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Abstract Psi-calculi is a parametric framework for the
extensions of pi-calculus, with arbitrary data structures and
logical assertions for facts about data. In this paper we add
primitives for broadcast communication in order to model
wireless protocols. The additions preserve the purity of
the psi-calculi semantics, and we formally prove the stan-
dard congruence and structural properties of bisimilarity. We
demonstrate the expressive power of broadcast psi-calculi by
modelling the wireless ad hoc routing protocol LUNAR and
verifying a basic reachability property.

Keywords Psi-calculus · Broadcast communication ·
Bisimulation · Ad hoc routing protocol

1 Introduction

Psi-calculi is a parametric framework for the extensions
of pi-calculus, with arbitrary data structures and logical
assertions for facts about data. In earlier papers we have
shown how psi-calculi can capture the same phenomena
as other proposed extensions of the pi-calculus such as the
applied pi-calculus, the spi-calculus, the fusion calculus, the
concurrent constraint pi-calculus, and calculi with polyadic
communication channels or pattern matching. Psi-calculi
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can be even even more general, for example by allowing
structured channels, higher-order formalisms such as the
lambda calculus for data structures, and predicate logic for
assertions [5].

In psi-calculi (described in Sect. 2), the purity of the
semantics is on par with the original pi-calculus, the general-
ity and expressiveness exceeds many earlier extensions of the
pi-calculus, and the meta-theory is proved correct once and
for all using the interactive theorem prover Isabelle/Nominal
[34]. The communication paradigm in psi-calculi is binary:
for each event, there is one sender and one receiver, just
as in the pi-calculus. In several areas, e.g. wireless com-
munications and hardware data buses, a natural paradigm is
broadcast, where one transmission can be received by several
processes. Broadcast communication cannot be uniformly
encoded in the pi-calculus [7].

In this paper we extend the psi-calculi framework with
primitives for synchronous unreliable broadcast. These
require new operational actions and rules, and new connec-
tivity predicates. In Sect. 3.1, we formally prove the congru-
ence properties of bisimilarity and the soundness of struc-
tural equivalence laws using the Isabelle/Nominal theorem
prover.

The connectivity predicates allow us to model systems
with limited reachability, for instance where a transmitter
only reaches nodes within a certain range, and systems with
changing reachability, for instance due to physical mobil-
ity of nodes. In Sect. 4, we present a technique for treat-
ing different generations of connectivity information. Broad-
cast channels can be globally visible or have limited scope.
Scoped channels can be protected from externally imposed
connectivity changes, while permitting connectivity changes
by processes within the scope of the channel. One of our main
contributions is precise requirements that the connectivity
predicates must satisfy, in order to model scoped broadcasts
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with dynamic connectivity, while still satisfying the meta-
theoretical results of Sect. 3.1.

We demonstrate the expressive power of the resulting
framework in Sect. 5, where we provide a model of the
LUNAR protocol for routing in ad hoc wireless networks
[33]. The model follows the specification closely and demon-
strates several features of the psi-calculi framework: both uni-
cast and broadcast communication, application-specific data
structures and logics, classic unstructured channels as well
as pairs corresponding to MAC address and port selector.
Our model is significantly more succinct than earlier work
[35,36] (ca 30 vs. 250 lines). We show an expected basic
reachability property of the model: if two network nodes, a
sender and a receiver, are both in range of a third node, but
not within range of each other, the LUNAR protocol can find
a route and transparently handle the delivery of a packet from
the sender to the receiver.

We discuss related work on process calculi for wireless
broadcast in Sect. 6 and conclude and present ideas for future
work in Sect. 7.

This paper is an extended version of [6] that adds clarifica-
tions, proofs, and elaborated examples of dynamic topology
management.

2 Psi-calculi

This section is a brief recapitulation of psi-calculi; for an
extensive treatment including more motivations and exam-
ples, see [4,5], from which some examples and explanations
below are taken.

We assume a countably infinite set of atomic names N
ranged over by a, b, . . . , z. Intuitively, names will represent
the symbols that can be scoped and also represent symbols
acting as variables in the sense that they can be subject to
substitution. As a general framework for terms and other
data containing names, we work in the formalism of nominal
sets [8,24]. A nominal set is an ordinary set equipped with a
formal notion of what it means for a name a to occur in an
element X of the set, written a ∈ n(X) (often pronounced as
“a is in the support of X”). We write a#X , pronounced “a is
fresh for X”, for a �∈ n(X), and if A is a finite set of names, we
write A#X to mean ∀a ∈ A . a#X . We require all elements
to have finite support, i.e. n(X) is finite for all X . In the fol-
lowing, ã means a finite sequence of names, a1, . . . , an . The
empty sequence is written ε, and the concatenation of ã and
b̃ is written ãb̃. When occurring as an operand of a set oper-
ator, ã means the corresponding set of names {a1, . . . , an}.
We also use sequences of other nominal sets in the same
way. For names, we write (ã b̃) for the name swapping that
swaps each element of ã with the corresponding element of
b̃; here it is implicit that ã and b̃ have the same length and
that the names in ã (respectively, b̃) are pairwise distinct. A

function f is equivariant if (a b) · f (X) = f ((a b) · X)

holds for all X , and similarly for functions and relations of
any arity. Intuitively, equivariance means that all names are
treated equally.

A nominal data type is a nominal set together with a set
of functions on it. In particular, we shall consider substitu-
tion functions that substitute elements for names. If X is an
element of a data type, ã is a sequence of names without
duplicates and Ỹ is an equally long sequence of elements
of possibly another data type, the substitution X [ã := Ỹ ]
is an element of the same data type as X . Substitution is
required to satisfy a law akin to alpha-conversion: if b̃#X, ã
then X [ã := T̃ ] = ((b̃ ã) · X)[b̃ := T̃ ]. Intuitively, this
ensures that substitutions for bound names yield the same
result no matter which alpha-equivalent version is used.

We use nominal data types in order to obtain a general
framework, allowing many different instantiations. Our only
requirements are on the notions of support, name swap-
ping, and substitution. Thus, we can handle data types that
are not inductively defined, such as equivalence classes or
sets defined by comprehension or co-induction. Examples
include higher-order data types such as the lambda calculus.
As long as the term language satisfies the axioms of a nomi-
nal data type, it can be used in our framework. Similarly, the
notions of conditions, i.e. the tests on data that agents can
perform during their execution, and assertions, i.e. the facts
that can be used to resolve conditions, are formulated as nom-
inal data types. This means that logics with binders and even
higher-order logics can be used. Moreover, alpha-variants of
terms can be formally equated by taking the quotient of terms
under alpha equality, thereby facilitating the formalism and
proofs.

A psi-calculus is defined by instantiating three nominal
data types and four operators:

Definition 1 (Psi-calculus parameters) A psi-calculus
requires the three (not necessarily disjoint) nominal data
types: the (data) terms T, ranged over by M, N , the con-
ditions C, ranged over by ϕ, the assertions A, ranged over by
Ψ , and the four equivariant operators:

.↔ : T × T → C Channel Equivalence

⊗ : A × A → A Composition

1 : A Unit

� ⊆ A × C Entailment

and substitution functions [̃a := ˜M], substituting terms for
names, on each of T, C, and A, where the substitution func-
tion on T, in addition to the alpha-conversion-like law above,
satisfies the following name preservation law: if ã ⊆ n(M)

and b ∈ n(Ñ ), then b ∈ n(M[ã := Ñ ]).
The binary functions above will be written in infix. Thus, if

M and N are terms, then M
.↔ N is a condition, pronounced

“M and N are channel equivalent”, and if Ψ and Ψ ′ are
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assertions, then so is Ψ ⊗ Ψ ′. Also, we write Ψ � ϕ, “Ψ
entails ϕ”, for (Ψ, ϕ) ∈ �.

As an example, we can choose data terms inductively gen-
erated by some signature, assertions, and conditions to be
elements of a first-order logic with equality over these terms,
entailment to be logical implication, ⊗ to be conjunction and
1 to be true. We call this example instance euf.

We say that two assertions are equivalent, written Ψ � Ψ ′,
if they entail the same conditions, i.e. for all ϕ we have that
Ψ � ϕ ⇔ Ψ ′ � ϕ. We impose certain straightforward requi-
sites on the sets and operators. In brief, channel equivalence
must be symmetric and transitive (but not necessarily reflex-
ive),⊗must be compositional with regard to�, and the asser-
tions with (⊗, 1) form an abelian monoid modulo �. In the
euf instance, we can let channel equivalence be term equality:
symmetry and reflexivity clearly hold, logical conjunction
does form an abelian monoid with true as unit, and compo-
sitionality of assertion composition follows from the tautol-
ogy (Ψ ⇒ (Ψ1 ⇔ Ψ2)) ⇒ (Ψ ⇒ (Ψ ′ ∧ Ψ1 ⇔ Ψ ′ ∧ Ψ2)).
For details see [5].

A frame F can intuitively be thought of as an assertion
with local names: it is of the form (ν˜b)Ψ where ˜b is a
sequence of names that bind into the assertion Ψ . We use
F, G to range over frames. We overload Ψ to also mean the
frame (νε)Ψ and ⊗ to composition on frames defined by
(ν˜b1)Ψ1 ⊗ (ν˜b2)Ψ2 = (ν˜b1˜b2)(Ψ1 ⊗ Ψ2) where ˜b1#˜b2, Ψ2

and vice versa. We write Ψ ⊗ F to mean (νε)Ψ ⊗ F , and
(νc)((ν˜b)Ψ ) for (νc˜b)Ψ .

Alpha-equivalent frames are identified. We define F � ϕ

to mean that there exists an alpha variant (ν˜b)Ψ of F such
that ˜b#ϕ and Ψ � ϕ. We also define F � G to mean that for
all ϕ it holds that F � ϕ iff G � ϕ. Intuitively, a condition is
entailed by a frame if it is entailed by the assertion and does
not contain any names bound by the frame, and two frames
are equivalent if they entail the same conditions.

In the euf example, assume that the term enc(M, k) rep-
resents the encoding of message M with key k, and let Ψ

be the assertion C = enc(M, k), stating that the cipher-
text C is the result of encoding M by k. If an agent con-
tains this assertion, the environment of the agent will be able
to use it to resolve tests on the data. In particular, it may
infer that C = enc(M, k), i.e. it can test whether this C is
the encryption of M . Access to the key k can be restricted
by enclosing it in a scope: if the environment instead has
access to the assertion (νk)Ψ , it can not infer that C is the
encoding of M (assuming conditions only contain equal-
ity tests on terms, and no quantifiers). For more discussion,
see [5].

Definition 2 (Psi-calculus agents) Given valid psi-calculus
parameters as in Definition 1, the psi-calculus agents, ranged
over by P, Q, . . ., are of the following forms.

0 Nil

M N . P Output

M(λx̃)N . P Input

case ϕ1 : P1[] · · · []ϕn : Pn Case

(νa)P Restriction

P | Q Parallel

!P Replication

(|Ψ |) Assertion

Restriction binds a in P , and Input binds x̃ in both N
and P . We identify alpha-equivalent agents. An assertion is
guarded if it is a subterm of an Input or Output. An agent
is assertion guarded if it contains no unguarded assertions.
An agent is well formed if in M(λx̃)N .P it holds that x̃ ⊆
n(N ) is a sequence without duplicates, that in a replication
!P the agent P is assertion guarded, and that in case ϕ1 :
P1[] · · · []ϕn : Pn the agents Pi are assertion guarded.

In the Output and Input forms, M is called the subject and
N the object. Output and Input are similar to those in the
pi-calculus, but arbitrary terms can function as both subjects
and objects. In the input M(λx̃)N .P , the intuition is that the
pattern (λx̃)N can match any term obtained by instantiating
x̃ , e.g. M(λx, y) f (x, y).P can only communicate with an
output M f (N1, N2) for some data terms N1, N2. This can
be thought of as a generalisation of the polyadic pi-calculus
where the patterns are just tuples of names. Another sig-
nificant extension is that we allow arbitrary data terms also
as communication channels. Thus, it is possible to include
functions that create channels.

The case construct behaves as one of the Pi for which
the corresponding ϕi is true. The agent case ϕ1 : P1[] · · · []
ϕn : Pn is sometimes abbreviated as case ϕ̃ : ˜P , or if n = 1 as
if ϕ1 then P1. Input subjects are underlined to facilitate pars-
ing of complicated expressions; in simple cases we often omit
the underline. We sometimes write M(x).P for M(λx)x .P .

One of the simplest examples of a psi-calculus is the
pi-calculus [21] that can be represented using names as the
only data terms, 1 as the only assertion, and equality tests on
names as conditions. Channel equivalence

.↔ is also equality
on names. Substitution is the standard syntactic replacement
of names for names. Choice in the pi-calculus can be rep-
resented using the case statement: P + Q corresponds to
(νa)(case a = a : P [] a = a : Q), where a#P, Q, and
the pi-calculus match construct [a = b]P corresponds to
if a = b then P . The formal correspondence between this
psi-calculus instance and the original pi-calculus is proved
in [5].

As indicated in the encryption example above, the con-
ditions tested in a process are affected by the assertions of
parallel processes. For example, in P | Q, the assertions of
P can affect the conditions tested in Q, and thereby its transi-
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tions. We introduce the frame of an agent as the combination
of its top-level assertions, retaining all the binders: this is
precisely what can affect a parallel agent. The frame F(P)

of an agent P is defined inductively as follows:

F(M(λx̃)N . P) = F(M N . P)

= F(0) = F(case ϕ̃ : ˜P) = F(!P) = 1

F((|Ψ |)) = (νε)Ψ

F(P | Q) = F(P) ⊗ F(Q)

F((νb)P) = (νb)F(P)

For a simple example, if a#Ψ1:

F((|Ψ1|) | (νa)((|Ψ2|) | M N .(|Ψ3|)) = (νa)(Ψ1 ⊗ Ψ2)

Here, Ψ3 occurs under a prefix and is therefore not included
in the frame.

The actions ranged over by α, β are of the following three
kinds:
Output M(νã)N where α ⊆ n(N ), Input M N , and Silent
τ . Here, we refer to M as the subject and N as the object.
We define bn(M(νã)N ) = ã, and bn(α) = ∅ if α is an input
or τ . We also define n(τ ) = ∅ and n(α) = n(M) ∪ n(N )

for the input and output actions. As in the pi-calculus, the
output M(νã)N represents an action sending N along M
and opening the scopes of the names ã. Note in particular
that the support of this action includes ã. Thus, M(νa)a and
M(νb)b are different actions.

Definition 3 (Transitions) A transition is written Ψ �

P
α−→P ′, meaning that in the environmentΨ the well-formed

agent P can do an α to become P ′. The transitions are defined

inductively in Table 1. We write P
α−→P ′ without an asser-

tion to mean 1 � P
α−→P ′.

Agents, frames, and transitions are identified by alpha equiv-
alence. In a transition the names in bn(α) bind into both the
action object and the derivative; therefore, bn(α) is in the sup-
port of α but not in the support of the transition. This means
that the bound names can be chosen fresh, substituting each
occurrence in both the object and the derivative.

The environmental assertions Ψ � · · · in Table 1 express
the effect that the environment has on the agent: enabling
conditions in Case, giving rise to action subjects in In and
Out, and enabling interactions in Com. The environment Ψ

increases towards the leaves of the derivation only in the rules
for the parallel operator, where an agent is part of the envi-
ronment for another agent. If all environmental assertions are
erased and channel equivalence is replaced by identity, we
get the standard laws of the pi-calculus enriched with data
structures.

For a simple example of a transition, suppose for an asser-
tion Ψ and condition ϕ that Ψ � ϕ. Assume that

∀Ψ ′.Ψ ′ � Q
α−→Q′

i.e. Q has an action α regardless of the environment. Then
by the Case rule we get

Ψ � if ϕ then Q
α−→Q′

i.e. if ϕ then Q has the same transition if the environment is
Ψ . Since F((|Ψ |)) = Ψ and Ψ ⊗ 1 = Ψ , if bn(α)#Ψ we get
by Par that

1 � (|Ψ |) | if ϕ then Q
α−→(|Ψ |) | Q′

Table 1 Structured operational
semantics

Symmetric versions of Com and
Par are elided in the rule Com
we assume that
F(P) = (ν˜bP )ΨP and
F(Q) = (ν˜bQ)ΨQ where ˜bP is
fresh for all of Ψ,˜bQ , Q, M ,
and P and that ˜bQ is similarly
fresh. In the rule Par we assume
that F(Q) = (ν˜bQ)ΨQ where
˜bQ is fresh for Ψ, P , and α. In
Open the expression ã ∪ {b}
means the sequence ã with b
inserted anywhere

In
Ψ � K

.↔ M

Ψ � M(λỹ)N . P
K N [̃y:=˜L]−−−−−−→ P [̃y :=˜L]

Out
Ψ � M

.↔ K

Ψ � M N . P
K N−−→ P

Case
Ψ � Pi

α−→P ′ Ψ � ϕi

Ψ � case ϕ̃ : ˜P
α−→P ′

Com
Ψ ⊗ ΨP ⊗ ΨQ � M

.↔ K ΨQ ⊗ Ψ � P
M(ν ã)N−−−−−→ P ′ ΨP ⊗ Ψ � Q

K N−−→ Q′

Ψ � P | Q
τ−→(ν ã)(P ′ | Q′)

ã # Q

Par
ΨQ ⊗ Ψ � P

α−→ P ′

Ψ � P | Q
α−→ P ′ | Q

bn(α) # Q

Scope
Ψ � P

α−→ P ′

Ψ � (νb)P
α−→(ν b) P ′ b # α, Ψ

Open
Ψ � P

M(ν ã) N−−−−−→ P ′

Ψ � ( ν b) P
M( ν ã ∪{b}) N−−−−−−−−→ P ′

b# ã, Ψ, M b ∈ n(N )

Rep
Ψ � P | !P α−→ P ′

Ψ � !P α−→ P ′
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The notion of strong bisimulation is used to formalise the
intuition that two agents “behave in the same way”.

Definition 4 (Strong bisimulation) A strong bisimulation R
is a ternary relation on assertions and pairs of agents such
that R(Ψ, P, Q) implies

1. Static equivalence: Ψ ⊗ F(P) � Ψ ⊗ F(Q); and
2. Symmetry: R(Ψ, Q, P); and
3. Extension of arbitrary assertion: ∀Ψ ′. R(Ψ ⊗Ψ ′, P, Q);

and
4. Simulation: for all α, P ′ such that Ψ � P

α−→P ′ and
bn(α)#Ψ, Q, there exists Q′ such that Ψ � Q

α−→Q′ and
R(Ψ, P ′, Q′).

We define P
.∼Ψ Q to mean that there exists a bisimulation

R such that R(Ψ, P, Q) and write
.∼ for

.∼1.

Strong bisimulation is a congruence in the usual sense:
it is preserved by all operators except input prefix and sat-
isfies the expected algebraic laws such as scope extension
P | (νa)Q

.∼ (νa)(P | Q) if a#P . For details see [4,5].
Note that these meta-theoretical results have been proven to
hold for all psi-calculus instances using the interactive theo-
rem prover Isabelle/Nominal [34].

Psi-calculi can capture the same phenomena as a wide
range of previously proposed individual extensions of the
pi-calculus. Examples in [4,5] range from foundational cal-
culi such as polyadic pi-calculus, polyadic synchronisation
pi-calculus, fusion calculus, and concurrent constraint cal-
culi, to applied calculi for cryptography and systems with
frequency hopping communication protocols. Each previous
pi-calculus extension in the literature has needed new proofs
of basic results such as scope extension and bisimulation con-
gruence. Instead, formulated as psi-calculus instances, all the
meta-theory of psi-calculi is automatically inherited.

3 Broadcast psi-calculi

In this section we extend the unicast psi-calculi of the pre-
vious section with a communication paradigm for synchro-
nous unreliable non-blocking broadcast (suitable for mod-
elling wireless communication). We introduce the notion of
a broadcast channel as an abstraction of relevant properties
of the transmission, such as frequency, sender location, and
signal strength. Formally, a broadcast channel is just a term.
We assume the so-called connectivity predicates that regu-
late which prefix subjects can send on or receive from which
broadcast channels. These predicates may depend on asser-
tions and therefore change as an agent evolves.

As an example, assume that the connectivity information
Ψ allows the sender M0 to send on the broadcast channel K ,
and receivers M1 and M2 to listen on K . We would then have

the following transition:

Ψ � M0 N .P | M1(x).Q | M2(y).R
!K N−→P | Q[x :=N ] |

R[y :=N ].
Here, in one action two processes both receive the N sent
along K , and moreover, the action label retains the broadcast
output action !K N , meaning that in a larger context even
more processes could receive N .

Formally, we assume a psi-calculus with the following
extra predicates:

Definition 5 (Extra predicates for broadcast)
.≺: T × T → C Output Connectivity
.�: T × T → C Input Connectivity

The first predicate, M
.≺ K , is pronounced “M is out-

connected to K ” and means that an output prefix M N can
result in a broadcast on channel K . The second, K

.� M ,
is pronounced “M is in-connected to K ” and means that an
input prefix M(λx̃)N can receive broadcast messages from
channel K . As usual in broadcast calculi, the receivers need
to use the same broadcast channel as the sender in order to
receive a message.

As an example, we can model lookup in a routing table: if
the term tab is a list of pairs of identifiers and channels, we can
let Ψ � lookup(tab, id)

.≺ ch be true iff (id, ch) appears in
the routing table tab. We can also model connectivity: if Ψ

contains connectivity information between channels ch and
receivers n, we may let Ψ � ch

.� rcv(n, ch) be true if n is
connected to ch according to Ψ .

In contrast to unicast connectivity, we do not require
broadcast connectedness to be symmetric or transitive, so
in particular M

.≺ K might not be equivalent to K
.� M .

Instead, for technical reasons related to scope extension (cf.
Example 13), broadcast channels must have no greater sup-
port than the input and output prefixes that send and receive
on them.

Definition 6 (Requirements for broadcast)

1. Ψ � M
.≺ K �⇒ n(M) ⊇ n(K )

2. Ψ � K
.� M �⇒ n(K ) ⊆ n(M)

Definition 7 (Transitions of broadcast psi) To the actions
of psi-calculi we add broadcast input, written ?K N for a
reception of N on K , and broadcast output, written !K (νã)N
for a broadcast of N on K , with names ã fresh in K . As before,
we omit (νã) when ã is empty, and in examples we omit N
when it is not relevant. The transitions of well-formed agents
are defined inductively in Tables 1 and 2, where we let α

range over both unicast and broadcast actions.

The rule BrOut allows transmission on a broadcast chan-
nel K that the subject M of an output prefix is out-connected
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Table 2 Operational broadcast
semantics

A symmetric version of BrCom
is elided. In rules BrCom and
BrMerge, we assume that
F(P) = (ν˜bP )ΨP and
F(Q) = (ν˜bQ)ΨQ where ˜bP is
fresh for P,˜bQ , Q, K , and Ψ

and that ˜bQ is fresh for
Q,˜bP , P, K , and Ψ

BrOut
Ψ � M

.≺ K

Ψ � M N . P
!K N−−−→ P

BrIn
Ψ � K

.� M

Ψ � M(λỹ)N . P
?K N [̃y:=˜L]−−−−−−−→ P [̃y :=˜L]

BrMerge
ΨQ ⊗ Ψ � P

?K N−−−→ P ′ ΨP ⊗ Ψ � Q
?K N−−−→ Q′

Ψ � P | Q
?K N−−−→ P ′ | Q′

BrCom
ΨQ ⊗ Ψ � P

!K (νã)N−−−−−→ P ′ ΨP ⊗ Ψ � Q
?K N−−−→ Q′

Ψ � P | Q
!K (ν ã)N−−−−−→ P ′ | Q′

ã # Q

BrOpen
Ψ � P

!K (νã)N−−−−−→ P ′

Ψ � (νb) P
!K (νã∪{b})N−−−−−−−−→ P ′

b # ã, Ψ, K b ∈ n(N )

BrClose
Ψ � P

!K (νã)N−−−−−→ P ′

Ψ � (νb)P
τ−→ (ν b)(ν ã)P ′ b ∈ n(K ) b#Ψ

to. Similarly, the rule BrIn allows input from a broad-
cast channel K that the subject M of an input prefix is
in-connected to. The environmental assertion Ψ determines
whether a prefix is connected to a broadcast channel and thus
gives rise to a broadcast in BrIn and BrOut. In the same
way, it determines whether a prefix is channel equivalent to
something else and thus gives rise to a unicast in In and Out.
The same prefix could theoretically be used for both kinds of
communication, although it may be unusual to find situations
where that would be useful.

When two parallel processes both receive a broadcast
on the same channel, the rule BrMerge combines the two
actions. This rule is necessary to ensure the associativity
of parallel composition. After a broadcast communication
using BrCom, the resulting action is the original transmis-
sion. This is different from the unicast Com rule, where a
communication yields an internal action τ . The BrOpen rule
allows broadcast communication of data containing scoped
names. Rule BrClose states that a broadcast transmission
does not reach beyond its scope. This allows for broadcasting
on restricted channels. Dually, the Scope rule (of Table 1)
ensures that broadcast receivers on restricted channels can-
not proceed unless a message is sent. The Par rule allows
for broadcasts to bypass a process, as in most other broadcast
calculi for wireless systems.

3.1 Meta-theory

We have developed a meta-theory for broadcast psi-calculi.
Theorems 8, 10, and 11 give us assurance that any broad-
cast psi-calculus has a compositional labelled bisimilarity
that respects important structural laws. The proofs of these
results are mostly straightforward extensions of the corre-
sponding proofs for standard (unicast) psi-calculi [3,14],
where some technical lemmas can be simplified because of

the requirement of syntactic equality of channels in rules
BrCom and BrMerge. Most of the added complications
are caused by the fact that the BrCom rule defers the clos-
ing of the communication to BrClose; cf. Lemma 12. The
proofs [28] are formally verified in the interactive theorem
prover Isabelle/Nominal. The full formalisation of broadcast
psi-calculi amounts to ca 33,000 lines of Isabelle code, of
which about 21,000 lines are reused from our earlier work [5].

In the following, we restrict attention to well-formed
agents.

Theorem 8 (Congruence properties of strong bisimulation)
For all Ψ :

P
.∼Ψ Q �⇒ P | R

.∼Ψ Q | R

P
.∼Ψ Q �⇒ (νa)P

.∼Ψ (νa)Q if a#Ψ

P
.∼Ψ Q �⇒!P .∼Ψ !Q if P, Q assertion guarded

∀i.Pi
.∼Ψ Qi �⇒ case ϕ̃ : ˜P

.∼Ψ case ϕ̃ : ˜Q

P
.∼Ψ Q �⇒ M N . P

.∼Ψ M N . Q

(∀˜L. P [̃x :=]˜L .∼Ψ Q [̃x :=˜L])
�⇒ M(λx̃)N . P

.∼Ψ M(λx̃)N . Q

As usual in channel-passing calculi, bisimulation is not a con-
gruence for input prefix. We can characterise strong bisimu-
lation congruence in the usual way.

Definition 9 (Strong congruence) P ∼Ψ Q iff for all
sequences σ of substitutions it holds that Pσ

.∼Ψ Qσ . We
write P ∼ Q for P ∼1 Q.

Theorem 10 Strong congruence ∼Ψ is a congruence for
all Ψ .

The standard rules of structural equivalence are sound for
bisimilarity congruence.
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Theorem 11 (Structural equivalence) Assume that
a#Q, x̃, M, N , ϕ̃. Then

case ϕ̃ : ˜(νa)P ∼ (νa)case ϕ̃ : ˜P (νa)0 ∼ 0

M(λx̃)N . (νa)P ∼ (νa)M(λx̃)(N ) . P Q | (νa)P ∼ (νa)(Q | P)

M N . (νa)P ∼ (νa)M N . P (νb)(νa)P ∼ (νa)(νb)P

P | (Q | R) ∼ (P | Q) | R !P ∼ P | !P
P | Q ∼ Q | P P ∼ P | 0

When proving Theorem 11, we encountered an unusual
complication in the proof of the commutativity of restriction,
due to the BrClose rule. Since this rule can insert binder
sequences under name restrictions, the simulation proof
needs to allow for permutations of sequences of top-level
binders. This is the main difference in our meta-theoretical
proofs as compared to the original psi-calculi. We write
ã ≡ ˜b to denote that the sequence ã is a rearrangement
of ˜b, preserving the number of occurrences of each name.

Lemma 12 For all Ψ, P, x, y, we have (νy)(νx)P
.∼Ψ

(νx)(νy)P.

Proof In standard psi-calculi, the proof of this result uses

the candidate relation S0
def= {(Ψ, (νy)(νx)P, (νx)(νy)P) :

x, y#Ψ }. Here, we inductively close this relation under
restriction, yielding S:

S def= S0 ∪ {(Ψ, (νa)P, (νa)Q) : (Ψ, P, Q) ∈ S ∧ a#Ψ }.
We show that S is a bisimulation up to transitivity [29] (at
every Ψ ). That is, we only require the derivatives after a
simulation step to be related by S∗, inductively defined as

S∗ def= {(Ψ, P, P)} ∪ {(Ψ, P, R) : ∃Q. (Ψ, P, Q) ∈
S∗ ∧ (Ψ, Q, R) ∈ S}.

We have proven “up to transitivity” to be sound, i.e. every
bisimulation up to transitivity is a subset of some ordinary
bisimulation.

The interesting part of the proof is in the simulation clause.
We here consider only the base case of the definition of S
(i.e. S0), where we need to prove that for all α, P ′ such that
bn(α)#Ψ, Q and Ψ � (νy)(νx)P

α−→P ′ there exists a Q′
such that Ψ � (νx)(νy)P

α−→Q′ and (Ψ, P ′, Q′) ∈ S∗.
We first define a relation R that safely approximates S∗

(i.e. R ⊆ S∗) and is easier to work with.

R def= {(Ψ, (νã)P, (ν˜b)P) : ã#Ψ ∧ ã ≡ ˜b}.
By induction on the length of ã, we get that for all ã,˜b, Ψ, P
such that ã#Ψ and ã ≡ ˜b we have (Ψ, (νã)P, (ν˜b)P) ∈ S∗.
From this follows that the relation R ⊆ S∗; in order to show
that the derivatives (Ψ, P ′, Q′) ∈ S∗ after a simulation step,
we instead prove (Ψ, P ′, Q′) ∈ R.

The simulation proof is by case analysis on the derivations
of transitions of (νy)(νx)P . We here focus on the following
derivation.

Scope
BrClose Ψ�P

!M (νã)N−−−−−→P ′
Ψ�(νx)P

τ−→(νx)(νã)P ′ x∈n(M), x#Ψ

Ψ � (νy)(νx)P
τ−→(νy)(νx)(νã)P ′ y#τ,Ψ

We assume that ã#(Ψ, P, M, x, y). There are three cases to
consider.

1. y#(!M (νã)N ): We have the following transition.

BrClose

Scope Ψ �P
!M (νã)N−−−−−→P ′

Ψ�(νy)P
!M (νã)N−−−−−→(νy)P ′

y#!M (νã)N ,Ψ

Ψ � (νx)(νy)P
τ−→(νx)(νã)(νy)P ′

x ∈ n(M), x#Ψ

Since x, y, ã#Ψ and (x, ã, y) ≡ (y, x, ã) we have (Ψ, (νy)

(νx)(νã)P ′, (νx)(νã)(νy)P ′) ∈ R ⊆ S∗.

2. y ∈ n(!M (νã)N ) and y ∈ n(M): We have the following
transition.

Scope
BrClose Ψ � P

!M (νã)N−−−−−−→P ′
Ψ � (νy)P

τ−→(νy)(νã)P ′ y∈n(M), y#Ψ

Ψ � (νx)(νy)P
τ−→(νx)(νy)(νã)P ′ x#τ, Ψ

Since x, y#Ψ and y, x ≡ x, y we have (Ψ, (νy)(νx)

(νã)P ′, (νx)(νy)(νã)P ′) ∈ R ⊆ S∗

3. y ∈ n(!M (νã)N ) and y#M : We then have y ∈ n(N ) and
derive

BrClose

BrOpen Ψ�P
!M (νã)N−−−−−→P ′

Ψ�(νy)P
!M (νy)(νã)N−−−−−−−−→P ′

y#ã, Ψ, M, y∈n(N )

Ψ � (νx)(νy)P
τ−→(νx)(νy)(νã)P ′

x ∈ n(M), x#Ψ

Since x, y#Ψ and y, x ≡ x, y we have (Ψ, (νy)(νx)(νã)

P ′, (νx)(νy)(νã)P ′) ∈ R ⊆ S∗. ��

The soundness proof for scope extension uses the same ideas
as the proof of Lemma 12.

3.2 Motivating the requisites

An apparently simpler way to define broadcast connectiv-
ity is to have just one binary connectivity predicate relating
input and output prefixes, as

.↔ does for unicast communica-
tion. However, such a predicate would need to be transitive
and symmetric for Theorem 11 to hold, for the same reasons
as in the original psi-calculus (detailed in [5]). In wireless
broadcast communication systems, symmetry and transitiv-
ity do not necessarily hold, and the requirements would not
be reasonable.
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A weaker version of condition 2 (respectively 1) of Def-
inition 6 would be to require n(K ) ⊆ n(M, Ψ ) whenever
Ψ � K

.� M (respectively Ψ � M
.≺ K ). However, this

leads to structural equivalence not being sound for bisimu-
lation: the scope extension case of Theorem 11 fails, as we
see in the following example.

Example 13 We let A = Pfin(N ) with 1 = ∅ and⊗ = ∪. We
let T = N and C = {a .↔ b, a

.≺ b, a
.� b : a, b ∈ N }. We

define � by ∀Ψ, a, b, Ψ � b
.≺ b iff b ∈ Ψ and Ψ � b

.� a
iff b ∈ Ψ . Note that this definition of entailment does not
satisfy Definition 6, since we may have Ψ � b

.� a for some
b �= a.

We let P := (νa)((|{a}|) | a.0 | c.0). Here 1 �

P
τ−→(νa)((|{a}|) | 0 | 0). However, P results from scope

extension from Q := (νa)((|{a}|) | a.0) | c.0, but Q does
not have a corresponding transition under frame 1.

In contrast to unicast actions, the support of the subjects
of broadcast actions is always included in the support of the
process generating the action. This result is used in the proof
of the scope extension case of Theorem 11 to show that a
scope extension does not enable any additional broadcast
communication.

Lemma 14 If Ψ � P
!K (νã)N−−−−−→ P ′ or Ψ � P

?K N−−−→ P ′ then
n(K ) ⊆ n(P).

Proof By induction on the derivation, using Definition 6 at
the base cases. ��

4 Modelling network topology changes

When modelling wireless protocols, one important concern
is dealing with connectivity changes. We here give general
descriptions of methods of modelling different connectivity
configurations using assertions.

The main idea is to allow for different generations of asser-
tions by tagging assertions with a time. Only the most recent
generation is used; a generation is made obsolete by com-
position with an assertion from a later generation. We here
consider broadcast connectivity, but this technique can also
be used in other scenarios where there is a need to retract
assertions. In the following we assume a set of terms B ⊆ T
used as broadcast channels and in prefixes; we let B, B ′ range
over elements of B.

4.1 Simple topology

Here assertions are finite sets of connectivity information
(M

.≺ K resp. K
.� M), labelled with a time, with the

empty set at time 0 as the unit assertion. Assertion com-
position intuitively computes the union of all connectivity

information labelled with the most recent generation. The
sets C and A are defined using constructors operating on
terms. We define substitution on C and A homomorphically
on their structure. For simplicity, we assume that no rewrit-
ing happens in broadcast output, i.e.

.≺ is the equality relation
of B.

Formally,

C � {⊥} ∪ {currentGeneration(g) : g ∈ N} ∪
{K .� M : K , M ∈ T} ∪ {M .≺ K : K , M ∈ T}

A � N × Pfin({〈K .� M〉 : K , M ∈ T})
1 � 〈0,∅〉

〈g, S〉 ⊗ 〈g′, T 〉 �

⎧

⎨

⎩

〈g, S〉 if g > g′
〈g′, T 〉 if g < g′
〈g, S ∪ T 〉 if g = g′

〈g, S〉 � currentGeneration(g′) iff g = g′
〈g, S〉 � B

.≺ B ′ if B = B ′
〈g, S〉 � B

.� B ′ if B
.� B ′ ∈ S and n(B) ⊆ n(B ′)

Proposition 15 Given T with a substitution function satisfy-
ing the requirements of Sect. 2, the definitions of C, A,⊗, 1,
and � as above and (M

.↔ N ) � ⊥ satisfy the requirements
of a broadcast psi-calculus.

The assertion 〈g, {B
.� B ′}〉 states that B ′ is in-connected

to B in generation g if n(B) ⊆ n(B ′). The condition
currentGeneration(g) is used to test whether g is the most recent
generation. It is needed for assertion equivalence to be com-
positional: without this condition, we would have 〈0, {M .�
K }〉 � 〈1, {M .� K 〉} and 〈0, {M .� K }〉⊗ 〈1, {K .� M}〉 ��
〈1, {M .� K }〉 ⊗ 〈1, {K .� M}〉, contradicting composition-
ality.

As an example, we can define a topology controller
(assuming a suitable encoding of the τ prefix):

T = (|〈1,∅〉|) | τ .
(

(|〈2, {K .� M, K
.� N }〉|)

| τ . ((|〈3, {K .� M}〉|))).

In P | T , the process P broadcasts on K while T manages the
topology. Initially, F(T ) = 〈1,∅〉 and the broadcast is dis-
connected; after T

τ−→ T ′ then F(T ′) = 〈2, {K .� M, K
.�

N }〉 and a broadcast on K can be received on both M and N ,
and after T ′ τ−→ T ′′ then a broadcast can be received only on
M , since F(T ′′) = 〈3, {K .� M}〉.

Such a connectivity controller can also implement stan-
dard mobility models [12] over a discretised finite space.
More fine-grained mobility models can be implemented
by associating a generation with each possible connection,
together with a flag for whether the connection is possible
or not. In such a model, assertion {〈0, M

.� K , true〉} states
that the link M

.� K is enabled in its generation 0.

123



Broadcast psi-calculi 209

4.2 Scoped topology

As a variation of the example above, we define a model
where every name d corresponds to a broadcast channel with
dynamic topology. The use of a name in the broadcast chan-
nel allows us to restrict its scope.

B � {Bs(d) : d ∈ N } ∪ {Br(M, d) : M ∈ T, d ∈ N } ∪ N
C � {⊥} ∪ {currentGeneration(g, K ) : g ∈ N, K ∈ T} ∪

{Bs(M)
.≺ K ) : M, K ∈ T} ∪ {K .� Br(M, N ) : M, N , K ∈ T}

A � T →fin N × Pfin({Conn(M, N ) : M, N ∈ T})
1 � ∅

(Ψ ⊗ Ψ ′)(M) �
⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

〈g, S〉 if Ψ (M) = 〈g, S〉 ∧ (M �∈ dom(Ψ ′) ∨
(Ψ ′(M) = 〈 j, T 〉 ∧ g > g′))

〈g′, T 〉 if Ψ ′(M) = 〈g′, T 〉 ∧ (M �∈ dom(Ψ ) ∨
(Ψ (M) = 〈g, S〉 ∧ g < g′))

〈g, S ∪ T 〉 if Ψ (M) = 〈g, S〉 ∧ Ψ ′(M) = 〈g, T 〉
Ψ � currentGeneration(g, d) if Ψ (d) = 〈g, S〉
Ψ � Bs(c)

.≺ d if c = d
Ψ � c

.� Br(N , d) if c = d and Ψ (c) = 〈g, S〉 with Conn(N , d) ∈ S

Proposition 16 Given T with a substitution function satisfy-
ing the requirements of Sect. 2, the definitions of C, A,⊗, 1,
and � as above and (M

.↔ N ) � ⊥ satisfy the requirements
of a broadcast psi-calculus.

We can then define a topology controller which gradually
changes the topology from fully disconnected to “a listens
on d and b listens on d”:

T = (|d  → 〈1, ∅〉|) | τ . ((|d  → 〈2, {Conn(a, d)}〉|)
| τ . ((|d  → 〈3, {Conn(a, d), Conn(b, d)}〉|)))

We now put a process P inside the scope of d in parallel with
the topology controller as (νd)(P | T ). This ensures that P
can communicate using broadcast on channel d while letting
T , but not the environment, influence the topology. Moreover,
no process in the environment can receive broadcasts from
P (unless having previously received the bound name d). In
this way, scoped topology enables hierarchical modelling of
subsystems using wireless broadcast.

5 The LUNAR protocol in psi

In this section we present a model of the LUNAR routing
protocol for mobile ad hoc networks [32,33]. LUNAR is
intended for small wireless networks, ca 15 nodes, with a net-
work diameter of 3 hops. It does not handle route reparation,
caching, etc., and routes must be re-established every few
seconds. It is reasonably simple in comparison with many
other ad hoc routing protocols and allows us to focus on
properties such as dynamic connectivity and broadcasting.
It has previously been verified in [35,36] using SPIN and
UPPAAL; our model is significantly more succinct and at an
abstraction level closer to the specification.

The LUNAR protocol is at “layer 2.5”, between the link
and network layers in the Internet protocol stack. Address-
ing is by pairs of MAC/Ethernet addresses and 64-bit selec-
tors, similarly to the IP address and port number used in
UDP/TCP. The selectors are used to find the appropriate
packet handler through the Forwarding Information Base
(FIB) table.

Below, we define a psi-calculus for modelling the LUNAR
protocol. In an effort to keep our model simple, we abstract
from details such as time-to-live (TTL) fields in messages,
optional protocol fields, and globally unique host identifiers.
These abstractions are similar to those made in [35,36].
We do not deal with time explicitly. In the SPIN verifi-
cation, time is handled at an abstract level by using the
Promela timeout predicate which is true when no other
statement is executable, and checking that in this case, the
protocol has succeeded in delivering a message (cf. Theo-
rem 18).

5.1 The LUNAR broadcast psi-calculus

Channels are of two kinds: broadcast channels are terms
nodei with (for simplicity) empty support, whose connec-
tivity is given by the

.� and
.≺ predicates as defined in

Sect. 4.1, and unicast channels that are pairs 〈sel, mac〉
where sel is a selector name and mac is a MAC address
name. The sel part can also be a RouteOf(node, ip) con-
struction, which looks up the route of an IP address ip
in the routing table of the node node. Special channels
〈delivered, nodei 〉 are used to signal delivery of a packet to
the IP layer. Assertions are used to record requests origi-
nated at the local node with Redirected(node, sel), and with
HaveRoute(node, destip, hops, sel) to specify found routes.
The conditions contain predicates for testing whether a route
has been found (HaveRoute(node, ip)) and whether a selec-
tor has been used for a request originating at the local node
(Redirected(node, sel)), and to extract the forwarder of a route
(〈RouteOf(node, ip), x〉 .↔ 〈sel, x〉).

LUNAR protocol messages are of two types. The first is
a route request message RREQ(selector, targetIP, replyTo),
where the selector identifies the request, targetIP is the IP
address the route should reach, and replyTo is the 〈sel, mac〉
channel the response should be sent to. The second is a route
reply message, RREP(hops, fwdptr)), where hops is the num-
ber of hops to the destination, and fwdptr is a forwarding
pointer, i.e. a 〈sel, mac〉 channel where packets can be sent.

The parameters of the LUNAR broadcast psi-calculus
extend the simple topology calculus in Sect. 4.1. We define
substitution in the standard way, as the syntactic replacement
of names by terms. The sets T, C, and A are defined recur-
sively using constructors operating on terms in order to be
closed under substitution.
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T � N ∪ {nodei : i ∈ N} ∪ {delivered} ∪
{RREQ(Ser, TargIp, Rep) : Ser, TargIp,

Rep ∈ T} ∪
{RREP(i, Fwd) : i, Fwd ∈ T} ∪
{RouteOf(Node, Ip) : Node, Ip ∈ T} ∪
{〈Sel, N 〉 : Sel, N ∈ T} ∪ {N + 1 : N ∈ T} ∪ {0}

C � {M = N , M
.↔ N , HaveRoute(M, N ),

Redirected(M, N ) : M, N ∈ T} ∪
{K .� M : K , M ∈ T} ∪ {M .≺ K : K , M ∈ T} ∪
{currentGeneration(g) : g ∈ N} ∪ {¬φ : φ ∈ C}

A � N × Pfin({〈K .� M〉 : K , M ∈ T})×
Pfin({HaveRoute(M, N1, i, N2) : i, M, N1,

N2 ∈ T} ∪ {Redirected(M, N ) : M, N ∈ T})
1 � 〈0,∅,∅〉

〈g, S, A〉 ⊗ 〈g′, T, B〉 �

⎧

⎨

⎩

〈g, S, A ∪ B〉 if g > g′
〈g′, T, A ∪ B〉 if g < g′
〈g, S ∪ T, A ∪ B〉 if g = g′

Given Ψ = 〈g, S, A〉, we let RΨ be the symmetric and tran-
sitive closure of the relation

{(〈a, b〉, 〈a, b〉) : a, b ∈ N }
∪{(〈delivered, nodei 〉, 〈delivered, nodei 〉) : i ∈ N} ∪

{(〈RouteOf(nodei , a), x〉, 〈b, x〉)
: i ∈ N, j ∈ T, HaveRoute(nodei , a, j, b) ∈ A}

Entailment is then defined as follows.

Ψ � a = a, a ∈ N
Ψ � M

.↔ N iff (M, N ) ∈ RΨ

〈g, S, A〉 � currentGeneration(g)

Ψ � M
.≺ N iff M = N

〈g, S, A〉 � M
.� N iff M

.� N ∈ S
and n(M) ⊆ n(N )

〈g, S, A ∪ {HaveRoute(nodei , a, j, b)}〉
� HaveRoute(nodei , a)

〈g, S, A ∪ {Redirected(nodei , s)}〉
� Redirected(nodei , s)

Ψ � ¬ϕ if not Ψ � ϕ

Theorem 17 The LUNAR psi-calculus defined above satis-
fies all the requisites of a broadcast psi-calculus.

This theorem has been formally proved in Isabelle/
Nominal [25]. A sketch outlining the main ideas of the proof
follows:

Proof (Sketch) The requisites on the support of the broadcast
channels are immediate from the definition. It is straightfor-
ward to show the Abelian monoid laws for ⊗, 1. Transitivity
and symmetry of channel equivalence holds by definition.
The only non-trivial property is compositionality: we estab-
lish that Ψ ⊗ Ψ1 � ϕ and Ψ1 � Ψ2 implies Ψ ⊗ Ψ2 � ϕ by
induction on the structure of the condition ϕ. The only induc-
tive step is for negation, and this follows by symmetry of�. If

ϕ is a broadcast connectivity condition or currentGeneration(g),
the proof is by case distinction on the relative generations of
Ψ1, Ψ2, and Ψ . If ϕ is a channel equivalence, an inner induc-
tion on the length of the chain of the involved HaveRoute

elements in Ψ ⊗Ψ1 is necessary. Each such element is either
in Ψ and therefore also in Ψ ⊗Ψ2, or in Ψ1. In the latter case,
Ψ1 entails a channel equivalence from this element alone and
therefore Ψ2 entails the same. Thus, Ψ2 must contain a suit-
able sequence of HaveRoute elements to derive this channel
equivalence; this sequence is then in Ψ ⊗ Ψ2. ��

5.2 Representing process identifiers

We use process identifiers to improve the readability of the
LUNAR protocol model. However, an astute reader will note
that broadcast psi-calculi do not feature process identifiers—
rather, replication is used as the mechanism for expressing
infinite behaviour. In many other process calculi, process
identifiers and recursion can be encoded in a standard fash-
ion using replication, see e.g. [30]. Unfortunately, there is
currently no proof that the same encodability results apply
to broadcast psi-calculi.

To introduce process identifiers on a more sound theo-
retical foundation, we combine broadcast psi-calculi with
higher-order psi-calculi [23], an orthogonal extension of psi-
calculi which allows terms to act as handles to invoke the
behaviour of processes. In this setting, process identifiers are
simply terms.

Briefly, higher-order psi-calculi introduce the notion of
a clause M ⇐ P , meaning that the term M is a handle
for invoking P . We extend the entailment relation � so that
assertions can entail clauses in addition to conditions. Agents
are extended with invocations run M , and a single new rule
is added to the semantics:

Invocation
Ψ � M ⇐ PΨ � P

α−→P ′

Ψ � run M
α−→P ′

The calculi that result from adding the above-mentioned
extensions to broadcast psi-calculi will be referred to as
higher-order broadcast psi-calculi. We use Isabelle/Nominal
to formally prove that all the meta-theoretical results pre-
sented in Sect. 3.1 apply not only to broadcast psi-calculi,
but also to higher-order broadcast psi-calculi—hence, we
feel justified in claiming that broadcast and higher-order
are orthogonal extensions. The proof scripts are available
online [25].

Further, higher-order psi-calculi feature a lifting tech-
nique whereby an arbitrary first-order psi-calculus can be
lifted to a corresponding canonical higher-order psi-calculus,
extending it with parametrised clauses. In a canonical higher-
order psi-calculus, sets of parametrised clauses on the form
M(N ) ⇐ P are added to the assertions, such that {M(N ) ⇐
P} � M(N [x̃ := T̃ ]) ⇐ P[x̃ := T̃ ].
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Fig. 1 Part 0: the initialisation
step at the node that wishes to
discover a route

Fig. 2 Part 1: RREQ packet
handler, and Part 2: Target found
branch

Fig. 3 Part 3: Intermediate RREP packet handler

Fig. 4 Part 4: Source RREP packet handler

In the following, we will implicitly be representing clauses
using this feature of the canonical higher-order calculus
corresponding to the LUNAR broadcast psi-calculus of
Sect. 5.1.

5.3 The psi-calculus model of the LUNAR protocol

Figures 1, 2, 3, 4, 5, 6, and 7 describe our psi-calculus model
of the LUNAR protocol. Process declarations are of the form
M(Ñ ) ⇐ P , where M is a process identifier (and also a term,
implicitly included in T), Ñ a list of terms where occurrences
of names are binding, and P is a process s.t. n(P) ⊆ n(Ñ ). In
a process, we write M(Ñ ) for invoking a process declaration
M(K̃ ) ⇐ P such that Ñ = K̃ [x̃ := L̃] with x̃ = n(K̃ ),
resulting in the process P[x̃ := L̃]. For our purposes, lists
can be adequately represented using the pairing construct
included in the term language. We write if ϕthen Pelse Q
for case ϕ : P []¬ϕ : Q and assume a suitable encoding of
the τ prefix.

Our model of the protocol closely follows the infor-
mal protocol description in [32, Section 4]. Each figure in

Fig. 5 Part 5: IP delivery

our model corresponds to one or more of part 0–5 of the
protocol description. To allocate a selector, we simply bind a
name; to associate (or bind) a selector with a packet handler,
we use a replicated process that receives on the unicast chan-
nel described by the pair of the selector and our MAC address.
An example of this can be seen in the LunARP process decla-
ration in Fig. 1. The description in [32, Section 4, step 0.a]
says “Allocate an unused ‘receiver chosen’
selector S and binds it to a transient
‘source RREP packethandler’”, which in our pro-
cess declaration corresponds to the binding of rchosen and the
subprocess ! 〈rchosen, mymac〉(x) . SRrepHandler(mynode,
mymac,destip,x).

In the informal protocol description [32], the FIB is
“abused” (in steps 0.b and 1.b) by installing a null packet
handler for the selector created when sending a route request.
This FIB entry is only used to detect and avoid circular for-
warding of route requests. We model this by an explicit
assertion and a matching condition. An example can be
seen in the subprocess (|Redirected(mynode, schosen)|) of the
LunARP process declaration, and the test on the first line
of the RreqHandler process declaration (Fig. 2) using the
Redirected(mynode, schosen) condition.

The routing table is modelled using assertions, which illus-
trates how these can be used as a global data structure. Addi-
tions to the routing table are done in the SRrepHandler process
definition (Fig. 4), which adds (|HaveRoute (mynode, destip,

hops, rchosen)|) to the environment. Such assertions together
form the routing table, which is tested in the IPtransmit pro-
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Fig. 6 Broadcast handler

Fig. 7 IP transmission: if have
route, send it to local forwarder,
else ask for route

cess definition (Fig. 7) using the HaveRoute(mynode, destip)

condition.
For simplicity, we do not model route timeouts and the

deletion of routes, but this could be done using the mecha-
nism in Sect. 4.

The LUNAR procedure for route discovery starts when a
node wants to send a message to a node it does not already
have a route to (Fig. 7, else branch). It then (Fig. 1) associates
a fresh selector with a response packet handler and broadcasts
a Route Request (RREQ) message to its neighbours. A node
that receives a RREQ message (Fig. 2) for its own IP address
sets up a packet handler to deliver IP packets and includes
the corresponding selector in a response Route Reply (RREP)
message to the reply channel found in the RREQ message.
If the RREQ message was not for its own IP address, the
message is re-broadcast after replacing the reply channel with
a freshly allocated reply selector and its own MAC address.
When such an intermediary node receives a RREP message
(Fig. 3), it increments the hop counter and forwards the RREP
message to the source of the original RREQ message. When
the originator of a RREQ message eventually receives the
matching RREP (Fig. 4), it installs a route and informs the
IP layer about it. The message can then be resent (Fig. 7, then
branch) and delivered (Fig. 5) by unicast messages through
the chain of intermediary forwarding nodes.

We show the basic correctness of the model by the fol-
lowing theorem, which in essence corresponds to the correct
operation of an ad hoc routing protocol [36, Definition 1]: if
there is a path between two nodes, the protocol finds it, and
it is possible to send packets along the path to the destination
node.

The system to analyse consists of n nodes with their
respective broadcast handler; node 0 attempts to transmit a
packet to the IP address of node n.

Specn(pkt, i p0, . . . , i pn) ⇐ (νmac0, . . . , macn)
(∏

0≤i≤n BrdHandler(nodei , maci, ipi)

| ! IPtransmit(node0, mac0, ipn, pkt)

)

Theorem 18 If Ψ connects node0 and noden via a node nodei

(i.e. Ψ � node0
.� nodei and Ψ � nodei

.� noden), then

Ψ | (νip0, . . . , ipn)Specn(pkt, ip0, . . . , ipn)

�⇒ 〈delivered,noden〉pkt−−−−−−−−−−−−−→ Ψ | (νip0, . . . , ipn)S

and F(S) � HaveRoute(node0, ipn), where �⇒ stands for an
interleaving of τ and broadcast output transitions.

Proof By following transitions. ��

The SPIN verification performed in [36] checks the same
reachability property, for up to five nodes. Our analysis is
valid for any n, but is limited to a configuration where
the sender (node 0) and the receiver (node n) are only
separated by a single node. This limitation is due to the
labour of manually following transitions in a non-trivial
specification. We are currently working on remedies for
this: firstly by extending our symbolic semantics for psi-
calculi [15], secondly by implementing the symbolic seman-
tics in our tool for automatic verification [13], and thirdly
and orthogonally, by implementing the LUNAR model in
Isabelle/Nominal. These remedies are still work in progress.
In the Isabelle approach, we hope to prove the following
conjecture.

Conjecture 19 If Ψ connects node0 and noden via k proxy
nodes pn1, . . . , pnk , where {pn1, . . . , pnk} ⊆ {node1, . . . ,

noden−1}
(i.e. Ψ � node0

.� pn1, pn1
.� pn2, . . . , pnk−1

.� pnk, pnk
.�

noden), then

Ψ | (νip0, . . . , ipn)Specn(pkt, ip0, . . . , ipn)

�⇒ 〈delivered,noden〉pkt−−−−−−−−−−−−→ Ψ | (νip0, . . . , ipn)S

and F(S) � HaveRoute(node0, ipn), where �⇒ stands for an
interleaving of τ and broadcast output transitions.

The definition of BrdHandler illustrates a peculiarity of
broadcast semantics: a reader well versed in pi-calculus spec-
ifications with replication and recursion may consider a more
concise variant of the definition using replication instead of
recursion, e.g.

BrdHandler’(mynode, mac, ip) ⇐
!mynode(λs, t, r)RREQ(s, t, r) .

RreqHandler(mynode, mac, ip,RREQ(s, t, r))
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However, when the input prefix is over a broadcast channel,
as is the case here, the two are not equivalent since a sin-
gle communication with BrdHandler’ may result in arbitrarily
many RreqHandler processes, while BrdHandler only results in
one.

6 Related work

Process calculi with broadcast communication go back to the
early 1980s. Milner developed SCCS [20] as a generalisation
of CCS [19] to include multiway communication, of which
broadcast can be seen as a special case. At the same time,
Austry and Boudol presented MEIJE [2] as a semantic basis
for high-level hardware definition languages.

The first process calculus to seriously consider broadcast
with an asynchronous parallel composition was CBS [26,27].
Its development is recorded in a series of papers, examining
it from many perspectives. The main focus is on employing
broadcast as a high-level programming paradigm. CBS was
later extended to the pi-calculus in the bπ formalism [7].
Here, the broadcast communication channels are names that
can be scoped and transmitted between agents. The main
point of this work is to establish a separation result in expres-
siveness: in the pi-calculus, broadcast cannot be uniformly
encoded by unicast.

Recent advances in wireless networks have created a
renewed interest in the broadcast paradigm. The first process
calculus with this in mind was probably CBS [22]. This is
a development of CBS to include varying interconnection
topologies. Input and output are performed on a universal
ether, and transitions are indexed with topologies that are
sets of connectivity graphs; the connectivity graph matters
for the input rule (reception is possible from any connected
location). Main applications are on cryptography and rout-
ing protocols in mobile ad hoc wireless networks. CBS has
been followed by several similar calculi. In CWS [16,18],
the focus is on modelling low-level interference. Communi-
cation actions have distinct beginnings and endings, and two
actions may interfere if one begins before another has ended.
The main result is an operational correspondence between a
labelled semantics and a reduction semantics. CMAN [10]
is a high-level formalism extended with data types, just as
the applied pi-calculus extends the original pi-calculus. Data
can contain constructors and destructors. There are results
on properties of weak bisimulation and an analysis of a cryp-
tographic routing protocol. In the ω-calculus [31], empha-
sis is on expressing connectivity using sets of group names.
An extension also includes separate unicast channels, mak-
ing this formalism the first to accommodate both multicast
and unicast in wireless networks. There are results about
strong bisimulation and a verification of a mobile ad hoc
network leader election protocol through weak bisimulation.

RBPT [9] is similar and uses an alternative technique to rep-
resent topology changes, leading to smaller state spaces, and
is also different in that it can accommodate an asymmetric
neighbour relation (to model the fact that A can send to B
but not the other way).

bAπ [11] is an extension of the applied pi-calculus [1]
with broadcast, where connectivity information appears
explicitly in the process terms and can change non-
deterministically during execution. The claimed result of the
paper is proving that a weak labelled bisimulation, for which
connectivity is irrelevant, coincides with barbed equivalence.
However, for the same reasons as in the applied pi-calculus
(cf. [4]), labelled bisimilarity is not compositional in bAπ ,
so the correspondence does not hold. A suggested fix is to
remove communication of unicast channels from the cal-
culus. We would finally mention CMN [17]. The claimed
result is to compare two different kinds of semantics for a
broadcast operation, but it is in error. The labelled transi-
tion semantics contains no rule for merging two inputs as
in our BrMerge. As a consequence, parallel composition
fails to be associative. Consider the situation where P does
an output and Q and R both do inputs. A broadcast com-
munication involving all three agents can be derived from
(P|Q) | R but not from P | (Q|R), since in the latter agent
the component Q|R cannot make an input involving both Q
and R.

It is interesting to compare these formalisms and our
broadcast psi from a few important perspectives. Firstly, the
broadcast channels are explicitly represented in ω, bπ , CWS,
and CMN; they are mobile (in the sense that they can be
transmitted) only in bπ . In ω, only unicast channels can be
communicated. In broadcast psi, channels are represented
as arbitrary mobile data terms that may contain any num-
ber of names. Secondly, the data transmitted in CMAN and
bAπ are akin to the applied pi-calculus where data are drawn
from an inductively defined set and contain names that may
be scoped. In ω and bπ data are single names which may
be scoped; in the other calculi data cannot contain scoped
names. In broadcast psi data are arbitrary terms, drawn from
a nominal set, and may include higher-order objects as well
as bound names. Finally, node mobility is represented explic-
itly as particular semantic rules in CMAN, CMN, bAπ , and
ω, and implicitly in the requirements of bisimulation in CBS

and RBPT. In this respect, broadcast psi-calculi are similar to
the latter: connectivity is determined by the assertions in the
environment, and in a bisimulation, these may change after
each transition.

All calculi presented here use a kind of labelled transi-
tion semantics (LTS). bπ, bAπ , CBS, CWS, and ω use it
in conjunction with a structural congruence (SC), and the
rest (including broadcast psi) do not use a SC. In our experi-
ence, SC is efficient in that the definitions become more com-
pact and easy to understand, but introduces severe difficulties
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Table 3 Comparison of some
process algebras for wireless
broadcast

Calculus Broadcast channels Scoped data Mobility Semantics

bAπ – Term In semantics LTS + SC and RS

CBS – – In bisimulation LTS + SC

CWS Constant – – LTS + SC and RS

CMAN – Term In semantics LTS and RS

CMN Name – In semantics LTS and RS

ω Groups Name In semantics LTS + SC

RBPT – – In bisimulation LTS

Broadcast psi Term Term In bisimulation LTS

in making fully rigorous proofs. bAπ , CWS, CMAN, and
CMN additionally use a reduction semantics using structural
congruence (RS) and prove its agreement with the labelled
semantics. Table 3 summarises some of the distinguishing
features of calculi for wireless networks.

Finally, broadcast psi is different from the other calculi
for wireless broadcast in that there is no stratification of the
syntax into processes and networks. There is just the one
kind of agent, suitable for expressing both processes oper-
ating in nodes and behaviours of entire networks. In con-
trast, the other calculi has one set of constructs to express
processes and another to express networks, sometimes lead-
ing to duplication of effort (e.g. there can be a parallel compo-
sition operator both at the process and at the network level).
Our conclusion is that broadcast psi is conceptually simpler
and more efficient for rigorous proofs, and yet more expres-
sive.

7 Conclusion

We have extended the psi-calculi framework with broadcast
communication and formally proved using Isabelle/Nominal
that the standard congruence and structural properties of
bisimilarity hold also after the addition. We have shown how
node mobility and network topology changes can be mod-
elled using assertions. Since bisimilarity is closed under all
assertions, two bisimilar processes are equivalent in all ini-
tial topologies and for all node mobility patterns. We demon-
strated expressive power by modelling the LUNAR protocol
for route discovery in wireless ad hoc networks and verified
a basic correctness property of the protocol.

The proofs of the meta-theoretical results in Sect. 3.1 [28]
are formally verified in the interactive theorem prover
Isabelle/Nominal. The full formalisation of broadcast psi-
calculi amounts to ca 33,000 lines of Isabelle code, of
which about 21,000 lines are reused from our earlier
work [5].

The model of LUNAR is simplified for clarity and to make
manual analysis more manageable. The simplifications are
similar to those in the SPIN model by Wibling et al. [36],
although we do not model timeouts. Their model [35] is ca
250 lines of SPIN code (excluding comments) while ours
is approximately 30 lines. Our model could be improved
at the cost of added complexity. For example, allowing
broadcast channels to have non-empty support would let us
hide broadcast actions, routing tables could be made local
by including a scoped name per node, and route deletions
could be modelled using generational mechanisms similar to
Sect. 4.

We are currently working on extending the symbolic
semantics for psi-calculi [15] with broadcast and imple-
menting the semantics in our tool for automatic verifica-
tion, the Psi-calculi Workbench [13]. We also plan to study
weak bisimulation for the broadcast semantics. In order to
model more aspects of wireless protocols, we would like to
add general resource awareness (e.g. energy or time) to psi-
calculi.
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