
Leslie Lamport
Presentation: Yunyun Zhu

Read Group Seminar Apr 13rd, 2012

• Distributed system definition:
– A collection of distinct processes which are spatially

separated and which communicate with one another
by exchanging messages.

• Distributed system examples:
– A banking system

– A tsunami warning system

 Event: the execution of a subprogram on a
computer, or the execution of a machine
instruction

 Each process consists of a sequence of events

 No global clock hard to judge which
event happens earlier in a distributed
system

 A partial order relation (defined as →)
◦ If event a and event b are in the same process and a

comes before b, then a → b

◦ If a is the sending of a message by one process and b
is the receipt of that message by another process,
then a → b

◦ If a → b and b → c, then a → c

 Note: a and b are concurrent if

 a ↛ b and b ↛ a

p1 → q2

r2 → r3

p1 → r4

(via q2, q4 and r3)

p3 and q3 are concurrent

 Clock: assigning a number to an event

 Each process Pi has a logical clock Ci

 Ci(a): number assigned to a in Pi

 No relation to physical clocks

 Clock Condition (which means the system of
clocks are correct):
◦ For any events a, b: if a → b then C(a) < C(b)
 (If event a occurs before event b then a should happen at

an earlier time than b)

 Two conditions should hold to satisfy the
Clock Condition:
◦ C1. If a and b are events in process Pi and a comes

before b, then Ci(a) < Ci(b)

◦ C2. If a is the sending of a message by process Pi
and b is the receipt of that message by process Pj

then Ci(a) < Cj(b)

 IR1 (for C1). Clock Ci must be increased between any
two successive events in process Pi: Ci := Ci + 1

 IR2 (for C2). (a) If event a is the sending of a
message m by process Pi, then the message m
contains a timestamp Tm = Ci(a)

 IR2 (for C2). (b) When the same message m is
received by a different process Pj, Cj is set to a value
greater than the current value of the counter and the
timestamp carried by the message:

 Cj := max(Cj, Tm) + 1

 Example on blackboard

 Break ties by a total ordering of the processes

 Total ordering of events (a ⇒ b)

 If a is an event in process Pi and b is an event
in process Pj, then a ⇒ b if either
◦ Ci (a) < Cj(b), or

◦ Ci(a) = Cj(b) and Pi ≺ Pj, where ≺ is an arbitrary
relation that totally orders the processes to break
ties.

 Example on blackboard

 A distributed system obtaining the total
ordering

 Specification:
◦ A collection of processes sharing a single resource

◦ Only one process uses the resource at a time

 Requirements
◦ The resource must be released by the current

process first before it is granted to another one

◦ Messages are delivered in FIFO order

 Requesting resource
◦ Pi sends REQUEST(tsi, i) to every other process and puts the

request on request_queuei, where tsi denotes the timestamp
of the request

◦ When Pj receives REQUEST(tsi, i) from Pi it returns a
timestamped REPLY to Si and places Si’s request on
request_queuej

 Pi is granted the Resource when
◦ L1: Pi has received a message from every other process

timestamped later than Pi’s request(tsi, i)

◦ L2: Pi’s request (tsi, i) is at the top of request_queuei by the
relation ⇒

 Releasing resource
◦ Pi removes request from top of request_queuei and sends

timestamped RELEASE message to every other process

◦ When Pj receives a RELEASE messages from Si it removes Si's
request from request_queuej

 Example on blackboard

 Mutual exclusion achieved

 Proof is by contradiction. Suppose Pi and Pj are occupying the
resource concurrently, which implies conditions L1 and L2
hold at both of the processes concurrently.

 This means that at some instant in time, say t, both Pi and Pj
have their own requests at the top of their request queues
and condition L1 holds at them. Assume that Pi ’s request is
ordered before than the request of Pj by the relation ⇒.

 From condition L1 and that messages are delivered FIFO, it is
clear that at instant t the request of Pi must be present in
request queuej when Pj was occupying the resource. This
implies that Pj ’s own request is at the top of its own request
queue when an earlier request, Pi ’s request, is present in the
request queuej – a contradiction!

 For each procedure of occupying a resource,
Lamport’s algorithm requires (N − 1)
REQUEST messages, (N − 1) REPLY messages,
and (N − 1) RELEASE messages.

 Thus, Lamport’s algorithm requires 3(N − 1)
messages per procedure of occupying a
resource.

 Synchronization delay in the algorithm is T.

 REPLY messages can be omitted sometimes. For
example, if Pj receives a REQUEST message from Pi after
it has sent its own REQUEST message with timestamp
higher than the timestamp of Pi’s request, then Pj need
not send a REPLY message to Pi.

 This is because when Pi receives Pj’s request with
timestamp higher than its own, it can conclude that Pj
does not have any smaller timestamp request which is
still pending.

 With this optimization, Lamport’s algorithm requires
between 3(N − 1) and 2(N − 1) messages for a
procedure of occupying the resource.

