Separation Logic: A Logic for Shared Mutable
Data Structures
Paper presentation of John C. Reynolds

Ramiinas Gutkovas!

1Uppsala University
Department of Information Technology

May 11, 2012

Motivation

Example

Reversing a linked-list in place

J = nil;

while i # nil do (
k:=1[i+1];
[i+1]:=;
ji=1
i=k)

Input/Output
i is a pointer to a linked-list being reversed. After execution, j
points to the reversed list.

Invariant
What is invariant of the loop?

Motivation

Example

k= [i+1]
i+ 1]

ji=

nil

Motivation

Example

>

k= [i+1]
[[+1]:=
Ji=i
i =k

="

K

nil

Motivation

Example

k= [i+1]
> [i+1]:=j

ji=i

i=k

nil (| o

nil

Motivation

Example

k= [i+1]

[[+1]:=
> =

i =k

nil (| o

nil

/W

Motivation

Example

k= [i+1]
[[+1]:=
Ji=i

> =k

i\

nil (| o

nil

/W

Motivation

Example

> k:=[i+1]
[[+1]:=
Ji=
i=k

i\

v’

K

nil

/

Motivation

Example

k= [i+1]
> [i+1]:=j

ji=i

i=k

i\

nil

7
v}/
~

nil

/

Motivation

Example

i\

k= [i+1]

[[+1]:=
> =

i =k

nil

¢ |/

)

nil

e

Motivation

Example

i\

k= [i+1]
[[+1]:=
Ji=i

> =k

nil

¢ |/

)

nil

e

Motivation

Example

> k:=[i+1]
[[+1]:=
Ji=
i=k

i\

—]
nil) /

¢ |/

nil

e

Motivation

Example

k= [i+1]
> [i+1]:=j
_j: =
(\\R\
nil ./) ./) o nil

Motivation

Example

k= [i+1]
[i + 1] =
> ji=i
. i=k
(\\R\
nil ./) ./) o nil

Motivation

Example

k= [i+1]
[[+1]:=
ji=i
. > i=k
[[
nil ./) ./) (o nil

Motivation

Example

» Suppose we have a predicate which relates sequences and
their representation in the program.

listov i

Asserts that « is a sequence represented by the linked list
pointed by the variable .

» Then the invariant of the loop may look like
da, B. listai A listBj A ag —af. B

where oy is the given sequence (initially pointed by i), of is
reflection of «, and « - 5 is concatenation of «, 5.

Motivation

Example

Reversing a linked-list in place and 7

while / # nil do (

k = [i+1];
[i +1]:=;
J=i
i=k)

Input/Output
i and j are pointers to linked lists.

Invariant
Do we need to change the invariant?

Motivation

Example

Reversing a linked-list in place and appending®

while i # nil do (

k= [i+1];
[i +1]:=j;
J=1
i=k)

Input/Output

i and j are pointers to linked lists. After execution, j points to a
list where the initial segment is the reveres i list and the tail is j
list before execution.

Invariant
Do we need to change the invariant?

'e.g., revappend in CL

Motivation

Example

If the lists / and j are shared.

k= [i+1]
i+ 1] =)

Jji=i
[=

nil

Motivation

Example

If the lists / and j are shared.

k= [i+1]
i+ 1] =)

Jji=i
[=

(| nil

Motivation

Example

» We need to extend the invariant which asserts that the lists
cannot be shared.

Jo, B. listai A listBj A af =at -
A (Vk.reachik Areachjk = k = nil)

where the predicate reach i tells that there is a path from the
pointer i to j by following the links in the linked list linked
by i.

Motivation

Example

The list m shares the structure of the list i

\ P

X

ir="a"4

nil

J ok

Unwanted result
The execution of the algorithm would affect m.

Motivation

Example

» Now we need to talk about, in the invariant, that we did not
accidentally clobber an unrelated list!

(B, B. listai A listBj A af =al-B) Alistyx
A (Vk.reachik Areachjk = k = nil)
A (Vk.reachx k A (reach i k V reachj k) = k = nil)

» This is just 5 lines of code!

Enter Separation Logic

» The achievement of Separation Logic is to invert the
reasoning: instead of specifying what is not shared, one
specifies what is.

» This is done by introducing a logical operation called
separating conjunction denoted P x Q.

» This logical operation allows us to express the loop invariant
intuitively

Ao, 8. (listai * list3j) A ab =at-j

Separation Logic

How does it work: The Language
The programming language is an extension of Hoare's imperative
language with primitives for the manipulation of mutable shared
data structures. Semantically, computation states contain a store
and a stack.

» x :=cons(ep,...,ep)

Allocates new active cells in the heap and assigns the address
of the first cell to the variable x in the store. Never aborts.

Separation Logic

How does it work: The Language
The programming language is an extension of Hoare's imperative
language with primitives for the manipulation of mutable shared
data structures. Semantically, computation states contain a store
and a stack.

» x := cons(ey,...,ep)
Allocates new active cells in the heap and assigns the address
of the first cell to the variable x in the store. Never aborts.

> x = [€]
Dereferences the address computed from the expression e and
assigns the value to x in the store. Aborts if there is no active
cell at this address.

Separation Logic

How does it work: The Language
The programming language is an extension of Hoare's imperative
language with primitives for the manipulation of mutable shared
data structures. Semantically, computation states contain a store
and a stack.

» x := cons(ey,...,ep)
Allocates new active cells in the heap and assigns the address
of the first cell to the variable x in the store. Never aborts.

> x = [€]
Dereferences the address computed from the expression e and
assigns the value to x in the store. Aborts if there is no active
cell at this address.

> [e] i=e
Mutates the cell at the address computed from ¢;. Aborts if
the cell is not active.

Separation Logic

How does it work: The Language
The programming language is an extension of Hoare's imperative
language with primitives for the manipulation of mutable shared
data structures. Semantically, computation states contain a store
and a stack.

>

x :=cons(ey,...,en)

Allocates new active cells in the heap and assigns the address
of the first cell to the variable x in the store. Never aborts.

x = [e]

Dereferences the address computed from the expression e and

assigns the value to x in the store. Aborts if there is no active
cell at this address.

[e]] :=er
Mutates the cell at the address computed from ¢;. Aborts if
the cell is not active.

dispose(e) Frees the cell at the address e. Aborts if the cell is
not active.

Separation Logic

How does it work: Assertions

Assertions are an extension of the usual predicate calculus.

> emp empty heap
Asserts that the heap is empty.

Separation Logic

How does it work: Assertions

Assertions are an extension of the usual predicate calculus.
> emp empty heap
Asserts that the heap is empty.
> e, — e, singleton heap

Asserts that the heap contains exactly one cell with address e,
and the value stored e, .

Separation Logic

How does it work: Assertions

Assertions are an extension of the usual predicate calculus.

> emp empty heap
Asserts that the heap is empty.

> e, — e, singleton heap
Asserts that the heap contains exactly one cell with address e,
and the value stored e, .

> P x @ separating conjunction
Asserts that the heap can be split into two disjoint heaps
(address wise) and P is true in one, and Q is true in the other.

Separation Logic

How does it work: Assertions

Assertions are an extension of the usual predicate calculus.

> emp empty heap
Asserts that the heap is empty.

> e, — e, singleton heap
Asserts that the heap contains exactly one cell with address e,
and the value stored e, .

> P x @ separating conjunction
Asserts that the heap can be split into two disjoint heaps
(address wise) and P is true in one, and Q is true in the other.
» P —xQ separating implication
Asserts that if the heap can be extended with a disjoint heap
in which P holds, then @ holds in the extended heap.

Separation Logic

» x > 1 asserts that x points to a cell in the heap which
stores 1.

Separation Logic

» x > 1 asserts that x points to a cell in the heap which
stores 1.

> x — 2%y +—> 2 asserts that there are either two cells with
different addresses or one cell.

Separation Logic

» x > 1 asserts that x points to a cell in the heap which
stores 1.

> x — 2%y +—> 2 asserts that there are either two cells with
different addresses or one cell.

> x — 2 A\ y+— 2 asserts that x and y must be aliases.

Separation Logic

» x > 1 asserts that x points to a cell in the heap which
stores 1.

> x — 2%y +—> 2 asserts that there are either two cells with
different addresses or one cell.

v

x — 2 Ay — 2 asserts that x and y must be aliases.

» x — 1 x true asserts that the heap contains a cell which x
points to and stores 1.

Separation Logic

» x > 1 asserts that x points to a cell in the heap which
stores 1.

> x — 2%y +—> 2 asserts that there are either two cells with
different addresses or one cell.

v

x — 2 Ay — 2 asserts that x and y must be aliases.

» x — 1 x true asserts that the heap contains a cell which x
points to and stores 1.

v

(x — 1) —x p asserts that in every possible one cell extension
of current heap, that cell is present in the heap where p holds.

Separation Logic

Properties

» Separation Logic is a substructural logic.

Separation Logic

Properties

» Separation Logic is a substructural logic.

» Every inference rule of first order logic remains sound.

Separation Logic

Properties

» Separation Logic is a substructural logic.
» Every inference rule of first order logic remains sound.

» But contraction and weakening are not sound for the
separating conjunction, i.e.

p = pxp pxq = p

are not sound in general.

Separation Logic

Properties

» Separation Logic is a substructural logic.
» Every inference rule of first order logic remains sound.

» But contraction and weakening are not sound for the
separating conjunction, i.e.

p = pxp pxq = p

are not sound in general.

» Separating conjunction, *, is commutative, associative, has a
unit (namely emp), * distributes over conjunction and
disjunction.

Separation Logic

Specification

» Specification is Hoare triple:

Separation Logic

Specification

» Specification is Hoare triple:
» Partial: {p}c{q}.

Separation Logic

Specification

» Specification is Hoare triple:

» Partial: {p}c{q}.
» Total: [p]c[q].

Separation Logic
Specification

» Specification is Hoare triple:

» Partial: {p}c{q}.
» Total: [p]c[q].

» The usual Hoare inference rules for triples hold: consequence,
auxiliary variable elimination, substitution.

Separation Logic

Specification

» Specification is Hoare triple:

» Partial: {p}c{q}.
» Total: [p]c[q].

» The usual Hoare inference rules for triples hold: consequence,
auxiliary variable elimination, substitution.

» Except for the rule of constancy

{p}ciq}

{pAric{gnr;

Separation Logic

Specification

» Specification is Hoare triple:

» Partial: {p}c{q}.
» Total: [p]c[q].

» The usual Hoare inference rules for triples hold: consequence,
auxiliary variable elimination, substitution.

» Except for the rule of constancy

{p}ciq}

{pAric{gnr;

» Example of failure

{3z.x — z}[x] ;== 4{x — 4}
{B3zx—=2z)ANy—3lc{x— 4Ny~ 3}

The postcondition in the conclusion does not hold, since x
and y are not aliases.

Separation Logic

Frame Rule

» A similar sound rule is introduced for separating conjunction,
called frame rule
{pyc{q}

{pxric{qxr}
» The frame rule allows for local and global reasoning: allows to
talk about only the part of the heap which is used.

Separation Logic

(Local) Inference Rules

» Mutation

{3z.e — z}[e] := €' {e— €'}

Separation Logic

(Local) Inference Rules

» Mutation

{3z.e — z}[e] := €' {e— €'}

» Deallocation

{3z.e — z} dispose e {emp}

Separation Logic

(Local) Inference Rules

» Mutation

{3z.e — z}[e] := €' {e— €'}

» Deallocation

{3z.e — z} dispose e {emp}

» Allocation

{emp}v:=consey,...,en1{vir ey, ...,v+n—e,_1}

Separation Logic

(Local) Inference Rules

» Mutation

{3z.e — z}[e] := €' {e— €'}

» Deallocation

{3z.e — z} dispose e {emp}

» Allocation

{emp}v:=consey,...,en1{vir ey, ...,v+n—e,_1}

» Lookup

{v=Vv'A(e—=V")}v:i=[e]{v=V"A(e]V//v] = V')}

Separation Logic

Inference Rules

» Global and backward rules can be obtained by using the frame
rule.

Separation Logic

Inference Rules

» Global and backward rules can be obtained by using the frame
rule.

» The obtained backward reasoning rules give the complete
weakest precondition.

Separation Logic

Inference Rules

» Global and backward rules can be obtained by using the frame
rule.

» The obtained backward reasoning rules give the complete
weakest precondition.

» Backward rules use separating implication, e.g.

{(Bz.e = 2) x ((e = &) —xp)} [e] := €' {p}

Separation Logic

Resources

» Separation Logic home:
http://www.cs.ucl.ac.uk/staff/p.ohearn/
SeparationLogic/Separation_Logic/SL_Home.html

» Jesper Bengtson on Wednesday, May 16th, 2012 at 10:30 in
room 1112 will talk about " Efficient verification of
Java-programs using higher-order separation logic in Coq"”.

http://www.cs.ucl.ac.uk/staff/p.ohearn/SeparationLogic/Separation_Logic/SL_Home.html
http://www.cs.ucl.ac.uk/staff/p.ohearn/SeparationLogic/Separation_Logic/SL_Home.html

Questions

