
Separation Logic: A Logic for Shared Mutable
Data Structures

Paper presentation of John C. Reynolds

Ramūnas Gutkovas1

1Uppsala University
Department of Information Technology

May 11, 2012



Motivation
Example

Reversing a linked-list in place

j := nil;
while i 6= nil do (

k := [i + 1];
[i + 1] := j ;
j := i ;
i := k )

Input/Output

i is a pointer to a linked-list being reversed. After execution, j
points to the reversed list.

Invariant
What is invariant of the loop?



Motivation
Example

k := [i + 1]

[i + 1] := j

j := i

i := k

nil

i

j k



Motivation
Example

k := [i + 1]

[i + 1] := j

j := i

i := k

nil

i

j k



Motivation
Example

k := [i + 1]

[i + 1] := j

j := i

i := k

nil nil

i

j k



Motivation
Example

k := [i + 1]

[i + 1] := j

j := i

i := k

nil nil

i

j k



Motivation
Example

k := [i + 1]

[i + 1] := j

j := i

i := k

nil nil

i

j k



Motivation
Example

k := [i + 1]

[i + 1] := j

j := i

i := k

nil nil

i

j k



Motivation
Example

k := [i + 1]

[i + 1] := j

j := i

i := k

nil nil

i

j k



Motivation
Example

k := [i + 1]

[i + 1] := j

j := i

i := k

nil nil

i

j k



Motivation
Example

k := [i + 1]

[i + 1] := j

j := i

i := k

nil nil

i

j k



Motivation
Example

k := [i + 1]

[i + 1] := j

j := i

i := k

nil nil

i

j k



Motivation
Example

k := [i + 1]

[i + 1] := j

j := i

i := k

nil nil

i

j k



Motivation
Example

k := [i + 1]

[i + 1] := j

j := i

i := k

nil nil

i

j k



Motivation
Example

k := [i + 1]

[i + 1] := j

j := i

i := k

nil nil

i

j k



Motivation
Example

I Suppose we have a predicate which relates sequences and
their representation in the program.

listα i

Asserts that α is a sequence represented by the linked list
pointed by the variable i .

I Then the invariant of the loop may look like

∃α, β. listα i ∧ listβ j ∧ α†0 = α† · β

where α0 is the given sequence (initially pointed by i), α† is
reflection of α, and α · β is concatenation of α, β.



Motivation
Example

Reversing a linked-list in place and ?

while i 6= nil do (
k := [i + 1];
[i + 1] := j ;
j := i ;
i := k )

Input/Output

i and j are pointers to linked lists.

Invariant
Do we need to change the invariant?



Motivation
Example

Reversing a linked-list in place and appending1

while i 6= nil do (
k := [i + 1];
[i + 1] := j ;
j := i ;
i := k )

Input/Output

i and j are pointers to linked lists. After execution, j points to a
list where the initial segment is the reveres i list and the tail is j
list before execution.

Invariant
Do we need to change the invariant?

1e.g., revappend in CL



Motivation
Example

If the lists i and j are shared.

k := [i + 1]

[i + 1] := j

j := i

i := k

nil

i

j



Motivation
Example

If the lists i and j are shared.

k := [i + 1]

[i + 1] := j

j := i

i := k

nil

i

j



Motivation
Example

I We need to extend the invariant which asserts that the lists
cannot be shared.

∃α, β. listα i ∧ listβ j ∧ α†0 = α† · β
∧ (∀k . reach i k ∧ reach j k =⇒ k = nil)

where the predicate reach i j tells that there is a path from the
pointer i to j by following the links in the linked list linked
by i .



Motivation
Example

The list m shares the structure of the list i

nil

i x

j k

Unwanted result
The execution of the algorithm would affect m.



Motivation
Example

I Now we need to talk about, in the invariant, that we did not
accidentally clobber an unrelated list!

(∃α, β. listα i ∧ listβ j ∧ α†0 = α† · β) ∧ list γ x
∧ (∀k. reach i k ∧ reach j k =⇒ k = nil)
∧ (∀k. reach x k ∧ (reach i k ∨ reach j k) =⇒ k = nil)

I This is just 5 lines of code!



Enter Separation Logic

I The achievement of Separation Logic is to invert the
reasoning: instead of specifying what is not shared, one
specifies what is.

I This is done by introducing a logical operation called
separating conjunction denoted P ∗ Q.

I This logical operation allows us to express the loop invariant
intuitively

∃α, β. (listα i ∗ listβ j) ∧ α†0 = α† · β



Separation Logic
How does it work: The Language

The programming language is an extension of Hoare’s imperative
language with primitives for the manipulation of mutable shared
data structures. Semantically, computation states contain a store
and a stack.

I x := cons(e1, . . . , en)
Allocates new active cells in the heap and assigns the address
of the first cell to the variable x in the store. Never aborts.

I x := [e]
Dereferences the address computed from the expression e and
assigns the value to x in the store. Aborts if there is no active
cell at this address.

I [el ] := er
Mutates the cell at the address computed from el . Aborts if
the cell is not active.

I dispose(e) Frees the cell at the address e. Aborts if the cell is
not active.



Separation Logic
How does it work: The Language

The programming language is an extension of Hoare’s imperative
language with primitives for the manipulation of mutable shared
data structures. Semantically, computation states contain a store
and a stack.

I x := cons(e1, . . . , en)
Allocates new active cells in the heap and assigns the address
of the first cell to the variable x in the store. Never aborts.

I x := [e]
Dereferences the address computed from the expression e and
assigns the value to x in the store. Aborts if there is no active
cell at this address.

I [el ] := er
Mutates the cell at the address computed from el . Aborts if
the cell is not active.

I dispose(e) Frees the cell at the address e. Aborts if the cell is
not active.



Separation Logic
How does it work: The Language

The programming language is an extension of Hoare’s imperative
language with primitives for the manipulation of mutable shared
data structures. Semantically, computation states contain a store
and a stack.

I x := cons(e1, . . . , en)
Allocates new active cells in the heap and assigns the address
of the first cell to the variable x in the store. Never aborts.

I x := [e]
Dereferences the address computed from the expression e and
assigns the value to x in the store. Aborts if there is no active
cell at this address.

I [el ] := er
Mutates the cell at the address computed from el . Aborts if
the cell is not active.

I dispose(e) Frees the cell at the address e. Aborts if the cell is
not active.



Separation Logic
How does it work: The Language

The programming language is an extension of Hoare’s imperative
language with primitives for the manipulation of mutable shared
data structures. Semantically, computation states contain a store
and a stack.

I x := cons(e1, . . . , en)
Allocates new active cells in the heap and assigns the address
of the first cell to the variable x in the store. Never aborts.

I x := [e]
Dereferences the address computed from the expression e and
assigns the value to x in the store. Aborts if there is no active
cell at this address.

I [el ] := er
Mutates the cell at the address computed from el . Aborts if
the cell is not active.

I dispose(e) Frees the cell at the address e. Aborts if the cell is
not active.



Separation Logic
How does it work: Assertions

Assertions are an extension of the usual predicate calculus.

I emp empty heap
Asserts that the heap is empty.

I ea 7→ ev singleton heap
Asserts that the heap contains exactly one cell with address ea
and the value stored ev .

I P ∗ Q separating conjunction
Asserts that the heap can be split into two disjoint heaps
(address wise) and P is true in one, and Q is true in the other.

I P −∗Q separating implication
Asserts that if the heap can be extended with a disjoint heap
in which P holds, then Q holds in the extended heap.



Separation Logic
How does it work: Assertions

Assertions are an extension of the usual predicate calculus.

I emp empty heap
Asserts that the heap is empty.

I ea 7→ ev singleton heap
Asserts that the heap contains exactly one cell with address ea
and the value stored ev .

I P ∗ Q separating conjunction
Asserts that the heap can be split into two disjoint heaps
(address wise) and P is true in one, and Q is true in the other.

I P −∗Q separating implication
Asserts that if the heap can be extended with a disjoint heap
in which P holds, then Q holds in the extended heap.



Separation Logic
How does it work: Assertions

Assertions are an extension of the usual predicate calculus.

I emp empty heap
Asserts that the heap is empty.

I ea 7→ ev singleton heap
Asserts that the heap contains exactly one cell with address ea
and the value stored ev .

I P ∗ Q separating conjunction
Asserts that the heap can be split into two disjoint heaps
(address wise) and P is true in one, and Q is true in the other.

I P −∗Q separating implication
Asserts that if the heap can be extended with a disjoint heap
in which P holds, then Q holds in the extended heap.



Separation Logic
How does it work: Assertions

Assertions are an extension of the usual predicate calculus.

I emp empty heap
Asserts that the heap is empty.

I ea 7→ ev singleton heap
Asserts that the heap contains exactly one cell with address ea
and the value stored ev .

I P ∗ Q separating conjunction
Asserts that the heap can be split into two disjoint heaps
(address wise) and P is true in one, and Q is true in the other.

I P −∗Q separating implication
Asserts that if the heap can be extended with a disjoint heap
in which P holds, then Q holds in the extended heap.



Separation Logic

I x 7→ 1 asserts that x points to a cell in the heap which
stores 1.

I x 7→ 2 ∗ y 7→ 2 asserts that there are either two cells with
different addresses or one cell.

I x 7→ 2 ∧ y 7→ 2 asserts that x and y must be aliases.

I x 7→ 1 ∗ true asserts that the heap contains a cell which x
points to and stores 1.

I (x 7→ 1)−∗ p asserts that in every possible one cell extension
of current heap, that cell is present in the heap where p holds.



Separation Logic

I x 7→ 1 asserts that x points to a cell in the heap which
stores 1.

I x 7→ 2 ∗ y 7→ 2 asserts that there are either two cells with
different addresses or one cell.

I x 7→ 2 ∧ y 7→ 2 asserts that x and y must be aliases.

I x 7→ 1 ∗ true asserts that the heap contains a cell which x
points to and stores 1.

I (x 7→ 1)−∗ p asserts that in every possible one cell extension
of current heap, that cell is present in the heap where p holds.



Separation Logic

I x 7→ 1 asserts that x points to a cell in the heap which
stores 1.

I x 7→ 2 ∗ y 7→ 2 asserts that there are either two cells with
different addresses or one cell.

I x 7→ 2 ∧ y 7→ 2 asserts that x and y must be aliases.

I x 7→ 1 ∗ true asserts that the heap contains a cell which x
points to and stores 1.

I (x 7→ 1)−∗ p asserts that in every possible one cell extension
of current heap, that cell is present in the heap where p holds.



Separation Logic

I x 7→ 1 asserts that x points to a cell in the heap which
stores 1.

I x 7→ 2 ∗ y 7→ 2 asserts that there are either two cells with
different addresses or one cell.

I x 7→ 2 ∧ y 7→ 2 asserts that x and y must be aliases.

I x 7→ 1 ∗ true asserts that the heap contains a cell which x
points to and stores 1.

I (x 7→ 1)−∗ p asserts that in every possible one cell extension
of current heap, that cell is present in the heap where p holds.



Separation Logic

I x 7→ 1 asserts that x points to a cell in the heap which
stores 1.

I x 7→ 2 ∗ y 7→ 2 asserts that there are either two cells with
different addresses or one cell.

I x 7→ 2 ∧ y 7→ 2 asserts that x and y must be aliases.

I x 7→ 1 ∗ true asserts that the heap contains a cell which x
points to and stores 1.

I (x 7→ 1)−∗ p asserts that in every possible one cell extension
of current heap, that cell is present in the heap where p holds.



Separation Logic
Properties

I Separation Logic is a substructural logic.

I Every inference rule of first order logic remains sound.

I But contraction and weakening are not sound for the
separating conjunction, i.e.

p =⇒ p ∗ p p ∗ q =⇒ p

are not sound in general.

I Separating conjunction, ∗, is commutative, associative, has a
unit (namely emp), ∗ distributes over conjunction and
disjunction.



Separation Logic
Properties

I Separation Logic is a substructural logic.

I Every inference rule of first order logic remains sound.

I But contraction and weakening are not sound for the
separating conjunction, i.e.

p =⇒ p ∗ p p ∗ q =⇒ p

are not sound in general.

I Separating conjunction, ∗, is commutative, associative, has a
unit (namely emp), ∗ distributes over conjunction and
disjunction.



Separation Logic
Properties

I Separation Logic is a substructural logic.

I Every inference rule of first order logic remains sound.

I But contraction and weakening are not sound for the
separating conjunction, i.e.

p =⇒ p ∗ p p ∗ q =⇒ p

are not sound in general.

I Separating conjunction, ∗, is commutative, associative, has a
unit (namely emp), ∗ distributes over conjunction and
disjunction.



Separation Logic
Properties

I Separation Logic is a substructural logic.

I Every inference rule of first order logic remains sound.

I But contraction and weakening are not sound for the
separating conjunction, i.e.

p =⇒ p ∗ p p ∗ q =⇒ p

are not sound in general.

I Separating conjunction, ∗, is commutative, associative, has a
unit (namely emp), ∗ distributes over conjunction and
disjunction.



Separation Logic
Specification

I Specification is Hoare triple:

I Partial: {p}c{q}.
I Total: [p]c[q].

I The usual Hoare inference rules for triples hold: consequence,
auxiliary variable elimination, substitution.

I Except for the rule of constancy

{p}c{q}
{p ∧ r}c{q ∧ r}

I Example of failure

{∃z .x 7→ z}[x ] := 4{x 7→ 4}
{(∃z .x 7→ z) ∧ y 7→ 3}c{x 7→ 4 ∧ y 7→ 3}

The postcondition in the conclusion does not hold, since x
and y are not aliases.



Separation Logic
Specification

I Specification is Hoare triple:
I Partial: {p}c{q}.

I Total: [p]c[q].

I The usual Hoare inference rules for triples hold: consequence,
auxiliary variable elimination, substitution.

I Except for the rule of constancy

{p}c{q}
{p ∧ r}c{q ∧ r}

I Example of failure

{∃z .x 7→ z}[x ] := 4{x 7→ 4}
{(∃z .x 7→ z) ∧ y 7→ 3}c{x 7→ 4 ∧ y 7→ 3}

The postcondition in the conclusion does not hold, since x
and y are not aliases.



Separation Logic
Specification

I Specification is Hoare triple:
I Partial: {p}c{q}.
I Total: [p]c[q].

I The usual Hoare inference rules for triples hold: consequence,
auxiliary variable elimination, substitution.

I Except for the rule of constancy

{p}c{q}
{p ∧ r}c{q ∧ r}

I Example of failure

{∃z .x 7→ z}[x ] := 4{x 7→ 4}
{(∃z .x 7→ z) ∧ y 7→ 3}c{x 7→ 4 ∧ y 7→ 3}

The postcondition in the conclusion does not hold, since x
and y are not aliases.



Separation Logic
Specification

I Specification is Hoare triple:
I Partial: {p}c{q}.
I Total: [p]c[q].

I The usual Hoare inference rules for triples hold: consequence,
auxiliary variable elimination, substitution.

I Except for the rule of constancy

{p}c{q}
{p ∧ r}c{q ∧ r}

I Example of failure

{∃z .x 7→ z}[x ] := 4{x 7→ 4}
{(∃z .x 7→ z) ∧ y 7→ 3}c{x 7→ 4 ∧ y 7→ 3}

The postcondition in the conclusion does not hold, since x
and y are not aliases.



Separation Logic
Specification

I Specification is Hoare triple:
I Partial: {p}c{q}.
I Total: [p]c[q].

I The usual Hoare inference rules for triples hold: consequence,
auxiliary variable elimination, substitution.

I Except for the rule of constancy

{p}c{q}
{p ∧ r}c{q ∧ r}

I Example of failure

{∃z .x 7→ z}[x ] := 4{x 7→ 4}
{(∃z .x 7→ z) ∧ y 7→ 3}c{x 7→ 4 ∧ y 7→ 3}

The postcondition in the conclusion does not hold, since x
and y are not aliases.



Separation Logic
Specification

I Specification is Hoare triple:
I Partial: {p}c{q}.
I Total: [p]c[q].

I The usual Hoare inference rules for triples hold: consequence,
auxiliary variable elimination, substitution.

I Except for the rule of constancy

{p}c{q}
{p ∧ r}c{q ∧ r}

I Example of failure

{∃z .x 7→ z}[x ] := 4{x 7→ 4}
{(∃z .x 7→ z) ∧ y 7→ 3}c{x 7→ 4 ∧ y 7→ 3}

The postcondition in the conclusion does not hold, since x
and y are not aliases.



Separation Logic
Frame Rule

I A similar sound rule is introduced for separating conjunction,
called frame rule

{p}c{q}
{p ∗ r}c{q ∗ r}

I The frame rule allows for local and global reasoning: allows to
talk about only the part of the heap which is used.



Separation Logic
(Local) Inference Rules

I Mutation

{∃z .e 7→ z}[e] := e ′{e 7→ e ′}

I Deallocation

{∃z .e 7→ z}dispose e {emp}

I Allocation

{emp} v := cons e0, . . . , en−1 {v 7→ e0, . . . , v + n 7→ en−1}

I Lookup

{v = v ′ ∧ (e 7→ v ′′)} v := [e] {v = v ′′ ∧ (e[v ′/v ] 7→ v ′′)}



Separation Logic
(Local) Inference Rules

I Mutation

{∃z .e 7→ z}[e] := e ′{e 7→ e ′}
I Deallocation

{∃z .e 7→ z}dispose e {emp}

I Allocation

{emp} v := cons e0, . . . , en−1 {v 7→ e0, . . . , v + n 7→ en−1}

I Lookup

{v = v ′ ∧ (e 7→ v ′′)} v := [e] {v = v ′′ ∧ (e[v ′/v ] 7→ v ′′)}



Separation Logic
(Local) Inference Rules

I Mutation

{∃z .e 7→ z}[e] := e ′{e 7→ e ′}
I Deallocation

{∃z .e 7→ z}dispose e {emp}

I Allocation

{emp} v := cons e0, . . . , en−1 {v 7→ e0, . . . , v + n 7→ en−1}

I Lookup

{v = v ′ ∧ (e 7→ v ′′)} v := [e] {v = v ′′ ∧ (e[v ′/v ] 7→ v ′′)}



Separation Logic
(Local) Inference Rules

I Mutation

{∃z .e 7→ z}[e] := e ′{e 7→ e ′}
I Deallocation

{∃z .e 7→ z}dispose e {emp}

I Allocation

{emp} v := cons e0, . . . , en−1 {v 7→ e0, . . . , v + n 7→ en−1}

I Lookup

{v = v ′ ∧ (e 7→ v ′′)} v := [e] {v = v ′′ ∧ (e[v ′/v ] 7→ v ′′)}



Separation Logic
Inference Rules

I Global and backward rules can be obtained by using the frame
rule.

I The obtained backward reasoning rules give the complete
weakest precondition.

I Backward rules use separating implication, e.g.

{(∃z .e 7→ z) ∗ ((e 7→ e ′)−∗p)} [e] := e ′ {p}



Separation Logic
Inference Rules

I Global and backward rules can be obtained by using the frame
rule.

I The obtained backward reasoning rules give the complete
weakest precondition.

I Backward rules use separating implication, e.g.

{(∃z .e 7→ z) ∗ ((e 7→ e ′)−∗p)} [e] := e ′ {p}



Separation Logic
Inference Rules

I Global and backward rules can be obtained by using the frame
rule.

I The obtained backward reasoning rules give the complete
weakest precondition.

I Backward rules use separating implication, e.g.

{(∃z .e 7→ z) ∗ ((e 7→ e ′)−∗p)} [e] := e ′ {p}



Separation Logic
Resources

I Separation Logic home:
http://www.cs.ucl.ac.uk/staff/p.ohearn/

SeparationLogic/Separation_Logic/SL_Home.html

I Jesper Bengtson on Wednesday, May 16th, 2012 at 10:30 in
room 1112 will talk about ”Efficient verification of
Java-programs using higher-order separation logic in Coq”.

http://www.cs.ucl.ac.uk/staff/p.ohearn/SeparationLogic/Separation_Logic/SL_Home.html
http://www.cs.ucl.ac.uk/staff/p.ohearn/SeparationLogic/Separation_Logic/SL_Home.html


Questions

?


