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Introduction

Model checking:

Specification is given in a temporal logic (LTL, CTL, . . . )
System is modelled as a finite state machine

Symbolic model checking:

Encodes the finite state machine with boolean formulas
Can handle more than 1020 states
Originally done with Binary Decision Diagrams:

Canonical form
Can become too large for large systems
Size and complexity is affected by the ordering of variables

SAT solvers also operate on boolean expressions:

Do not require a different canonical form
Efficient with thousands of variables
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Idea

The basic idea of bounded model checking is to consider
only a finite prefix of a path that is a counterexample of
the property that we want to prove

For LTL, this is a solution to an existential model checking
problem for the negation of a formula

If we search all possible finite prefixes without finding a
solution, then such solution does not exist and the property
holds
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Overview

1 Paths, Bounded Prefixes and Loops

2 Equivalence between bounded and unbounded

3 Finding a path through SAT
Translation of the Finite State Machine
Translation of the LTL formula

4 Determining the bound

5 Evaluation of the method
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Paths

Sequence: π = (s0, s1, ...), π(i) = si, π
i = (si, si+1, ...)

Path: π, where π(i)→ π(i+ 1) for all i ∈ N
Semantics of LTL for paths π:

π � p iff p ∈ l(π(0))
π � ¬p iff p /∈ l(π(0))
π � f ∧ g iff π � f and π � g
π � f ∨ g iff π � f or π � g
π � Gf iff ∀i.πi � f
π � Ff iff ∃i.πi � f
π � Xf iff π1 � f
π � fUg iff ∃i[πi � g and ∀j, j < i.πj � f ]
π � fRg iff ∀i[πi � g or ∃j, j < i.πj � f ]
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Bounded Prefixes and Loops

We check only bounded prefixes of a path

The prefix might be finite, but it can represent an infinite
path if it has a back loop from the last state of the prefix to
a previous state

These back loops are essential if the path should be a
witness of an infinite behaviour (e.g. in Gp)

For l ≤ k we call a path π a (k,l)-loop if:

π(k)→ π(l) and
π = u · vω with u = (π(0), . . . , π(l − 1)) and
v = (π(l), . . . , π(k)).

We call π simply a k-loop if there is an l ∈ N with l ≤ k
for which π is a (k, l)-loop
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Bounded Prefixes and Loops

We can define π �k f with the expected semantics

Gp can only hold for a path with a loop
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Equivalence between bounded and unbounded

If h is an LTL formula and π a path, then π �k h⇒ π � h

Let f be an LTL formula and M a Kripke structure. If
M � Ef then there exists k ∈ N with M �k Ef

Proof sketch:

1 Initially: Existential LTL model checking problem
2 Transform: Fair CTL model checking problem for EGtrue

in a product Kripke structure
3 Assertion: f being existentially valid in M implies a path

in the product structure that

starts with an initial state
ends with a cycle in the SCC of fair states

4 Reverse: Transform cycle to a k-loop in the original M
(which also satisfies π � f)

5 By definition, π �k f
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Finding a path with SAT

The solution (if it exists) will be a path

We encode the states of the FSM with boolean vectors

The solution of the bounded model checking problem will
appear as a path encoded in the variables of the SAT
problem

The path will have to satisfy:

Initial states
Transition relation
Certain predicates for each state in the path
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Translation of the Finite State Machine

If we pick a specific bound k then the Kripke structure can be
translated to the following boolean formula:

JMKk := I(s0) ∧
k−1∧
i=0

T (si, si+1)
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Detecting paths with loops

Not all LTL formulas can hold in a bounded non-looping
path (Gp can never hold)

There exist different SAT translations for the LTL
operators depending on whether the path has a loop or not

The existence of a loop can be decided with another
boolean formula:

lLk = T (sk, sl)

Lk :=
k∨

l=0
lLk
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Translation of the LTL formula

The simplest case: π � p iff p ∈ l(π(0))

This means that the respective state must satisfy the
predicate

We can construct a SAT term for this using the boolean
encoding

JpKi := p(si)

For the other LTL operators more complex terms need to
be constructed (taking bounds and loops into account)

Example:

JFpKik :=
k∨

j=i
JpKjk

lJFpKik :=
k∨

j=min(i,l)
lJpK

j
k
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Putting it all together

For a Kripke structure M and an LTL formula f :

JM,fKk := JMKk ∧
((
¬Lk ∧ JfK0

k

)
∨

k∨
l=0

(
lLk ∧ lJfK0

k

))
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Determining the bound

Searching for all possible bounds is of course intractable

There exist several theorems for the higher necessary
bound k depending on the particular temporal logic

ECTL:

|M |, the number of states in M
Better: Diameter of the Kripke structure (if a state is
reachable from another, then it can be reached with a path
of this length at most)

LTL:

|M | · 2|f |
LTL model checking is PSPACE-complete.
Polynomial-time reduction to SAT → LTL ∈ NP.
Therefore, a polynomial bound on k with respect to the size
of M and f is unlikely to be found unless PSPACE = NP.
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Evaluation of the method

Results from Bounded Model Checking (2003) by Armin Biere,
Alessandro Cimatti, Edmund M. Clarke, Ofer Strichman,
Yunshan Zhu

Several groups report that SAT based Bounded Model
Checking is typically faster in finding bugs compared to
BDDs

The deeper the bug is (i.e. the longer the shortest path
leading to it is), the less advantage BMC has.

With state of the art SAT solvers and typical hardware
designs (as of 2003), it usually cannot reach bugs beyond
80 cycles in a reasonable amount of time, although there
are exceptions

In any case, BMC can solve many of the problems that
cannot be solved by BDD based model checkers.
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Evaluation of the method

It is possible to tune SAT solvers by exploiting the
structure of the problem being encoded in order to increase
efficiency.

Notable contributions are:

use of problem-dependent variable ordering and splitting
heuristics in the SAT solver
pruning the search space by exploiting the regular structure
of BMC formulas
reusing learned information between the various SAT
instances

Incremental SAT solver:

Rather than generating a new SAT instance for each
attempted bound clauses are added and removed from a
single SAT instance
retain the learned information from the previous instances
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Assignment

In the following Kripke structure you are asked to check if the
LTL property G¬b holds using bounded model checking:

s0start s1

s2

s3 {b}

Stavros Aronis Bounded Model Checking 17/18



Symbolic Model Checking without BDDs

Thank you!
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