Separation Logic: A Logic for Shared Mutable Data Structures

Paper presentation of John C. Reynolds

Ramūnas Gutkovas¹

¹Uppsala University
Department of Information Technology

May 11, 2012
Reversing a linked-list in place

\[j := \text{nil}; \]
\[\text{while } i \neq \text{nil} \text{ do (} \]
\[k := [i + 1]; \]
\[[i + 1] := j; \]
\[j := i; \]
\[i := k \) \]

Input/Output

\(i \) is a pointer to a linked-list being reversed. After execution, \(j \) points to the reversed list.

Invariant

What is invariant of the loop?
Motivation

Example

\[
k := [i + 1] \\
[i + 1] := j \\
j := i \\
i := k
\]
Motivation

Example

\[k := [i + 1] \]
\[[i + 1] := j \]
\[j := i \]
\[i := k \]

\[\rightarrow \]

\[j_k \]
\[\rightarrow \]
\[\rightarrow \]
\[\rightarrow \]
\[\rightarrow \]
\[\text{nil} \]
Motivation

Example

\begin{align*}
 k &:= [i + 1] \\
 [i + 1] &:= j \\
 j &:= i \\
 i &:= k
\end{align*}
Motivation

Example

\[k := [i + 1] \]
\[[i + 1] := j \]
\[\rightarrow j := i \]
\[i := k \]
Motivation

Example

\[\begin{align*}
 k & := [i + 1] \\
 [i + 1] & := j \\
 j & := i \\
 \Rightarrow & \quad i := k
\end{align*} \]
Motivation

Example

\[k := [i + 1] \]
\[[i + 1] := j \]
\[j := i \]
\[i := k \]
Motivation

Example

\[
\begin{align*}
k & := [i + 1] \\
\Rightarrow [i + 1] & := j \\
j & := i \\
i & := k
\end{align*}
\]
Motivation

Example

\[
\begin{align*}
k &:= [i + 1] \\
[i + 1] &:= j \\
\rightarrow j &:= i \\
i &:= k
\end{align*}
\]
Motivation

Example

\[k := [i + 1] \]
\[[i + 1] := j \]
\[j := i \]
\[\Rightarrow i := k \]
Motivation

Example

\[
\begin{align*}
k &:= [i + 1] \\
[i + 1] &:= j \\
j &:= i \\
i &:= k
\end{align*}
\]
Motivation

Example

\[
k := [i + 1] \\
\Rightarrow [i + 1] := j \\
j := i \\
i := k
\]
Motivation

Example

\[
k := [i + 1] \\
[i + 1] := j \\
\rightarrow j := i \\
i := k
\]
Motivation

Example

\[
k := [i + 1] \\
[i + 1] := j \\
j := i \\
\Rightarrow i := k
\]
Suppose we have a predicate which relates sequences and their representation in the program.

\[\text{list } \alpha \ i \]

Asserts that \(\alpha \) is a sequence represented by the linked list pointed by the variable \(i \).

Then the invariant of the loop may look like

\[\exists \alpha, \beta. \ \text{list } \alpha \ i \land \text{list } \beta \ j \land \alpha^\dagger = \alpha^\dagger \cdot \beta \]

where \(\alpha_0 \) is the given sequence (initially pointed by \(i \)), \(\alpha^\dagger \) is reflection of \(\alpha \), and \(\alpha \cdot \beta \) is concatenation of \(\alpha, \beta \).
Reversing a linked-list in place and

\[
\text{while } i \neq \text{nil} \text{ do (}
 k := [i + 1];
 [i + 1] := j;
 j := i;
 i := k
\)\]

Input/Output

\(i\) and \(j\) are pointers to linked lists.

Invariant

Do we need to change the invariant?
Motivation

Example

Reversing a linked-list in place and appending

\[\text{while } i \neq \text{nil do (}\]
\[k := [i + 1];\]
\[[i + 1] := j;\]
\[j := i;\]
\[i := k)\]

Input/Output

\(i\) and \(j\) are pointers to linked lists. After execution, \(j\) points to a list where the initial segment is the reversed \(i\) list and the tail is \(j\) list before execution.

Invariant

Do we need to change the invariant?

\(^1\)e.g., revappend in CL
Motivation

Example

If the lists i and j are shared.

$$k := [i + 1]$$
$$[i + 1] := j$$
$$j := i$$
$$i := k$$
Motivation

Example

If the lists i and j are shared.

\[
k := [i + 1] \\
[i + 1] := j \\
j := i \\
i := k
\]
Motivation

Example

- We need to extend the invariant which asserts that the lists cannot be shared.

\[\exists \alpha, \beta. \text{list} \alpha \, \text{i} \land \text{list} \beta \, j \land \alpha_0^\dagger = \alpha^\dagger \cdot \beta \land (\forall k. \text{reach} \, i \, k \land \text{reach} \, j \, k \implies k = \text{nil}) \]

where the predicate reach \(i \, j \) tells that there is a path from the pointer \(i \) to \(j \) by following the links in the linked list linked by \(i \).
Motivation

Example

The list m shares the structure of the list i.

Unwanted result
The execution of the algorithm would affect m.
Motivation

Example

- Now we need to talk about, in the invariant, that we did not accidentally clobber an unrelated list!

\[
(\exists \alpha, \beta. \text{list } \alpha_i \land \text{list } \beta_j \land \alpha_0^\dagger = \alpha^\dagger \cdot \beta) \land \text{list } \gamma x \\
\land (\forall k. \text{reach } i k \land \text{reach } j k \implies k = \text{nil}) \\
\land (\forall k. \text{reach } x k \land (\text{reach } i k \lor \text{reach } j k) \implies k = \text{nil})
\]

- This is just 5 lines of code!
The achievement of Separation Logic is to invert the reasoning: instead of specifying what is not shared, one specifies what is.

This is done by introducing a logical operation called *separating conjunction* denoted $P \star Q$.

This logical operation allows us to express the loop invariant intuitively

$$\exists \alpha, \beta. (\text{list } \alpha_i \star \text{list } \beta_j) \land \alpha_0^\dagger = \alpha^\dagger \cdot \beta$$
Separation Logic

How does it work: The Language

The programming language is an extension of Hoare’s imperative language with primitives for the manipulation of mutable shared data structures. Semantically, computation states contain a *store* and a *stack*.

- \(x := \text{cons}(e_1, \ldots, e_n) \)

 Allocates new active cells in the heap and assigns the address of the first cell to the variable \(x \) in the store. Never aborts.
Separation Logic

How does it work: The Language

The programming language is an extension of Hoare’s imperative language with primitives for the manipulation of mutable shared data structures. Semantically, computation states contain a store and a stack.

- \(x := \text{cons}(e_1, \ldots, e_n) \)
 Allocates new active cells in the heap and assigns the address of the first cell to the variable \(x \) in the store. Never aborts.

- \(x := [e] \)
 Dereferences the address computed from the expression \(e \) and assigns the value to \(x \) in the store. Aborts if there is no active cell at this address.
Separation Logic

How does it work: The Language

The programming language is an extension of Hoare’s imperative language with primitives for the manipulation of mutable shared data structures. Semantically, computation states contain a *store* and a *stack*.

- \(x := \text{cons}(e_1, \ldots, e_n) \)
 Allocations new active cells in the heap and assigns the address of the first cell to the variable \(x \) in the store. Never aborts.

- \(x := [e] \)
 Dereferences the address computed from the expression \(e \) and assigns the value to \(x \) in the store. Aborts if there is no active cell at this address.

- \([e_l] := e_r \)
 Mutates the cell at the address computed from \(e_l \). Aborts if the cell is not active.
Separation Logic
How does it work: The Language

The programming language is an extension of Hoare’s imperative language with primitives for the manipulation of mutable shared data structures. Semantically, computation states contain a store and a stack.

- $x := \text{cons}(e_1, \ldots, e_n)$
 Allocated new active cells in the heap and assigns the address of the first cell to the variable x in the store. Never aborts.

- $x := [e]$
 Dereferences the address computed from the expression e and assigns the value to x in the store. Aborts if there is no active cell at this address.

- $[e_f] := e_r$
 Mutates the cell at the address computed from e_f. Aborts if the cell is not active.

- \textbf{dispose}(e)
 Frees the cell at the address e. Aborts if the cell is not active.
Separation Logic
How does it work: Assertions

Assertions are an extension of the usual predicate calculus.

- **emp** empty heap
 Asserts that the heap is empty.

- **P** ∗ **Q** separating conjunction
 Asserts that the heap can be split into two disjoint heaps (address wise) and **P** is true in one, and **Q** is true in the other.

- **P** ⊢∗ **Q** separating implication
 Asserts that if the heap can be extended with a disjoint heap in which **P** holds, then **Q** holds in the extended heap.
Separation Logic
How does it work: Assertions

Assertions are an extension of the usual predicate calculus.

- **emp** empty heap
 Asserts that the heap is empty.

- **ea \mapsto ev** singleton heap
 Asserts that the heap contains exactly one cell with address \(ea \) and the value stored \(ev \).
Separation Logic
How does it work: Assertions

Assertions are an extension of the usual predicate calculus.

- **emp** empty heap
 Asserts that the heap is empty.

- **$e_a \mapsto e_v$** singleton heap
 Asserts that the heap contains exactly one cell with address e_a and the value stored e_v.

- **$P \searrow Q$** separating conjunction
 Asserts that the heap can be split into two disjoint heaps (address wise) and P is true in one, and Q is true in the other.
Separation Logic
How does it work: Assertions

Assertions are an extension of the usual predicate calculus.

- **emp** empty heap
 - Asserts that the heap is empty.

- **$e_a \mapsto e_v$** singleton heap
 - Asserts that the heap contains exactly one cell with address e_a and the value stored e_v.

- **$P \ast Q$** separating conjunction
 - Asserts that the heap can be split into two disjoint heaps (address wise) and P is true in one, and Q is true in the other.

- **$P \rightarrow\ast Q$** separating implication
 - Asserts that if the heap can be extended with a disjoint heap in which P holds, then Q holds in the extended heap.
Separation Logic

- $x \mapsto 1$ asserts that x points to a cell in the heap which stores 1.
Separation Logic

- $x \mapsto 1$ asserts that x points to a cell in the heap which stores 1.
- $x \mapsto 2 \ast y \mapsto 2$ asserts that there are either two cells with different addresses or one cell.
Separation Logic

- $x \mapsto 1$ asserts that x points to a cell in the heap which stores 1.
- $x \mapsto 2 \ast y \mapsto 2$ asserts that there are either two cells with different addresses or one cell.
- $x \mapsto 2 \land y \mapsto 2$ asserts that x and y must be aliases.
Separation Logic

- $x \mapsto 1$ asserts that x points to a cell in the heap which stores 1.
- $x \mapsto 2 \ast y \mapsto 2$ asserts that there are either two cells with different addresses or one cell.
- $x \mapsto 2 \land y \mapsto 2$ asserts that x and y must be aliases.
- $x \mapsto 1 \ast \text{true}$ asserts that the heap contains a cell which x points to and stores 1.
Separation Logic

- $x \mapsto 1$ asserts that x points to a cell in the heap which stores 1.
- $x \mapsto 2 \land y \mapsto 2$ asserts that there are either two cells with different addresses or one cell.
- $x \mapsto 2 \land y \mapsto 2$ asserts that x and y must be aliases.
- $x \mapsto 1 \land \textbf{true}$ asserts that the heap contains a cell which x points to and stores 1.
- $(x \mapsto 1) \rightarrow p$ asserts that in every possible one cell extension of current heap, that cell is present in the heap where p holds.
Separation Logic

Properties

- Separation Logic is a substructural logic.
Separation Logic

Properties

- Separation Logic is a substructural logic.
- Every inference rule of first order logic remains sound.
Separation Logic

Properties

- Separation Logic is a substructural logic.
- Every inference rule of first order logic remains sound.
- But contraction and weakening are not sound for the separating conjunction, i.e.
 \[p \implies p \ast p \quad p \ast q \implies p \]
 are not sound in general.
Separation Logic

Properties

- Separation Logic is a substructural logic.
- Every inference rule of first order logic remains sound.
- But contraction and weakening are not sound for the separating conjunction, i.e.

\[p \implies p \ast p \quad p \ast q \implies p \]

are *not* sound in general.

- Separating conjunction, \(\ast \), is commutative, associative, has a unit (namely \texttt{emp}), \(\ast \) distributes over conjunction and disjunction.
Separation Logic

Specification

- Specification is Hoare triple:
Separation Logic

Specification

- Specification is Hoare triple:
 - Partial: \(\{p\}c\{q\}\).
Separation Logic

Specification

- Specification is Hoare triple:
 - Partial: \(\{ p \} c \{ q \} \).
 - Total: \([p] c [q]\).

The usual Hoare inference rules for triples hold: consequence, auxiliary variable elimination, substitution.

Except for the rule of constancy

Example of failure

\(\{ \exists z. x \mapsto z \} [x] := 4 \) \(\{ x \mapsto 4 \} \)

\(\{ (\exists z. x \mapsto z) \land y \mapsto 3 \} \)

The postcondition in the conclusion does not hold, since \(x \) and \(y \) are not aliases.
Separation Logic

Specification

- Specification is Hoare triple:
 - Partial: \(\{ p \} c \{ q \} \).
 - Total: \([p] c [q] \).
- The usual Hoare inference rules for triples hold: consequence, auxiliary variable elimination, substitution.
Separation Logic

Specification

- Specification is Hoare triple:
 - Partial: \(\{p\} c \{q\} \).
 - Total: \([p]c[q]\).
- The usual Hoare inference rules for triples hold: consequence, auxiliary variable elimination, substitution.
- Except for the rule of constancy

\[
\frac{\{p\}c\{q\}}{\{p \land r\}c\{q \land r\}}
\]
Separation Logic

Specification

- Specification is Hoare triple:
 - Partial: \(\{p\}c\{q\} \).
 - Total: \([p]c[q]\).
- The usual Hoare inference rules for triples hold: consequence, auxiliary variable elimination, substitution.
- Except for the rule of constancy

\[
\begin{align*}
\{p\}c\{q\} & \quad \frac{}{\{p \land r\}c\{q \land r\}}
\end{align*}
\]

- Example of failure

\[
\begin{align*}
\{\exists z. x \mapsto z\}[x] := 4\{x \mapsto 4\} & \quad \frac{}{\{(\exists z. x \mapsto z) \land y \mapsto 3\}c\{x \mapsto 4 \land y \mapsto 3\}}
\end{align*}
\]

The postcondition in the conclusion does not hold, since \(x \) and \(y \) are not aliases.
A similar sound rule is introduced for separating conjunction, called frame rule:

\[
\begin{align*}
\{p\} & c \{q\} \\
\{p \ast r\} & c \{q \ast r\}
\end{align*}
\]

The frame rule allows for local and global reasoning: allows to talk about only the part of the heap which is used.
Separation Logic
(Local) Inference Rules

- Mutation

\[
\{\exists z. e \mapsto z\}[e] := e\{e \mapsto e'\}
\]
Separation Logic
(Local) Inference Rules

- **Mutation**

\[
\{\exists z. e \mapsto z\}[e] := e'\{e \mapsto e'\}
\]

- **Deallocation**

\[
\{\exists z. e \mapsto z\} \text{dispose } e \{\text{emp}\}
\]
Separation Logic
(Local) Inference Rules

- **Mutation**
 \[
 \{\exists z. e \mapsto z\}[e] := e\{e \mapsto e'\}
 \]

- **Deallocation**
 \[
 \{\exists z. e \mapsto z\} dispose e \{\text{emp}\}
 \]

- **Allocation**
 \[
 \{\text{emp}\} v := \text{cons } e_0, \ldots, e_{n-1} \{v \mapsto e_0, \ldots, v + n \mapsto e_{n-1}\}
 \]
Separation Logic
(Local) Inference Rules

- **Mutation**
 \[
 \{\exists z. e \mapsto z\}[e] := e'\{e \mapsto e'\}
 \]

- **Deallocation**
 \[
 \{\exists z. e \mapsto z\} \text{dispose } e \{\text{emp}\}
 \]

- **Allocation**
 \[
 \{\text{emp}\} v := \text{cons } e_0, \ldots, e_{n-1} \{v \mapsto e_0, \ldots, v + n \mapsto e_{n-1}\}
 \]

- **Lookup**
 \[
 \{v = v' \land (e \mapsto v'')\} v := [e] \{v = v'' \land (e[v'/v] \mapsto v'')\}
 \]
Separation Logic

Inference Rules

- Global and backward rules can be obtained by using the frame rule.
Global and backward rules can be obtained by using the frame rule.

The obtained backward reasoning rules give the complete weakest precondition.
Global and backward rules can be obtained by using the frame rule.

The obtained backward reasoning rules give the complete weakest precondition.

Backward rules use separating implication, e.g.

\[
\{(\exists z. e \mapsto z) \ast ((e \mapsto e') \rightarrow \mathbf{p})\} [e] := e' \{p\}
\]
Separation Logic

Resources

- Separation Logic home:

- Jesper Bengtson on Wednesday, May 16th, 2012 at 10:30 in room 1112 will talk about "Efficient verification of Java-programs using higher-order separation logic in Coq".
Questions