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Abstract. Numerous specialized ad hoc routing protocols are currently
proposed for use, or being implemented. Few of them have been sub-
jected to formal verification. This paper evaluates two model checking
tools, SPIN and UPPAAL, using the verification of the Lightweight Un-
derlay Network Ad hoc Routing protocol (LUNAR) as a case study.
Insights are reported in terms of identifying important modeling consid-
erations and the types of ad hoc protocol properties that can realistically
be verified.
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1 Introduction

Mobile ad hoc networks (MANETS) require efficient and correct routing proto-
cols. So far they have mainly been evaluated by simulation and live testing, and
most of the formal verifications have involved a significant amount of user inter-
vention. We here consider a completely automatic verification strategy where the
user specifies the protocol in a high level formalism and provides some general
properties. These are given to a tool which will output a pass or fail answer to
questions regarding key protocol properties, without involving the user in addi-
tional interaction. Compared to interactive methods much is gained in ease of
use for non experts. With this intent we evaluate two model checking tools, SPIN
and UPPAAL. This enables us to analyze the modeling constraints that have
to be imposed, and also to provide a comparison of the tools and their suitabil-
ity for the verification of ad hoc routing protocols. The evaluation additionally
provides a good starting point for further work on infinite-state verification.

A MANET (Figure 1), is a spontaneous network of computers which com-
municate over a wireless medium. Nodes can join or leave at any time and are
free to move around as they desire. There is no centralized infrastructure and
so all participating nodes need to function both as end nodes and routers. Be-
cause the radio transmission range is limited, packets to distant recipients have
to be routed over some intermediate node(s) in order to reach nodes outside
direct transmission range. If one node has a path to another node, packets are
expected to be routed there correctly.
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Fig. 1. A mobile ad hoc network

The situations in which ad hoc networks can or will be applied are still a topic
of discussion, but scenarios such as search-and-rescue operations and sensor net-
works have been suggested [11, 16]. An ad hoc network needs a specifically de-
signed routing protocol. There is ideally no pre-configuration in such a network
and the network structure is expected to change constantly over time. There-
fore, the nodes do not know beforehand or even during a session exactly which
nodes are currently their direct neighbors. Consequently, most ad hoc routing
protocols are based on broadcasting as a way to detect and map the current
surroundings. There have been numerous ad hoc routing protocol proposals [28].
Currently, four of these are being considered for standardization by the Inter-
net Engineering Task Force (IETF) MANET group [9]. They are AODV [20],
DSR [12], OLSR [4] and TBRPF [19]. Very few attempts have so far been made
to formally verify their operation.

As in most other computer networking areas, simulations and live testing [16]
are most often employed to verify new protocols. The “Network Simulator -
ns2” [10] is commonly used for simulation studies, and for real-world comparisons
an assisting tool such as the “Ad hoc Protocol Evaluation (APE) testbed” [17]
can be utilized. Testing and simulation are not sufficient to verify that there are
no subtle errors or design flaws left in a protocol. If this goal is to be achieved
approaches based on formal methods will be needed. Our emphasis is deliberately
on automatic tools, since they are easier to use for non experts.

As a case study, the Lightweight Underlay Network Ad hoc Routing protocol
(LUNAR) [23] has been used. LUNAR has relatively low complexity compared
to many other ad hoc routing protocols and is intended as a platform to explore
novel ad hoc routing strategies. Even so, it has been shown to compete well with
more complex protocols such as OLSR and AODV [23]. The simplicity of the
core functionality in LUNAR enables us to more clearly study the modeling of
properties which are not tied to the protocol itself, such as connectivity, dynamics
and broadcasting. This way we can identify key considerations that apply to the
modeling of any ad hoc routing protocol.

The remainder of the paper is organized as follows. Section 2 describes ad hoc
routing protocols, problems that can occur in their operation, as well as a def-
inition of what we mean by correct operation. This section also introduces the
LUNAR protocol. Section 3 describes the verification that has been performed.
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Pros and cons of the different tools are discussed and lessons learned from ap-
plying them to LUNAR are presented. Section 4 covers relevant related work
and finally Section 5 provides conclusions and directions for future research.

2 Ad Hoc Routing Protocols

2.1 Correct Operation

The most fundamental error in routing protocol operation (ad hoc or otherwise)
is failure to route correctly. In addition to this, there are timing considerations
to be taken into account, since a protocol of this kind needs to be able to react
swiftly to topology changes.

In the following, when we say that a path exists between two nodes, we mean
that the path is valid for some time longer than what is required to complete the
route formation process. A route formation process is the process at the end of
which a particular routing protocol has managed to set up a route from a source
node to a destination node, possibly traversing one or more intermediate nodes.
The route can thereafter be used to send packets from source to destination until
the path becomes invalid as the result of a link breakage. This can occur because
a node moves out of range or because the protocol itself proactively dismantles
routes after a given time interval. For simplicity intermittent transmission errors
at the link/physical layer are treated as link breakages in our model.

A routing loop in a protocol is a situation in which, somewhere along the path
from the source to its destination a packet can enter a forwarding circle. This is
very undesirable since there appears to be a valid path, but in reality it cannot
be used to forward packets to the intended destination. As a practical example
consider the description of routing loop formation in the original formulation of
AODV [21] as described by Obradovic [18] (see Example 1).

Example 1. Looping behavior in AODV. The situation is depicted in Figure 2
and a brief explanation of the scenario is the following:

1. Node A initially has a route to node C through node B. The link between B
and C then suddenly goes down.

A B C A B C

RERR

A B C

RREP

RREQ

A B C

(1) (2)

(3) (4)

Fig. 2. Example AODV looping scenario
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2. The RERR message (an inherent part of the AODV protocol) from node B
to node A is lost and hence node A is not notified that the route to C has
become invalid.

3. Node B then sends out a route request for node C. Node A, still thinking
that it has a valid route responds that packets for C can therefore be sent
to it.

4. The result is a routing loop in which A will send packets for C to node B. B
on the other hand will send packets for C to node A.

These types of errors can be very subtle, and even expert designers may not
be capable of detecting flaws in new protocol specifications.

To assist us in determining the correctness of a particular protocol we provide
the following definition.

Definition 1. Correct operation of an ad hoc routing protocol
If there at one point in time exists a path between two nodes, then the protocol
must be able to find some path between the nodes. When a path has been found,
and for the time it stays valid, it shall be possible to send packets along the path
from the source node to the destination node.

The definition says nothing about the behavior of the protocol when there
are no paths between the nodes, but note that it excludes the possibility of
loops when valid paths are available. Consider the scenario above in situation
4. If the link between nodes B and C goes up again then there is a valid path
between A and C, but the protocol will keep using the loop between A and B,
thus breaking the definition of correctness.

2.2 LUNAR – A Protocol Overview

Lightweight Underlay Network Ad hoc Routing (LUNAR) [23] is a reactive ad
hoc routing protocol. The term “reactive” is used to denote that the protocol
discovers paths only when required. However, route maintenance is proactive
meaning that LUNAR rebuilds active paths from scratch every three seconds.

LUNAR creates an Internet Protocol (IP) subnet illusion by placing itself
below the IP layer and above the link layer, i.e. at “layer 2.5”. The IP layer of the
platform on which LUNAR is running is not aware of the presence of LUNAR.
Outgoing Address Resolution Protocol (ARP) solicit requests are trapped by
LUNAR at which point its own multi-hop route request procedure is initiated.
When a route reply has been received, the ARP table of the host is manipulated
to contain an IP→selector mapping instead of an IP→Medium Access Control
(MAC) address mapping. Selectors are addressing units analogous to the notion
of a port and are used by LUNAR to determine the correct operation to perform
on a given packet. Hence, when an outgoing IP packet is trapped, LUNAR
uses the selector to determine the path for the packet. The packet is thereafter
wrapped in a so called SAPF (Simple Active Packet Format) packet and delivered
to its destination. When a SAPF packet is received by a node, the selector value
which it contains is used to determine if it has reached its final destination, in
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Fig. 3. LUNAR route formation overview

which case it is delivered up the IP stack. If this is not its final destination, it is
forwarded along the next hop.

Broadcast dampening is an important part of the protocol and makes sure
that packets are not rebroadcast more than once, thus avoiding broadcast storms.
Typical usage areas for LUNAR are spontaneous ad hoc networks and wireless
ad hoc Internet access links. Example 2 gives a short informal explanation of
the route formation process in order to facilitate the understanding of the algo-
rithm. Note that the simultaneous back path creation has here been omitted as
a modeling simplification.

Example 2. LUNAR route formation. The situation is depicted in Figure 3. In
the figure grey, dashed, bidirectional arrows indicate connectivity. The black,
solid, unidirectional arrows indicate paths that have been set up in the network.
An overview of the route formation process is as follows.

1. Node A wants to set up a route to node C and therefore broadcasts a LUNAR
route request (RREQ).

2. The RREQ is only received by node B who concludes that it is not the node
sought and therefore rebroadcasts the request. Before doing so, however, it
connects the new request to a back path back to the originally requesting
node (which is A).

3. The RREQ is now received by both A and C. A, through the use of the
dampening mechanism concludes that the request originates from itself and
drops it. C on the other hand, receives and handles the request. Since it
is itself the requested node it sets up a “port” for later reception of IP
packets, after which it generates a route reply (RREP) destined for B. When
B receives this RREP it notes that it is a response to an original request
from A, therefore it forwards the response to A. Before doing so, however,
it sets up a relay so that packages received for C are forwarded to the port
set up there.

4. When A receives the RREP it constructs an outgoing port to which IP
packets destined for C are to be sent. This port is connected to the relay at
B which is in turn connected to the port at C.
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3 Case Study: Verification of LUNAR

3.1 The Model and Its Limitations

We have used a somewhat simplified version of LUNAR for our verification [27].
Apart from the simultaneous back path creation, features [23] such as automatic
address configuration and forced route rediscovery, etc. are missing in our de-
scription. The same goes for the RREQ Time To Live (TTL) field since the
diameters of the networks studied are small enough that we do not need to limit
them explicitly.

3.2 Central Modeling Issues

When modeling an ad hoc network protocol, apart from the usual considerations
regarding limiting the resulting state space, the following questions are central:

– How do we model broadcast?
– How do we model connectivity? This influences the handling of broadcast.
– How do we model topology changes (dynamics)? This directly influences the

connectivity graph.

In the two sections that follow, besides giving our model checking results, we
describe our solutions to each of the above issues.

3.3 Verification Using SPIN

SPIN [7] is a model checking tool that can be used for formal verification of
distributed software systems. System descriptions are given in the high level
language PROMELA (PROcess MEta LAnguage) and requirements to be veri-
fied can either be given as assertions directly in the code and/or by specifying
correctness properties as Linear Temporal Logic (LTL) formulae. SPIN works
on-the-fly, i.e. does not need to construct the complete state space prior to ver-
ification, instead this is done dynamically during processing. Furthermore, as
a measure to cope with the state space explosion problem, SPIN includes a par-
tial order reduction algorithm [8]. The state space explosion problem refers to
the situation in which the state space generated by the model because of paral-
lelism becomes so large that all the visited states cannot be stored. In the worst
case the state space grows exponentially with the length of the program.

We use SPIN because of its relatively low learning threshold and powerful
model checking capabilities. A PROMELA model of LUNAR has thus been con-
structed. The model consists of about 250 lines of code excluding comments. Our
initial approach, and the one described in this work, has been to naively model
the complete system and model check it as a whole. We feel that demonstrating
that this is possible will lower the resistance to using these tools and increase
the chances of more people verifying their protocols.
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Connectivity and Dynamics. The communication “ports” where each node
can be reached are modeled using PROMELA channels stored in an array in-
dexed by node id. Node id and MAC address are used interchangeably in our
model, which provides a straightforward addressing of nodes. To model connec-
tivity a symmetric, two dimensional, array of boolean values is used. The matrix
is symmetric since we assume nodes to be connected bidirectionally.

Node dynamics are modeled by modifying the connectivity matrix. In order
to reduce complexity, nodes either have or do not have connectivity. No inter-
mediate state is possible as it would be in a more realistic link/physical layer
model. It would be straightforward to model lower layers in a more detailed way,
but this again increases complexity and reduces the chances of successful model
checking because of the state space explosion problem.

Broadcasting. Due to the transient nature of radio communication, broadcast
is heavily used in most ad hoc networking protocols and LUNAR is no excep-
tion. In our model, broadcast is modeled by unicasting to all nodes with whom
the sending node presently has connectivity. A PROMELA macro has been con-
structed for this operation. This macro consults the corresponding row in the
connectivity array for the sending node and sends to all connected nodes using
the channel array. The unicast operations that represent a broadcast are imple-
mented atomically to ensure that no connectivity interruptions occur part way
through the process.

Limitations Imposed. In LUNAR, both remote and local selectors are ran-
domly selected from different ranges. Since they are specified to be 64 bits
long [23], the space of possible values is huge. In our PROMELA model we
are therefore forced to pick the selectors from a few limited values.

The local selectors, as their name implies, do not have to be globally unique
and are therefore selected from the same range for all nodes. However, the remote
selectors are meant to be globally unique and are chosen from different ranges.
When a new selector is needed, the selector port value is just monotonically
increased and assertions are used to make sure that the bounds are not violated.
The correct bounds to use are selected by experimentation. The abstraction of
selector values to a fairly limited range thus has no impact on the verification
since this range is set to accommodate the needed amount of values.

The abstraction of remote selector values could have had an influence on
the verification result if there was a possibility that the random selector values
in an implementation of the protocol were likely to coincide. However, because
of the large value space, this possibility is so minor that we consider it to be
insignificant.

Channel sizes, i.e. the number of outstanding messages in a channel at one
time, are in general kept as small as possible. These are selected by experimen-
tation to hold the required number of outstanding messages and do therefore
not have any impact on the verification results.
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Verification. The verification of the protocol is performed by setting up the
model so that one node tries to send an IP packet to another node in the network.
The topology and node transitions are selected so that the two nodes are always
connected, possibly by traversing one or several other nodes. Initially, no routes
are set up in the network. The sending node therefore needs to initiate a route
discovery process and does so by sending out a LUNAR RREQ broadcast. If
and when it receives a reply it thereafter tries to send the IP packet along the
route that was set up. New RREQ:s are forced after topology changes and on
timeouts.

A global boolean message delivered is set to true when the correct re-
ceiving node has received the correct IP packet from the sending node (tagged
accordingly). A hop counter keeps track of the nodes traversed by the packet
before it reaches its destination and an assertion is used to verify that it does
not traverse more nodes than theoretically possible in the absence of loops. This
assertion is checked at the receiving node prior to setting message delivered.

Finally, another assertion is used in a timeout statement in order to check
that when one node times out because of inactivity, then message delivered
is true and the message has indeed been delivered. Using SPIN we also check
for the absence of deadlocks and conformance to the LTL formula <>message
delivered which verifies that a message will eventually be delivered.

In total, this is sufficient to show that the protocol functions correctly in
each situation studied according to the statement in Definition 1. In all our sce-
narios we have explicitly made certain that there is a possible path between the
two communicating end nodes and that each transition maintains this property.
If LUNAR had any looping behavior detectable in these situations, the LTL
formula above would not be fulfilled.

In our initial approach, the number of nodes is specified and then a topology
is generated nondeterministically. A recursive graph traversal is then performed
to see if there is a communication path possible between nodes 0 and 1. If there
is not, the program ends. If there is a possible path, then the node processes
are initiated and the route discovery is started, etc. In this manner, all possible
topologies are considered.

However, using this approach, the state space is already large without any
node connectivity transitions. When node mobility is also added, it is no longer
feasible to perform an exhaustive search even for a small number of nodes. There-
fore, we choose to focus on a few especially interesting scenarios which are de-
picted in Figure 4. These scenarios have been selected in an attempt to capture
situations that could cause problems for the protocol. In scenarios (a), (c), (d),
(e), (g) and (h) a situation can occur in which a route has been set up, but
is then broken before the packet could be delivered. In this case, a new route
should successfully be set up and the packet delivered along that one instead. In
(b), (d) and (f) an extra node suddenly appears, which could potentially cause
confusion for a routing protocol.

For scenarios (a), (b), (c), and (e) we are able to verify correct operation.
This effectively shows that LUNAR is loop free for these topologies (and node
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Fig. 4. Example classes of topology changes

transitions). For scenarios (d) and (f) we are not able to perform an exhaustive
search because of the state space explosion (see further below). Scenarios (g)
and (h) are not checked using SPIN.

Since we are doing brute force model checking it becomes important to uti-
lize the most powerful hardware available. For this reason, we have used a Sun
Fire 15k server with 36 UltraSPARC III+ CPUs at 900 MHz and 36 Gb of pri-
mary RAM to model check our scenarios. Unfortunately, SPIN models cannot
currently be compiled to take full advantage of a multi-threaded architecture.
There has been work on distributed LTL model checking algorithms for SPIN
by Brim et al [1] and they have also implemented an experimental version. The
performance increase is reported as promising. However, at this time there is no
SPIN implementation with this feature publicly available.

Table 1 shows our results for scenarios (a)-(f). SPIN is here used in exhaustive
search mode as opposed to the approximating bitstate hashing and hash-compact
modes since we are interested in verifying correctness. Further note that both
partial order reduction and COLLAPSE compression [7] are used everywhere.
As a reference, the values with only partial order reduction are given within
parentheses (where they differ). As can be seen, the state space rapidly grows
with the number of nodes. Even using four nodes, when topology changes become
just a bit more complex, the model checking fails because of memory restrictions
(32 bit application). Interesting to note is that for both four and five nodes, the
state space becomes much larger for the situation where one intermediate node
comes up after a while, than when it goes down.

3.4 Using UPPAAL to Prove Timing Requirements

UPPAAL [15] is a tool that can be used to verify real time aspects of computer
systems. The UPPAAL home page [25] provides the following definition: “UP-
PAAL is an integrated tool environment for modeling, validation and verification
of real-time systems modeled as networks of timed automata, extended with data
types (bounded integers, arrays, etc.)”. The environment has a graphical user
interface in which the automata are constructed by drawing them in a window
on the screen. The tool contains a simulator and a verifier in which requirements
are given as LTL formulae.

An UPPAAL model has been constructed in order to check timing require-
ments of LUNAR. The timing aspects that we focus on are to determine the-
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oretical lower and upper bounds on the route formation and message delivery
processes. We also check that the LUNAR model is deadlock free. In our UP-
PAAL model we introduce more abstraction than in the SPIN model. The main
reason for this is the unavailability of more complex data structures than arrays
which becomes relevant in the handling of LUNAR callbacks and redirections.

Timing Constraints. As mentioned before, the setting up of routes in an ad
hoc network is usually slower than in a conventional more static network. This
is because the topology needs to be rediscovered (usually by broadcasting) at
regular intervals. There is a tradeoff between the exchange of control packets
(used for topology analysis) and the delivery of data packets in the network. We
want to achieve an optimal balance that keeps the data packet delivery times as
low as possible.

Connectivity and Dynamics. As in the SPIN model, the UPPAAL model
uses arrays of booleans to represent inter-node connectivity. Either, there is
connectivity between two nodes or there is not. Node connectivity transitions
are modeled using a separate automaton, that can at any time move to its next
state whereby it manipulates the (global) connectivity table.

Broadcasting. In our version of UPPAAL broadcast channels can be used
for synchronization. However, communication can not be used for value passing
in UPPAAL and instead a combination of global data holders and committed
locations is the recommended procedure [25]. In our LUNAR UPPAAL model
broadcasting is handled similarly to unicasting except that the sending node (i.e.
the broadcast initiator) has to specify that a broadcast is intended. Then, the
medium automaton will set a global parameter bc sender specifying the sender’s
identity. This is, because in the case of broadcast, the connectivity check has been
deferred to the receiving nodes.

Table 1. SPIN verification results

Scenario States Transitions All states Memory Time
generated searched used [Mb] used

(a) 5715 12105 Yes 4.242 (6.188) 0.20 (0.20) s
(b) 269886 731118 Yes 33.05 (124.7) 12.33 (10.48) s
(c) 53614 128831 Yes 8.836 (30.12) 2.19 (1.92) s
(d) 4.58e+07 1.33e+08 No 4083 (4083) 5 h:57 min

(8.15e+06) (2.21e+07) (8 min:56 s)
(e) 1.41e+06 4.59e+06 Yes 170.4 (806.6) 1:36 (1:26) min:s
(f) 3.40e+07 1.22e+08 No 4083 (4083) 4 h:2 min

(7.27e+06) (2.50e+07) (9 min:43 s)



Automatized Verification of Ad Hoc Routing Protocols 353

Limitations Imposed. The limitations in the PROMELA model are also im-
posed on the UPPAAL model, for the same reasons. An additional limitation
that becomes relevant in the UPPAAL model is that it does not take into account
computation times in the nodes. The only places in which delays occur are in the
communications. This has been modeled by using a range, [MIN TRANSMIT TIME,
MAX TRANSMIT TIME] of possible delays. It provides a very rough approximation
of wireless network conditions and can in future versions be exchanged for a more
realistic Wireless Local Area Network (WLAN) model. There are such models
available [13], but we here choose the simplistic approach for lower network layers
in order to reduce complexity.

In current LUNAR implementations the RREQ resending is done in an elab-
orate way attempting first a limited discovery using a small network radius. After
this, several attempts are made with a larger radius. A timeout value is specified
per “ring”, i.e. per number of hops from the source node. After each RREQ
timeout there is an additional waiting period before making a new attempt. In
our model, however, we have chosen to settle for two timeout triggered resends.
This means that in total, three route formation attempts can be made. In com-
bination with a properly chosen timeout value, this is theoretically enough to
successfully set up a route (and deliver a packet) in the scenarios studied. Our
selected timeout value of 75 ms corresponds to three times the “ring” timeout
in current LUNAR implementations.

Verification. The verification is performed in a manner analogous to the one
described in Section 3.3. Namely, one node tries to set up a route to another
node after which it attempts to send a packet there. If the route could be set up,
the initiating node goes into a state unic rrep rec. If and when the correct IP
packet arrives at the receiver, it goes into a state ip rec ok. Using our UPPAAL
model we then verify deadlock freedom as well as timely route formation and
message delivery. The LTL formulae in Table 2 are used to verify the respective
properties.

There has been work done on extending UPPAAL to perform parallel model
checking by Behrmann et al [2]. The advantage gained is increased speed which
would in our case e.g. enable checking a wider range of scenarios. However, the
total required amount of memory is larger since the state space grows when
exploration is parallelized [2]. We have chosen to just study the standard (non
parallel) UPPAAL distribution here.

Table 2. LTL formulae used with UPPAAL model

Property LTL formula

Deadlock freedom A[] not deadlock

Route successfully set up A<> Lunar0.unic rrep rec

IP packet delivered A<> Lunar1.ip rec ok
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Table 3. UPPAAL verification results

Scenario Route Message States Search Memory Time
formation delivery searched complet- used used
time [ms] time [ms] ed [Mb]

(a) [8, 91] [12, 99] 15072 (12789) Yes 15.98 (16.10) 3.89 (3.23) s
(b) [8, 16] [12, 24] 12211 (9787) Yes 11.42 (11.48) 2.85 (2.56) s
(c) [8, 91] [12, 99] 22783 (18613) Yes 20.12 (17.28) 5.93 (5.01) s
(d) [8, 91] [12, 99] 50456 (41169) Yes 37.37 (35.51) 14.91 (12.26) s
(e) [8, 91] [12, 99] 123196 (106257) Yes 124.0 (109.0) 57.91 (50.44) s
(f) [8, 16] [12, 24] 134978 (109606) Yes 77.39 (77.24) 47.58 (42.61) s
(g) [12, 99] [18, 111] 2.01e+06 Yes 866.6 11:43 min:s

(1.78e+06) (779.4) (10:28)
(h) - - 2.97e+07 No 4078 1:59 h:min

(2.63e+07) (4082) (1:50)

With the scenarios and hardware described in Section 3.3, the route forma-
tion and message delivery times in Table 3 result. UPPAAL is here used with
aggressive state space reduction [2, 14]. As a reference, the values for conserva-
tive state space reduction (the default) are given within parentheses. In all our
measurements the state space representation uses minimal constraint systems.

The memory and time usage in Table 3 pertains to the case where all three
LTL formulae in Table 2 are checked. As communication delay we have used
the range [2, 4] ms. These measurements cannot be directly compared to the
ones in Table 1 for the SPIN verification because of the greater amount of ab-
straction introduced in the UPPAAL model. The RREQ generation strategy
also differs between the models because of the absence of timing in the SPIN
model. However, similar observations can be made for UPPAAL to those made
in SPIN, namely that the state space grows rapidly with the number of nodes.
Also, the nature of the topology changes influences the state space in a way
that may sometimes be difficulty to foresee. Further note in the timing values
that the shortest possible path is always the one found because of the rough
link/physical layer approximation with total determinism in packet delivery.

4 Related Work

The Verinet group [26] at the University of Pennsylvania have carried out formal
validation of AODV [18] and identified a flaw that could lead to loop formation.
This was done using the HOL [24] theorem prover and a SPIN model of AODV in
a two node setup (with an AODV router environment). They have also suggested
a modification and verified that, after this, the protocol was loop free. Their
approach verified the general case, but the methodology involves substantial
user interaction.

Das and Dill [5] have used predicate abstraction to prove the absence of
routing loops in a simplified version of AODV. The method yields a general
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proof but requires human involvement in the construction of the abstraction
predicates.

Engler et al [6] have studied three implementations of AODV and found 36
distinct errors, including a bug (routing loop) in the AODV specification itself.
The authors used their own model checker called CMC, which checks C and C++
implementations directly, eliminating the need for a separate abstract description
of the system behavior. The model checker performs its work automatically.
However, prior to execution, in addition to specifying correctness properties, the
user has to define an environment as well as providing guard functions for each
event handler. Furthermore, their approach is not aimed at proving correctness,
but rather as a method of finding bugs in the code since an exhaustive state
space search can generally not be performed.

Chiyangwa and Kwiatkowska [3] have constructed an UPPAAL model of
AODV in order to investigate timing properties of the protocol. To cope with the
state explosion problem, a linear topology has been used with sender, receiver,
and an intermediate n nodes node. Using 12 intermediate nodes, the authors
could conclude that the dependency of route life time on network size is undesir-
able and suggested a modification where it instead adapts as the network grows.
This work is closely related to ours, but they have focused on UPPAAL and
studied a single (linear) scenario type. The methodology involves manual con-
sideration in constructing the specialized model. Apart from studying a different
protocol, we have taken a broader view comparing two verification approaches
with an emphasis on the modeling of connectivity, dynamics and broadcasting.

Xiong et al [29] have modeled AODV using colored Petri nets (CPN). To
cope with the mobility problem they have proposed a topology approximation
(TA) mechanism. Simulation results show that the TA mechanism can indeed
simulate the mobility of a MANET without knowing its actual topology.

Theo Ruys’ PhD thesis [22] discusses different methods for modeling broad-
cast in SPIN. An alternative to our connectivity array would be to use a matrix
of channels. Furthermore, instead of a broadcast macro, a broadcast service pro-
cess could have been used. Since we have utilized asynchronous channels with
large enough capacity for the broadcasts, this choice has not had any impact on
the asynchronous nature of the message delivery process.

5 Conclusions and Future Work

This work is to our knowledge the first to study a range of topologies in order to
determine where the limit actually is when performing model checking on an ad
hoc routing protocol. We demonstrate that LUNAR works correctly (according
to our general definition) for a number of routing scenarios. We further provide
bounds for route formation and message delivery times.

When verifying both the data and control aspects of the LUNAR protocol
using SPIN and when verifying the timing properties using UPPAAL the size of
network, i.e. the number of nodes involved, as well as the nature of the topological
scenarios is limited due to state space storage overhead. Even if parallel model
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checking approaches were used, our conclusion is that it is at this point not
feasible to provide a proof for topologies of any significant size by modeling the
protocol directly. On the other hand, our study enables us not only to analyze
the modeling considerations that have to be imposed, but also provides us with
a solid starting point for the further work we intend to pursue in the direction
of infinite-state verification of ad hoc routing protocols.

Our emphasis has been on automatic model checkers in which the user pro-
vides a system specification and a number of requirements to check. The con-
struction of models for these tools naturally still involves a certain amount of
manual consideration. However, now that many of the modeling considerations
have been identified, constructing verifiable models for both tools can be made
rather close to the engineering activity of programming. Ultimately our goal is
for the whole process to require knowledge primarily of the application, namely
the ad hoc routing protocol, and not of the model checking tool. At present it
is still necessary to manually (experimentally) limit the topologies and devise
LTL formulae. This can be remedied by introducing specialized macros in com-
bination with an ad hoc routing protocol preprocessor. Standard formulae could
thereby be used for common situations, e.g. route setup and packet delivered.

We aim to evaluate current and upcoming parallel model checking tools in
order to see where the limit in terms of number of nodes and topology dynamics
currently is. We will perform these analyses on a super computer which has a very
large amount of primary memory available. Further studies are also planned
which involve other ad hoc routing protocols such as the ones being considered
for standardization by the MANET group.

In order to provide a general proof of correctness in an automatic way, it is
however not enough to study just a limited set of topologies. We need to study
all available permutations for any given number of nodes. Therefore we will focus
on the following directions for future research:

– Isolate the critical aspects of the ad hoc routing protocol to hand and model
check those. A theorem prover can then be used to construct a general proof.
This requires significant user interaction. It would be a great advantage if
this process can be made more automatic.

– Employ a formal construction method rather than a post-construction verifi-
cation and evaluate if there are ways to make that process more user friendly.

– Attempt an automatized infinite-state verification approach.

We currently consider the last approach as the most promising in terms of
simplifying the verification process while still being able to provide a general
proof.
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