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Introduction

@ Model checking:
e Specification is given in a temporal logic (LTL, CTL, ...)
e System is modelled as a finite state machine

e Symbolic model checking:
o Encodes the finite state machine with boolean formulas

e Can handle more than 10%° states
e Originally done with Binary Decision Diagrams:

o Canonical form
o Can become too large for large systems
o Size and complexity is affected by the ordering of variables

@ SAT solvers also operate on boolean expressions:

e Do not require a different canonical form
o Efficient with thousands of variables
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Idea

@ The basic idea of bounded model checking is to consider
only a finite prefixz of a path that is a counterexample of
the property that we want to prove

e For LTL, this is a solution to an existential model checking
problem for the negation of a formula

o If we search all possible finite prefizes without finding a
solution, then such solution does not exist and the property
holds
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@ Paths, Bounded Prefixes and Loops
© Equivalence between bounded and unbounded

© Finding a path through SAT
e Translation of the Finite State Machine
@ Translation of the LTL formula

@ Determining the bound

@ Evaluation of the method
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e Sequence: m = (sq, 51, ...), T(i) = 85, T = (84, Si+1, --

e Path: 7, where 7(i) = m(i 4+ 1) for all i € N

o Semantics of LTL for paths :

TEDp
TE—p
TEfAg
TEfVyg
TEGS
TnEFf
TmEXf
m E fUg
mFE fRg

iff
iff

p € U(x(0))

p & U(r(0))

TE fand mEg
TEformEg

Vil E f

Ji.nt = f

TtEf

Ji[rt E g and Vj,j < i.77 E f]
Vi[r' E g or 35,5 < i/ F f]
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Bounded Prefixes and Loops

@ We check only bounded prefixes of a path

@ The prefix might be finite, but it can represent an infinite
path if it has a back loop from the last state of the prefix to
a previous state

o These back loops are essential if the path should be a
witness of an infinite behaviour (e.g. in Gp)
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Bounded Prefixes and Loops

We check only bounded prefixes of a path

The prefix might be finite, but it can represent an infinite
path if it has a back loop from the last state of the prefix to
a previous state

These back loops are essential if the path should be a
witness of an infinite behaviour (e.g. in Gp)

For | < k we call a path 7 a (k,l)-loop if:
o m(k) — m(l) and
o m=uwu-v¥ withu= (7(0),...,7(l — 1)) and
v=(x(),...,7(k)).
We call 7 simply a k-loop if there is an [ € N with [ < k
for which 7 is a (k,1)-loop
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Bounded Prefixes and Loops

@ We can define 7 Fy f with the expected semantics

@ Gp can only hold for a path with a loop
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Equivalence between bounded and unbounded

o If A is an LTL formula and m a path, then 1 £, h = 7 E h

o Let f be an LTL formula and M a Kripke structure. If
M E Ef then there exists k € N with M Fp Ef
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Equivalence between bounded and unbounded

o If A is an LTL formula and m a path, then 1 £, h = 7 E h

o Let f be an LTL formula and M a Kripke structure. If
M E Ef then there exists k € N with M Fp Ef

Proof sketch:
@ Initially: Existential LTL model checking problem

@ Transform: Fair CTL model checking problem for EGtrue
in a product Kripke structure
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M E Ef then there exists k € N with M Fp Ef

Proof sketch:

@ Initially: Existential LTL model checking problem
@ Transform: Fair CTL model checking problem for EGtrue
in a product Kripke structure
@ Assertion: f being existentially valid in M implies a path
in the product structure that
o starts with an initial state
e ends with a cycle in the SCC of fair states
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Equivalence between bounded and unbounded

o If A is an LTL formula and m a path, then 1 £, h = 7 E h

o Let f be an LTL formula and M a Kripke structure. If
M E Ef then there exists k € N with M Fp Ef

Proof sketch:

@ Initially: Existential LTL model checking problem
@ Transform: Fair CTL model checking problem for EGtrue
in a product Kripke structure
@ Assertion: f being existentially valid in M implies a path
in the product structure that
o starts with an initial state
e ends with a cycle in the SCC of fair states
@ Reverse: Transform cycle to a k-loop in the original M
(which also satisfies 7 F f)
@ By definition, 7 Fy, f
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Finding a path with SAT

The solution (if it exists) will be a path

We encode the states of the FSM with boolean vectors
The solution of the bounded model checking problem will
appear as a path encoded in the variables of the SAT
problem

The path will have to satisfy:

o Initial states
e Transition relation
o Certain predicates for each state in the path
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Translation of the Finite State Machine

If we pick a specific bound k then the Kripke structure can be
translated to the following boolean formula:

[MTy == I(s0) A k/:\; T(s,5i11)
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Detecting paths with loops

e Not all LTL formulas can hold in a bounded non-looping
path (Gp can never hold)

o There exist different SAT translations for the LTL
operators depending on whether the path has a loop or not
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Detecting paths with loops

e Not all LTL formulas can hold in a bounded non-looping
path (Gp can never hold)

o There exist different SAT translations for the LTL
operators depending on whether the path has a loop or not

o The existence of a loop can be decided with another
boolean formula:

1Ly = T(sk, 1)
k

Lk = \/ lLk
=0
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Translation of the LTL formula

e The simplest case: m E p iff p € [(7(0))

o This means that the respective state must satisfy the
predicate

@ We can construct a SAT term for this using the boolean
encoding

[p]* == p(si)
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Translation of the LTL formula

e The simplest case: m E p iff p € [(7(0))

o This means that the respective state must satisfy the
predicate

@ We can construct a SAT term for this using the boolean
encoding

[p]* := p(s:)
o For the other LTL operators more complex terms need to
be constructed (taking bounds and loops into account)

Example:
, k .
[Fpl;, = V [pli
Jj=i

Fpl}, == \k/ ol

j=min(i,l)
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Putting it all together

For a Kripke structure M and an LTL formula f:

4 = Dl (B LD V Y (2 mil19))
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Determining the bound

@ Searching for all possible bounds is of course intractable

o There exist several theorems for the higher necessary
bound k depending on the particular temporal logic
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Determining the bound

@ Searching for all possible bounds is of course intractable

o There exist several theorems for the higher necessary
bound k depending on the particular temporal logic
o ECTL:

o | M|, the number of states in M

o Better: Diameter of the Kripke structure (if a state is
reachable from another, then it can be reached with a path
of this length at most)
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Determining the bound

Searching for all possible bounds is of course intractable

There exist several theorems for the higher necessary
bound k depending on the particular temporal logic
ECTL:

o | M|, the number of states in M

o Better: Diameter of the Kripke structure (if a state is
reachable from another, then it can be reached with a path
of this length at most)

LTL:
o |M]|- olfl
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Determining the bound

Searching for all possible bounds is of course intractable

There exist several theorems for the higher necessary
bound k depending on the particular temporal logic
ECTL:
o | M|, the number of states in M
o Better: Diameter of the Kripke structure (if a state is
reachable from another, then it can be reached with a path
of this length at most)
LTL:
|M]| - olfl
LTL model checking is PSPACE-complete.
Polynomial-time reduction to SAT — LTL € NP.

Therefore, a polynomial bound on k& with respect to the size
of M and f is unlikely to be found unless PSPACE = NP.
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Evaluation of the method

Results from Bounded Model Checking (2003) by Armin Biere,
Alessandro Cimatti, Edmund M. Clarke, Ofer Strichman,
Yunshan Zhu
@ Several groups report that SAT based Bounded Model
Checking is typically faster in finding bugs compared to
BDDs
o The deeper the bug is (i.e. the longer the shortest path
leading to it is), the less advantage BMC has.
o With state of the art SAT solvers and typical hardware
designs (as of 2003), it usually cannot reach bugs beyond
80 cycles in a reasonable amount of time, although there
are exceptions
@ In any case, BMC can solve many of the problems that
cannot be solved by BDD based model checkers.
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Evaluation of the method

o It is possible to tune SAT solvers by exploiting the
structure of the problem being encoded in order to increase
efficiency.

o Notable contributions are:

o use of problem-dependent variable ordering and splitting
heuristics in the SAT solver

e pruning the search space by exploiting the regular structure
of BMC formulas

e reusing learned information between the various SAT
instances

o Incremental SAT solver:

e Rather than generating a new SAT instance for each
attempted bound clauses are added and removed from a
single SAT instance

e retain the learned information from the previous instances
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Assignment,

In the following Kripke structure you are asked to check if the
LTL property G—b holds using bounded model checking;:

R O OmOL
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Symbolic Model Checking without BDDs

Thank you!
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