SAT and SMT

An Introduction

Jonathan Cederberg jonathan.cederberg@it.uu.se

Friday, April $20^{\text {th }}, 2012$

Outline

(1) SAT

- Complexity
- DPLL
(2) SMT
- Current state of SAT and SMT
- A Complete Example

Outline

- Complexity - DPLL

(2) SMT

SAT

■ "Given $f\left(p_{1}, \ldots, p_{n}\right)$ in propositional logic, is there an assignment to the propositional variables p_{1}, \ldots, p_{n} such that f evaluates to true?"

- Decision problem

■ SAT is NP-complete (Cook, 1971)

SAT

- CNF: A conjunction of disjunctions of literals $\left(p_{i}\right.$ or $\left.\neg p_{i}\right)$:

$$
\begin{gathered}
\left(I_{1}^{1} \vee I_{1}^{2} \vee \ldots \vee I_{1}^{k_{1}}\right) \wedge \\
\left(I_{2}^{1} \vee I_{2}^{2} \vee \ldots \vee I_{2}^{k_{2}}\right) \wedge \\
\vdots \\
\left(I_{m}^{1} \vee I_{m}^{2} \vee \ldots \vee I_{m}^{k_{m}}\right)
\end{gathered}
$$

- k-SAT, 3-SAT are NP-complete
- HORNSAT, 2-SAT are P-complete

SAT is NP-complete

SAT

■ Nondeterministic TM finds a satisfying assignment in polynomial time.

- There is no (known) polynomial algorithm to find a satisfying assignment, only exponential.
- Checking if a given assignment is a satisfying one is polynomial.
■ So, we need to search among the exponentially many assingments for a solution.

SAT-Solving

■ Stålmarcks method (1994, US pat.nr. 5,276,897)
■ Davis-Putnam-Logemann-Loveland (DPLL)-algorithm

DPLL(f)

1 if f is a consistent set of literals
2 then return True
3 if f contains an empty clause
4 then return False
5 while there is a unit clause $/$ in f
$6 \quad$ do $f \leftarrow$ Unit-Propagate (I, f)
$7 \quad I \leftarrow$ Choose-Literal(f)
8 return $\operatorname{DPLL}(f \wedge I)$ or $\operatorname{DPLL}(f \wedge \neg /)$

Outline

(2) SMT

- Current state of SAT and SMT
- A Complete Example

■ SMT = Satifiability Modulo Theory

- A framework for solving satisfiability of formulas of some theory, where the theory is a parameter.
■ "Layered" approach, based on SAT-solving.

SMT: example

$$
\square \neg(a \geq 3) \wedge(a \geq 3 \vee a \geq 5)
$$

Dept. of Information Technology

SMT: example

$$
\begin{aligned}
& \text { ■ } \neg(\underbrace{a \geq 3}_{p}) \wedge(\underbrace{a \geq 3}_{p} \vee \underbrace{a \geq 5}_{q}) \\
& \text { ■ } \neg p \wedge(p \vee q)
\end{aligned}
$$

SMT: example

$\square(\underbrace{a \geq 3}_{p}) \wedge(\underbrace{a \geq 3}_{p} \vee \underbrace{a \geq 5}_{q})$
$\square \neg p \wedge(p \vee q)$

- After abstraction, use SAT-solving to find candidate literals to satisfy using domain specific solver

SMT: example

$\square \neg(\underbrace{a \geq 3}_{p}) \wedge(\underbrace{a \geq 3}_{p} \vee \underbrace{a \geq 5}_{q})$

- Initial suggestion from DPLL:
$\neg p$ and q should be true

SMT: example

SAT

$\square \neg(\underbrace{a \geq 3}_{p}) \wedge(\underbrace{a \geq 3}_{p} \vee \underbrace{a \geq 5}_{q})$

- Initial suggestion from DPLL:
$\neg p$ and q should be true
- So $\neg a \geq 3 \wedge a \geq 5$ should be true

SMT: example

SAT

SMT

- $\neg(\underbrace{a \geq 3}_{p}) \wedge(\underbrace{a \geq 3}_{p} \vee \underbrace{a \geq 5}_{q})$
- Initial suggestion from DPLL:
$\neg p$ and q should be true
- Answer from domain specific solver: There is no model for $\neg a \geq 3 \wedge a \geq 5$

SMT: example

SAT

- $\neg(\underbrace{a \geq 3}_{p}) \wedge(\underbrace{a \geq 3}_{p} \vee \underbrace{a \geq 5}_{q})$
- Initial suggestion from DPLL:
$\neg p$ and q should be true
- Answer from domain specific solver: There is no model for $\neg a \geq 3 \wedge a \geq 5$

■ From this we obtain "Theory Lemma": $a \geq 3 \vee \neg a \geq 5$, or $p \vee \neg q$

SMT: example

SAT

- $\neg(\underbrace{a \geq 3}_{p}) \wedge(\underbrace{a \geq 3}_{p} \vee \underbrace{a \geq 5}_{q})$
- Initial suggestion from DPLL:
$\neg p$ and q should be true
- Answer from domain specific solver: There is no model for $\neg a \geq 3 \wedge a \geq 5$
- From this we obtain "Theory Lemma": $a \geq 3 \vee \neg a \geq 5$, or $p \vee \neg q$
- Add theory lemma as an additional clause to the original formula, and start over

SMT: example

- $\neg p \wedge(p \vee q) \wedge(p \vee \neg q)$

■ Now DPLL responds "Unsatisfiable".

■ A lot of different theories supported by various solvers

- Uninterpreted functions and constants
- Arithmetic (including nonlinear)
- Bit Vectors
- Arrays
- Datatypes (including recursive datatypes)

DoCs

Current state of SAT and SMT

- They scale very well, (for SAT: hundreds of thousands of variables)
- They are used in a lot of applications:
- Static Analys
- Verification
- Testing UNIVERSITET

A complete example: Test generation for path coverage

SAT

```
def compare_stuff \((a, b)\) :
        if \(a<b\) :
            foo \(=\) " \(a\) is smaller"
        if \(b<a\) :
        foo \(=\) "b is smaller"
        print foo
if __name__ == '__main__ ':
    compare_stuff \((1,2)\)
``` UNIVERSITET

\section*{A complete example: Test generation for path coverage}
- Start by unfolding the program and collect the set of constraints for each path:
- \(a>b \wedge b>a\)
- \(\neg(a>b) \wedge b>a\)
- \(a>b \wedge \neg(b>a)\)
- \(\neg(a>b \wedge \neg(b>a)\)

\section*{A complete example: Test generation for path coverage}

■ Ask SMT solver for possible inputs:
- \(a>b \wedge b>a\) Unsat, so no input can generate this path
- \(\neg(a>b) \wedge b>a\) Sat, path generated by \(a=0, b=-1\)
- \(a>b \wedge \neg(b>a)\) Sat, path generated by \(a=-1, b=0\)
- \(\neg(a>b \wedge \neg(b>a)\) Sat, path generated by \(a=0, b=0\)

\section*{Exercises}

1 Suggest a satisfiable propositional formula with 4 variables and an order of choosing literals, such that you need to backtrack at least once to find a satisfying assignment to the atoms. Show each step of the computation.
2 Use Z3 to prove that in propositional logic "proof by cases" is a valid way to prove things. Proof by cases can be expressed as "if \(c\) is true whenever either \(a\) or \(b\) is true, then it must be the case that both \(a\) implies \(c\) and \(b\) implies \(c\).

\title{
Questions?
}```

