second is that we use extended simulation instead
of simulation; this slightly stronger requirement appears necessary
to prove B-compatibility of parallel contexts; we will explain the
details in Section 3.3. Our experience is that the added difficulty of
proving extended simulation as opposed to simulation is negligable
in practice. From this point onward, we will use compatible to
abbreviate B-compatible.
First, some sanity checks on B are in order:

Lemma 3.3.

1. mono B
2. gfp B = ∼
3. compatible B
4. eqvt R =⇒ eqvt (B R)

We introduce a few useful functions and constructors. We will use
the identity function id ; the inverse function _−1; the constant
functions U and X that map every relation to bisimilarity and the
identity relation, respectively; the transitive closure _? of a relation;
and the closure E of a relation under static equivalence. The main
reason compatibility is attractive is that compatible functions can
be combined to form more complex functions which are themselves
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compatible, using important constructors such as composition o,
supremum

⊔
and chaining _.

Definition 3.3 (Functions and constructors).

1. R−1 = {(Ψ,P,Q)| (Ψ,Q,P) ∈ R}
2. U R = (λ x. ∼)
3. P R = {(Ψ,P,Q)| ∃ p. (p ·Ψ,p ·P,p ·Q) ∈ R}
4. E R = {(Ψ,P,Q)| ∃ Ψ’. Ψ’ ' Ψ ∧ (Ψ’,P,Q) ∈ R}
5. X R = {(Ψ,P,P)| True}

Definition 3.4 (Transitive closure). The transitive closure R? of a
relation R is inductively defined by the rules

(Ψ, P, Q) ∈ R
(Ψ, P, Q) ∈ R?

(Ψ, P, Q) ∈ R? (Ψ, Q, R) ∈ R
(Ψ, P, R) ∈ R?

Definition 3.5 (Chaining). The chaining _ of two compatible
functions is defined as

(f _ g) R = {(Ψ, P, Q) | ∃ P’. (Ψ, P, P’) ∈ f R ∧
(Ψ, P’, Q) ∈ g R}

Most of the above are straightforward adaptations of functions that
occur frequently in the up-to techniques literature. P is the nominal
logic analogue of Sangiorgi’s up-to injective substitutions [26]; it
has the very useful property that eqvt (P R) for all R, meaning
that it lets us reason up-to alpha in the lower parts of bisimulation
diagrams even if we use a non-equivariant relation in the upper
part. The main novelty is E , which is very useful since bisimulation
proofs in psi-calculi often rely on being able to rewrite the frame
modulo static equivalence. Note that in a pi-calculus setting, E would
collapse to the identity function.
All these functions can be used to build compatible functions, but
not all possible combinations yield compatible functions. For an
example, the chaining function does not preserve compatibility, but

compatible ((P ◦ f) _ (P ◦ g))

holds if f and g are compatible and monotonic. When a large com-
patible function is constructed by composing many smaller func-
tions, the function will quickly become cluttered with many such
occurences of auxiliary functions: necessary to prove compatibility,
but usually not needed in bisimulation proofs. These become un-
wieldy and annoying to work with. For an example, suppose that in a
bisimulation proof we need to close under static equivalence on the
left before chaining, but we do not need the closure under permuta-
tions. E is not compatible, but E ◦ P is. Applying this and the above
fact about _ yields the compatible function (P ◦ E ◦ P) _ (P
◦ id). With some manual effort we may simplify this to (E ◦ P)
_ P, but what we really wanted was E _ id. In order to avoid
such tedium, we will be primarily interested in quasi-compatibility
rather than compatibility:

Definition 3.6 (Quasi-compatibility). A first-order function f is
quasi-compatible, written qcompatible f, if

∃ g. compatible g ∧ mono g ∧ f ≤ g

In other words, a function is quasi-compatible if it is included in a
compatible monotonic function. Quasi-compatibility has the same
nice compositionality properties as compatibility, but without the
clutter:

Lemma 3.4. X , E , P , _−1, U , id and _? are monotonic and quasi-
compatible functions. If f, g are quasi-compatible and monotonic,

(Ψ, P, Q) ∈ R

qcompatible f
∧

Ψ P Q.
(Ψ, P, Q) ∈ R

F P ⊗ Ψ ' F Q ⊗ Ψ∧
Ψ Ψ’ P Q.

(Ψ, P, Q) ∈ R
(Ψ ⊗ Ψ’, P, Q) ∈ f R∧

Ψ P Q.
(Ψ, P, Q) ∈ R

Ψ � P ;[f R]ext Q∧
Ψ P Q.

(Ψ, P, Q) ∈ R
Ψ � Q ;[(f R)−1]ext P

Ψ � P ∼ Q

Figure 2. Manually derived coinduction rule for bisimilarity up-to
quasi-compatible functions.

then so is f ◦ g and f _ g. If all f ∈ F are quasi-compatible then
so is

⊔
F.

Similar refined notions of compatibility can be found in the liter-
ature. Pous [24] applies up-to techniques to compatible functions
themselves, yielding a notion of “compatibility up-to“ that can be
used to achieve similar aims. Hur et al. [13] have a construct called
the largest compatible function, which is denoted † and defined as
the join of all compatible functions. The connection with quasi-
compatibility is that a function f is quasi-compatible iff f ≤ †.
However, Hur et al. do not discuss applying † to justify the use of
not-quite-compatible functions; rather † is applied to facilitate coin-
ductive proofs in an incremental style, where no a priori commitment
to e.g. a particular choice of compatible function is necessary.
The derived coinduction rule for proving bisimilarity up-to quasi-
compatible functions is shown in Figure 2. All we need to do before
we can use a particular up-to technique in a proof is to prove it
quasi-compatible, and then instantiate this rule. Even better, quasi-
compatibility proofs can usually be fully automated; registering the
clauses of Lemma 3.4 as introduction rules with Isabelle’s classical
reasoner suffices in most practical cases. For an example, deriving
Milner’s original bisimulation up-to∼ comes down to the following
one-liner:

lemma "qcompatible(U _ (id _ U))"
by blast

This compares favourably to the situation when reasoning on raw
soundness: Bengtson uses a 37 line structured proof to derive
the soundness of this technique. Further, obtaining soundness of
the minor variant U _ (λR. id R ∪ ∼) _ U is also fully
automatic for us, while Bengtson uses a 36 line proof. This illustrates
one of the major advantages of compatibility over soundness: its
compositionality properties lets us avoid wasting effort on redundant
proofs when deriving new up-to techniques.
An up-to technique that looks natural at a glance, but turns out to be
unsound, is the closure of a relation under extension, defined as

T R = {(Ψ ⊗ Ψ’, P, Q) | (Ψ, P, Q) ∈ R}

To see why, consider a psi-calculus with assertions Ψ and Ψ’

such that Ψ ` M ↔ L, Ψ ⊗ Ψ’ ` M ↔ M, and Ψ ⊗ Ψ’ ` L

↔ L but not Ψ ⊗ Ψ’ ` M ↔ L. Consider the relation R = {(Ψ,

M N.0, LN.0), (Ψ, 0, 0)}. We have that (Ψ, M N.0,

LN.0) /∈ ∼ since extending with Ψ’ yields different transition
behaviour. But since all triples in R have the same frames and out-
going transitions, we can easily show that R ⊆ B (T R) ; hence
if T is sound there is a “proof” of Ψ � M N.0 ∼ LN.0.
The ability to close a relation under contexts is a desirable proof
technique. We here consider the closure under all operators save for
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replication separately — the closure under arbitrary contexts can be
obtained by taking the transitive closure of their union.

Definition 3.7 (Closure under contexts).

1. CRes R = {(Ψ, (νxs)P, (νxs)Q) | xs ]* Ψ

∧ (Ψ, P, Q) ∈ R}
2. CPar R = {(Ψ, P ‖ R, Q ‖ R) | ∃ AR ΨR. F R = 〈AR,

ΨR〉 ∧ AR ]* Ψ ∧ AR ]* P ∧ AR ]* Q ∧ (Ψ ⊗ ΨR, P,

Q) ∈ R}
3. COut R = {(Ψ, M N.P, M N.Q) | (Ψ, P, Q) ∈ R}
4. CIn R = {(Ψ, M(λxs)N.P, M(λxs)N.Q) | ∀ Ts. |xs| =

|Ts| −→ (Ψ, P[xs::=Ts], Q[xs::=Ts]) ∈ R}
5. CCase R = {(Ψ, Cases ((ϕ, P) · CsP), Cases ((ϕ, Q)
· CsP)) | (guarded P ∧ guarded Q ∧ (Ψ, P, Q) ∈ R)
∧ (∀ϕ P. (ϕ, P) ∈ set CsP −→ guarded P)}

Theorem 3.5. All functions introduced in Definition 3.7 are mono-
tonic and quasi-compatible.

This is where quasi-compatibility leads to the most drastic sim-
plifications: the witness to the quasi-compatiblility of CPar is the
somewhat unwieldy CRes ◦ CPar ◦ E ◦ P.
A reader may wonder why CPar is not defined using the following
much simpler formulation:

CPar′ R = {(Ψ, P ‖ R, Q ‖ R) | (Ψ, P, Q) ∈ R}

First, note that while the definition of CPar is certainly more
intimidating, it is usually more helpful than CPar′ in practice: it
allows P and Q to be related by R in a more specific environment.
More importantly, CPar′ is not quasi-compatible. To see why not,
first consider the monotonic and quasi-compatible function
↑ R = {(Ψ ⊗ Ψ’, P, Q) | (Ψ, P ‖ (|Ψ′|), Q ‖ (|Ψ′|)) ∈ R}
that moves assertions occuring in the processes down to the frame.
If CPar′ is quasi-compatible, then so is ↑ ◦ CPar′ ; however, this
function is precisely the up-to extension function T , which as we
have seen is unsound. In the common special case where R is
extensible, we can recover CPar′ since we then have CPar′ R ⊆
CPar R.
We have only defined the closure under parallel contexts where the
common context occurs to the right of the ‖ operator. To obtain it to
the left instead, we may use U _ CPar _ U and the structural law
Ψ � P ‖ Q ∼ Q ‖ P. Through a similar technique we may obtain
the closure under case contexts where P and Q occur in positions
other than the first.
The quantification over substitutions in CIn is necessary for sound-
ness since bisimilarity is not preserved by input. However, note that
we need only require membership in R for such substitutions of
P and Q as may arise from the particular input prefix under con-
sideration. This constitutes an improvement over [12, 26], where a
quantification over all substitution sequences is used.
Finally we observe that bisimilarity is preserved by all quasi-
compatible functions.

Theorem 3.6. If qcompatible f, then f ∼ ⊆ ∼

As an immediate consequence, we obtain alternative proofs that
bisimilarity is preserved by restriction, parallel, output, and case: we
obsolete 400 lines of bisimulation proofs from Bengtson’s formali-
sation by simply replacing them with invocations of Theorem 3.6.
Its proof is 9 lines long.
An attentive reader may notice that we do not consider the closure
of a relation under replication. For completeness it would be nice to
also provide closure under replication contexts, but this omission is

∧
R S Ψ P Q.

(Ψ, P, Q) ∈ f R R ⊆ B S
F P ⊗ Ψ ' F Q ⊗ Ψ∧

R S Ψ P Q.
(Ψ, P, Q) ∈ f R R ⊆ B S

Ψ � P ;[f S]ext Q∧
R S Ψ P Q.

(Ψ, P, Q) ∈ f R R ⊆ B S
Ψ � Q ;[(f S)−1]ext P∧

R S Ψ Ψ’ P Q.
(Ψ, P, Q) ∈ f R R ⊆ B S

(Ψ ⊗ Ψ’, P, Q) ∈ f S
compatible f

Figure 3. Derived introduction rule for compatibility.

not very significant in practice — the most practically interesting
context closures are those for restriction and parallel composition,
since they are the only operators that occur on the right-hand side
of the transition arrow in the rules of the operational semantics.
We anticipate that a proof of its quasi-compatibility would be
tedious but not really difficult — the proof strategy would be
similar to Bengtson’s proof that replication preserves bisimilarity [4].
We currently see no potential application for bisimulation up-
to replication contexts beyond proving that replication preserves
bisimilarity; in Section 4.1 we already have a proof of this result
that is much simpler than a compatibility proof would be.

3.3 Anatomy of a Compatibility Proof

In this section we show the main ideas behind a non-trivial compat-
ibility proof: namely the one for CPar. This is currently our most
difficult compatibility proof, and will also illustrate why we believe
our use of extended simulation is necessary.
As mentioned in Section 3, the witness to the quasi-compatibility of
CPar is CRes ◦ CPar ◦ E ◦ P. We conduct compatibility proofs
with the introduction rule shown in Figure 3, derived from the
definitions of compatibility and B.
The static equivalence clause of Figure 3 is discharged with tedious
but straightforward arguments. For extension, we ignore the outer-
most CRes in order to avoid bogging down the presentation. We have
that (Ψ ⊗ ΨR, P, Q) ∈ E (P R), and wish to show that (Ψ ⊗
Ψ’, P ‖ R, Q ‖ R) ∈ CPar (E (P S)). Since we do not have
that AR ]* Ψ’, we construct a permutation p such that p · AR is
fresh for Ψ’,Ψ, P, Q, R, AR,ΨR. ByR ⊆ B S and by compatibility
of E ◦ P, we may extend to

((Ψ ⊗ ΨR) ⊗ (p · Ψ’), P, Q) ∈ E (P S)

Since P guarantees equivariance we get

((Ψ ⊗ ΨR) ⊗ (p · Ψ’), P, Q) ∈ E (P S)

E lets us rewrite the frame modulo AC:

((Ψ ⊗ (p · Ψ’)) ⊗ ΨR, P, Q) ∈ E (P S)

Since AR is fresh for Ψ ⊗ (p · Ψ’) we have

(Ψ ⊗ (p · Ψ’), P ‖ R, Q ‖ R) ∈ CPar (E (P S))

Finally, we use equivariance again to obtain

(Ψ ⊗ Ψ’, P ‖ R, Q ‖ R) ∈ CPar (E (P S))

For the simulation clauses, we elide E and P, and ignore all binders
occuring in frames and labels; the numerous intricacies that arise
from the interaction between the various binding mechanisms
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are essentially the same as those encountered when proving that
bisimulation is preserved by parallel (see e.g. [3, pp. 360-371]).
Unfolding the definition of extended simulation, we know that (Ψ

⊗ ΨR, P, Q) ∈ R and R ⊆ B S and Ψ � (νxs)(P ‖ R)
α−→

S′, and in order to conclude we must find T’ such that Ψ �

(νxs)(Q ‖ R)
α−→ T ′ and (Ψ ⊗ Ψ’, S’, T’) ∈ CRes (CPar

S). The proof is by induction on xs. The most difficult part occurs in
the base case, when the transition is inferred from a communication
between P and R. We have Ψ ⊗ ΨR � P

α−→ P ′ and Ψ ⊗ ΨP �

R
β−→ R′. From (Ψ ⊗ ΨR, P, Q) ∈ R and R ⊆ B S we

obtain Ψ ⊗ ΨR � Q
α−→ Q′ and ((Ψ ⊗ ΨR) ⊗ Ψ’’, P’, Q’)

∈ S for all Ψ’’, and by applying certain technical lemmas from [3,
pp. 360-371] we eventually obtain Ψ � Q ‖ R τ−→ Q′ ‖ R′. The
frame of R’ is the frame of R augmented with whatever assertions
became unguarded by the transition, so in other words ΨR’ ' ΨR
⊗ Ψ’’’ for some Ψ’’’. By instantiating Ψ’’ we get ((Ψ ⊗ ΨR)
⊗ Ψ’’’ ⊗ Ψ’, P’, Q’) ∈ S, and rewriting the frame module
AC we get ((Ψ ⊗ Ψ’) ⊗ ΨR’, P’, Q’) ∈ S. It follows that
(Ψ ⊗ Ψ’, P’ ‖ R’, Q’ ‖ R’) ∈ CRes (CPar S) and we may
conclude.
Therein lies the problem that we solve by introducing extended
simulation: mimicking the behaviour of a process communicating
with another process R requires taking two steps in the bisimulation
game: one step perform the transition itself, and another to extend
the environment with the new assertions added to the environment
by the transition from R. However we only have that R ⊆ B S,
so after taking one step from R to S the bisimilarity functional is
consumed and we are stuck with no way to extend. Using extended
simulation, we get around this difficulty since we may then perform
both the transition and any extension we may need with only one
application of B.

4. Examples

In this section, we apply the proof techniques introduced in Section 3
to obtain significantly shorter proofs of familiar results from the
psi-calculi literature. We also prove a new structural law about
replication.

4.1 Bisimilarity is Preserved by Replication

An Isabelle proof that bisimilarity is preserved by replication for psi-
calculi is due to Bengtson [4] — formally, the result is that if Ψ �

P ∼ Q, guarded P and guarded Q then Ψ � !P ∼ !Q. A detailed
account can be found in [3, pp. 388-391].
Bengtson’s proof uses bisimulation up-to ∼, with the candidate
relation
{(Ψ, R ‖ !P, R ‖ !Q) | Ψ � P ∼ Q ∧ guarded P ∧
guarded Q}

This means that in the simulation part of the proof, we must consider
all transitions from R ‖ !P, resulting in a transition inversion
where four cases must be analysed (transitions from R ‖ !P can be
derived via PAR, COM or their symmetric counterparts). Essentially,
this inversion re-proves a special case of the more general result
that bisimilarity is preserved by parallel composition, and seems
somewhat besides the point in a proof which is really about the
replication operator, not the parallel operator.
We support this intuition by using the techniques introduced in
Section 3 to give a simpler proof, which does not use a redundant
parallel component in the candidate relation and hence does not
feature a rule inversion at all. Our proof constitutes 63 lines of
Isabelle code; Bengtson’s constitutes 214 lines.

The idea is to pick the candidate relation
R = {(Ψ, !P, !Q) | guarded P ∧ guarded Q ∧ Ψ � P ∼ Q}

and the compatible function
f = U _ (CRes ◦ CPar) _ U
In the simulation part of the proof, we apply the following technical
lemma by Bengtson1:

Lemma 4.1. (Lemma 28.29 from [3]) If Ψ � !P
α−→ P ′, and Ψ

� P ∼ Q, and bn α ]* Ψ, and bn α ]* P, and bn α ]* Q, and
bn α ]* subject α, and guarded Q, then there exists Q’, R, T such
that Ψ � !Q

α−→ Q′, Ψ � P’ ∼ R ‖ !P, Ψ � Q’ ∼ T ‖ !Q, Ψ

� R ∼ T, supp R ⊆ supp P’ and supp T ⊆ supp Q’.

Intuitively, this lemma states that any derivative of !P can be
rewritten with ∼ to a certain normal form R ‖ !P for some R.
Moreover, if P and Q are bisimilar then Q has a derivative with
a normal form S ‖ !Q with R and S bisimilar.
After applying Lemma 4.1, all that remains is to show that (Ψ,

P’, Q’) ∈ f R, which is simply a matter of rewriting using the
structural congruence laws.

4.2 Idempotence of Replication

We show that replication is idempotent, a structural congruence
law that is new in the setting of psi-calculi, but familiar from the
pi-calculus [18, 29].

Theorem 4.2. Ψ � !!P ∼ !P

Proof. We choose R = {(Ψ, !!P, !P) | True} and f = U _

(CRes ◦ CPar) _ U .
Static equivalence and extension are trivial.
The right-to-left direction of the simulation proof goes by applying
Lemma 4.1 to obtain R such that Ψ � !P

α−→ P ′ and P’ ∼ R ‖
!P. By a simple derivation, Ψ � !!P

α−→ P ′ ‖ !!P . From there,
it remains to be shown that (Ψ, P’ ‖ !!P, P’) ∈ f R, which
follows by structural congruence.
In the left-to-right direction, an induction over the derivation of
Ψ � !!P

α−→ P ′ is used. Each case is discharged by applying
Lemma 4.1 and familiar algebraic laws.

Corollary 4.3. Ψ � !P ∼ !P ‖ !P

Proof. Ψ � !P ‖ !P ∼ !P ‖ !!P ∼ !!P ∼ !P.

The Isabelle proof of Theorem 4.2 is 310 lines long. Strikingly,
there does not appear to have been any proof of the corresponding
pi-calculus result in the literature until the publication of Sangiorgi
and Rutten’s book in 2011 [28]; it is left as an exercise to the reader
in [18, 29]. Sangiorgi and Rutten’s book uses a proof technique
similar to ours.
For a comparison of different approaches to this kind of proof, we
instead resort to Corollary 4.3, whose corresponding pi-calculus
result has been proven twice by Milner [17, 18], and once by
Sangiorgi and Walker [29].
Milner’s first proof uses the candidate relation

{(νỹ)(!P | !P | Q), (νỹ)(!P | Q) : true}.

While full details of the proof are not shown, the more complicated
relation choice would certainly entail at least an induction over the

1 Bengtson’s proof of Lemma 4.1 is 134 lines long. It is used both in our
proof and Bengtson’s proof that bisimilarity is preserved by replication; but
also in other proofs, so we include it in the line count of neither.
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length of ỹ and an inversion for each parallel operator before we
even get to the replication operators.
Milner’s second proof uses the relation {(!P | Q, !P | !P | Q) :
true} and bisimulation up-to structural congruence. Sangiorgi and
Walker’s proof instead uses the candidate relation {(!P | !P, !P ) :
true} and a choice of f which closes the relation under contexts
and structural congruence, a very similar approach to our proof of
Theorem 4.2.
The shortest of these proofs is Milner’s first proof, since it is pre-
sented in the least amount of detail. Interestingly, while Milner’s
second proof is presented at a similar level of abstraction to San-
giorgi and Walker’s, the proofs themselves are about the same length
despite the simpler relation used by the latter. We conclude that in
a pen and paper setting, the choice of up-to techniques does not
have as much impact as in a theorem prover setting. Pen and paper
proofs can often be made easier by using informal arguments such
as “the other cases are similar”, “as the reader may care to check”
et cetera in place of up-to techniques. In a theorem prover, where
every single detail must be considered, up-to techniques can provide
a much needed substitute for such shortcuts.

4.3 Encoding of Replication in Higher-Order Calculi

Higher-order psi-calculi extend psi-calculi by allowing terms to act
as handles for agents. More formally, if Ψ entails the clause M ⇐ P,
then the agent run M may act as P in Ψ, as governed by the rule

Ψ � P
α−→ P ′ Ψ ` (M ⇐ P)

Ψ � run M α−→ P ′
INV

We recall from [20] the result that under certain assumptions on the
calculus, replication can be encoded using the run construct. More
precisely:

Ψ � !P ∼ (νa)(run M ‖ (|CΨ(M ⇐ P ‖ run M)|))

Here CΨ(M ⇐ P ‖ run M), pronounced the characretistic asser-
tion of the clause M ⇐ P ‖ run M , is an assertion that entails this
particular clause but otherwise has no impact on the assertion envi-
ronment. The name a is fresh in P but not in M. For a more detailed
account we refer to [20].
While perhaps not a very surprising result, the Isabelle proof is
actually one of the longest proofs in the psi-calculi literature —
a theory file consisting of 8788 lines of code totalling 870 kB is
dedicated entirely to it. Part of the reason why this proof is so long
is the choice of candidate relation, which is the symmetric closure
of the following:

R = {(Ψ, (νxs)(Q ‖ (νa)(run M ‖ (|CΨ(M ⇐ P ‖ run M)|)
)), (νxs)(Q ‖ !P ))}

In order to avoid bogging down the presentation, the definition of
R given above is not fully formal since it omits several freshness
conditions and requisites on the characteristic assertion. Readers
interested in the gory details are referred to the Isabelle sources [1].
Focusing on the right-to-left direction of the simulation proofs, we
must follow all transitions from (νxs)(Q ‖ !P ). The first step is an
induction over the length of the binding sequence xs. In the base
case, an inversion of the transition from Q ‖ !P follows, yielding
four cases which must be analysed: PAR, COM and their symmetric
counterparts. In three of these cases, an induction over the derivation
of the transition from !P occurs, yielding five sub-cases: two each
of PAR and COM, plus REP.

Fortunately, we can significantly improve upon the situation using
bisimulation up-to techniques and the following much simpler
relation:

S = {(Ψ, (νa)(run M ‖ (|CΨ(M ⇐ P ‖ run M)|)), !P)}

The proof uses f = U _ (CRes ◦ CPar) _ U , i.e. the same
function as in previous examples. Of the steps necessary with R as
the relation choice discussed above, only the innermost induction
over the derivation from !P must now be considered. We are also
relieved of the obligation to close S under symmetry. Without
otherwise changing anything, this significantly shortens the proof
to 3263 lines and 248.6 kB, a size decrease of about 60% and 70%
respectively.

5. Alternative Formulations
In this section, we explore alternative ways to derive up-to tech-
niques for psi-calculi. Different choices of bisimilarity functional
lead to different notions of compatibility. While in general we may
choose any monotonic function f such that gfp f = ∼, not all
choices are equally good; for an example, if we use U then U-
compatibility is precisely soundness and we lose most composition-
ality properties. Below we discuss two functionals that yield more
interesting trade-offs when compared with B.
A natural choice is to use the functional whose post-fixed points are
the bisimulation relations of Definition 2.6, namely

definition B’ :: "(’a × (’t, ’a, ’c) psi × (’t, ’a, ’c)
psi) set ⇒ (’a × (’t, ’a, ’c) psi × (’t, ’a, ’c) psi)
set"
where "B’ R = {(Ψ,P,Q) | Ψ P Q.
F P ⊗ Ψ 'F F Q ⊗ Ψ ∧
Ψ � P ;[R] Q ∧
(Ψ,Q,P) ∈ R ∧
(∀Ψ’. (Ψ ⊗ Ψ’, P, Q) ∈ R)}"

We eschew this functional because neither the inverse function,
the chaining function nor the symmetric closure function are B’ -
compatible. Hence it seems too difficult to use anything but sym-
metric candidate relations with B’, whereas B handles asymmetric
relations without a hitch. It seems likely that the simulation clause
of B’ must be replaced with extended simulation in order to recover
CPar.
The following functional was suggested by Pous:

definition B’’ :: "(’a × (’t, ’a, ’c) psi × (’t, ’a, ’c)
psi) set ⇒ (’a × (’t, ’a, ’c) psi × (’t, ’a, ’c) psi)
set"
where "B’’ R = {(Ψ,P,Q) | Ψ P Q.

(∀ Ψ’.
F P ⊗ Ψ ⊗ Ψ’ 'F F Q ⊗ Ψ ⊗ Ψ’ ∧
Ψ ⊗ Ψ’ � P ;[R] Q ∧
Ψ ⊗ Ψ’ � Q ;[R−1] P)}"

This functional drops the extension clause in favour of a quantifica-
tion over all environments in the simulation and static equivalence
clauses. Its most appealing consequence is that the up-to extension
function T is quasi-B’’ -compatible. Using T we may always ex-
tend the environment after taking a transition, so we do not need to
use extended simulation. We may also often use singleton candidate
relations like {(1, P, Q)} in cases where B and B’ would require
an infinite relation, viz. the closure of {(1, P, Q)} under extension.
However, note that this decrease in relation size does not correspond
to smaller proof obligations in bisimulation proofs: because of the
∀ Ψ’ we must always chase bisimulation diagrams and prove static
equivalence in every possible environment, even when the candidate
relation only uses 1.
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A more radical alternative is to only consider candidate relations that
are equivariant and extensible, and only admit first-order functions
that preserve equivariance and extensibility. This avoids many of
the technical complications of working with non-extensible and
non-equivariant relations in compatibility proofs, at the cost of
some flexibility. T and P collapse to the identity function. Since
a bisimilarity functional for this setting would be unwieldy we
present this alternative in terms of respectfulness [26] rather than
compatibility:

Definition 5.1 (Progression). We say that R progresses to S, de-
noted R 7−→ S , if (Ψ, P, Q) ∈ R
(Ψ, P, Q) ∈ R implies Ψ � P ;[S] Q and Ψ � Q ;[S−1]

P

Definition 5.2 (Respectfulness). A function f is respectful if for all
R it holds that

1. If R is statically equivalent, then so is f R.
2. If R is equivariant and extensible, then f R is extensible.
3. f is equivariant.
4. If R ⊆ S, and R 7−→ S , and R is equivariant, and S is

equivariant, statically equivalent and extensible, then f R ⊆ f

S and f R 7−→ f S

To see the connection between compatibility and respectfulness intu-
itively, progression is to respectfulness as the bisimilarity functional
is to compatibility. We have developed a branch of our formalisation
in terms of respectfulness, and all results presented in this paper
about B-compatible functions carry over to respectful functions.
The practical difference in the difficulty of bisimulation proofs ap-
pears negligable; using respectfulness instead of B-compatibility
to prove the results in Section 4 yields proofs that are 70 rather
than 63 lines long, 3324 rather than 3249 lines long, and 314 rather
than 310 lines long. Respectfulness proofs are often easier than
compatibility proofs: many respectful functions are smaller than
their B-compatible counterparts since we do not need P. The proof
archive becomes slightly smaller, since we do not need a theory of
extended simulation.
This solution of only considering equivariant relations is similar to
Hirschkoff’s solution in [12, p. 161], where only “good” relations
are considered. A “good” relation in his setting based on de Bruijn-
indices is analogous to an equivariant relation in our nominal logic-
based setting. Hirschkoff motivates this restriction with appeals to
intuition, with remarks such as

these transformations . . . do not really have a strong signifi-
cance, since they . . . do some kind of ‘administrative work’
to keep the notation coherent. Therefore, if a pair (P,Q) of
processes belongs to a given relationR, there should be no
reason for [(p · P, p ·Q)] not to be inR.

Square brackets in the above quote demarcate a part where we
have substituted de Bruijn-index specific language for the nominal
logic analogue2. We understand and share Hirschkoff’s reasons
for considering only “good” relations, but our results indicate that
nonetheless such simplifying assumptions are not strictly necessary
if we formulate our results in terms of quasi-compatibility rather
than compatibility.
We prefer B-compatibility over respectfulness primarily because
of the added generality. While we do not currently have any
formal developments where we benefit from non-equivariant or

2 For an account of the formal relationship between de Bruijn-indices and
nominal sets see [8].

non-extensible relations, we do not doubt that they exist. For an
example where non-extensible relations help, suppose we want to
use psi-calculi to model concurrent constraint programming. We
assume a set of constraints ranged over by c, and an entailment
relation `c that is a binary relation between constraints. A constraint
is inconsistent if it entails every other constraint. If our constraint
system has atomic tell, i.e. a constraint can only be added to the
environment if doing so does not lead to inconsistency, we are
normally not interested in considering the behaviour of processes
under inconsistent stores. If we model constraints as assertions,
bisimulation in psi-calculi seems overly discriminating: it forces
us to relate the behaviour of processes in inconsistent stores even
though no such store is reachable.
One trick that lets us avoid considering inconsistent stores in
bisimulation proofs, is to let the assertions be the constraints, and let
the conditions be the constraints plus a special symbol⊥. Entailment
is then defined as follows:

c ` c′ if `c c′ and c is consistent
c ` ⊥ if c is inconsistent

If ⊥ is not in the range of the channel equivalence function, it
follows that if the store is inconsistent, there are no transitions
and everything is statically equivalent; thus c � P ∼ Q for all
inconsistent c and all P,Q.
Hence, if we work with B-compatibility and close our compatible
function under union with bisimilarity, we can use candidate rela-
tions that only contain consistent stores, since extensions that lead
to inconsistency take us into ∼. By contrast, if we work with re-
spectfulness then we must bog down our candidate relation with
inconsistent stores.

6. Conclusion
In this paper, we have adapted the bisimulation proof method of
Sangiorgi and Pous to the setting of psi-calculi in a way that accounts
for assertion environments. We have illustrated the usefulness of
this proof method by showing how it can make proofs of known
results significantly better, i.e. shorter, easier to understand and
less redundant; and used it to prove a new result. We have also
mechanised all of our definitions and theorems in Nominal Isabelle.
The better proofs are worthwhile to obtain because they make the
proofs more maintainable. Just like program code, proof scripts
require maintenance: definitions change, or new versions of Isabelle
break backwards-compatibility. For every such change, all proofs
must be re-checked, and better proofs are naturally easier to check.
The developments of Section 3 consist of approximately 3750
lines of code. Using these developments, the proofs pertaining to
the encoding of replication in higher-order psi-calculi were made
approximately 5500 lines shorter. Of course we do not wish to
imply a one-to-one correspondence between lines of code and
maintainability; nonetheless, this result is a strong indication that
our development efforts have already paid off.
For future work, we would like to apply these techniques to the
extensions of psi-calculi which can be found in the literature. So far,
these proofs have been carried out for the original formulation of
psi-calculi and higher-order psi-calculi. While we are able to use
the same proof scripts for higher-order psi-calculi after changing
just a single line of code, different compatibility proofs for the up-
to context techniques would be necessary for the extension with
broadcasts.
Bisimulation up-to techniques for weak bisimulation represents
another interesting area to explore. Soundness is more delicate for
weak bisimulation than for the strong case; for an example, weak
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bisimulation up-to weak bisimilarity is unsound. Solutions have
been proposed by Sangiorgi and Milner [27] and Pous [23, 25] that
could constitute a starting point for similar investigations in the field
of psi-calculi.
In recent work Madiot et al. [15] suggest to recover up-to techniques
for higher-order calculi by translating them to first-order transition
systems (i.e., where the transition labels do not carry binders). This
is a promising idea, but for our purposes it would only be beneficial
if the difficulty of developing up-to techniques is less than the
difficulty of (a) defining a first-order transition system, (b) proving
full abstraction and (c) deriving bisimulation up-to context in the
first-order transition system. It seems unlikely that this would hold in
the general case of psi-calculi, so we prefer our more direct approach.
Staying in a setting similar to the existing psi-calculi formalisation
also has the advantage that we may leverage the cyclopean effort
invested by Bengtson in developing infrastructure for reasoning
about it in Isabelle.
Popescu and Gunter [22] define a coinductive proof system for bisim-
ilarity that applies to transition systems in de Simone format [9],
and prove it sound and complete in Isabelle. Hence, while our work
is parametric on the term language and assertion logic, theirs is
parametric on the process syntax. The choice of de Simone as the
rule format precludes us from considering many standard features
of modern process calculi, such as pi-calculus-style restriction oper-
ators. It seems difficult to generalise their result to more expressive
settings: the soundness of the proof system relies on bisimulation
up-to context being sound, and Sangiorgi [26] has shown that this
fails to hold for many other rule formats such as tyft/tyxt, despite
bisimulation being a congruence.
Other recent work by Chaudhuri et al. [7] is devoted to a formalisa-
tion of bisimulation up-to techniques for CCS and the pi-calculus
with replication in the Abella theorem prover. The pi-calculus for-
malisation treats bound names with Abella’s built-in O quantifier for
generic judgements, i.e. Ox.P means that P holds for all x when
nothing is assumed about x. A comparison between this specifica-
tion style and Nominal Isabelle can be found in [11]; a comparative
disadvantage of Nominal Isabelle is that a notion of substitution
must be defined by the user, while it comes for free in Abella. Their
main results are: the soundness of bisimulation up-to ∼ composed
with bisimulation up-to context for CCS, and the soundness of bisim-
ulation up-to ∼ for the pi-calculus. Bisimulation up-to context for
the pi-calculus is deferred to future work, with a main hurdle be-
ing that “defining the notion of a process context in the π-calculus
is tricky, because contexts are allowed to capture free names”[7,
p. 164]. We do not know enough about Abella to understand the
precise technical difficulties involved in that setting, but in Nominal
Isabelle defining contexts is straightforward. The key insight is that
names must be treated as non-binding when occuring in a context,
but as binding once the hole has been filled. Here is how to set it
up for psi-calculi in Nominal Isabelle; for convenience we consider
only monadic contexts with parallel and restriction.

nominal datatype (’t,’a,’c) psi_context =
Hole

| Par_contextL
"(’t::fs_name,’a::fs_name,’c::fs_name) psi_context"
"(’t,’a,’c) psi"

| Par_contextR
"(’t,’a,’c) psi" "(’t,’a,’c) psi_context"

| Res_context
name "(’t,’a,’c) psi_context"

nominal primrec fill_hole ::
"(’t::fs_name,’a::fs_name,’c::fs_name) psi_context ⇒
(’t,’a,’c) psi ⇒ (’t,’a,’c) psi"

where

"fill_hole Hole P = P"
| "fill_hole (Res_context x C) P = (|νx |)(fill_hole C P)"
| "fill_hole (Par_contextL C Q) P = (fill_hole C P) ‖ Q"
| "fill_hole (Par_contextR Q C) P = Q ‖ (fill_hole C P)"

by(rule TrueI)+

Differences between settings aside, a main goal of Chaudhuri
et al. is to keep the formalisation lightweight, in the sense that
it does not start from foundations but rather builds on top of
existing infrastructure. In many ways our work is lightweight in
the same sense: we build on top of the nominal package, the
existing psi-calculi formalisation and the lattice library. We arguably
stray from this philosophy by eschewing the definitional command
for coinductive sets, instead dealing explicitly with bisimilarity
functionals and their fixed points. However, this allows us to
go beyond Chaudhuri et al. in several ways. First, we consider
compatibility whereas they only consider soundness; hence they lack
a framework for combining up-to techniques. Second, we go beyond
the pi-calculus and derive, once and for all, up-to techniques for all
pi-calculus extensions that fall within the psi-calculi framework.
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