Symbolic Model Checking
10^{20} States and Beyond

Burch Clarke McMillan Dill Hwang

Seminal Papers in Verification

March 23, 2012
Outline

1. The Mu-Calculus
2. Model Checking
3. Example
4. Results
The Mu-Calculus

The Mu-Calculus is similar to standard first-order logic.

- Does not include relational symbols or constant symbols.
- Relational symbols are replaced by relational variables.
- $\mu P[R]$ denotes the least fixed point of an n-ary relational term R and P is an n-ary relational variable.
Symbolic Model Checking

- Use BDDs as internal representation
- Recursively translate formula to BDD
- CTL expressions can be translated into efficient BDD operations.
- FalseBDD and TrueBDD correspond to trees with only one terminal node, 0 or 1 respectively.
Translating formulas

- Over the structure of formulas & terms

BDD_f: Formulas

- \(f \) is individual var: \(\text{BDDAtom}(f) \)
- \(f = f_1 \land f_2 \): \(\text{BDDAnd}(\text{BDD}_f(f_1), \text{BDD}_f(f_2)) \)
- \(f = \neg f_1 \): \(\text{BDDNegate}(\text{BDD}_f(f_1)) \)
- \(f = \exists x. f \): \(\text{BDDExists}(x, \text{BDD}_f(f_1)) \)
- \(f = R(x_1, \ldots, x_n) \): \(\text{BDD}_R(R)(d_1 \leftarrow x_1, \ldots, d_n \leftarrow x_n) \)

BDD_R: Terms

- \(R \) is relational var: \(l_R(R) \)
- \(R = \lambda x_1, \ldots, x_n.f \): \(\text{BDD}_f(f)(x_1 \leftarrow d_1, \ldots, x_n \leftarrow d_n) \)
- \(R = \mu P[R'] \): \(\text{FixedPoint}(P, R', \text{FalseBDD}) \)
The Mu-Calculus
Model Checking
Example
Results

- $\text{AF } f_1 = \mu Z . f_1 \lor AX Z$
- $\text{EF } f_1 = \mu Z . f_1 \land EX Z$
- $A[f_1 U f_2] = \mu Z . f_2 \lor (f_1 \land AX Z)$
- $E[f_1 U f_2] = \mu Z . f_2 \lor (f_1 \land EX Z)$
The set of atomic prepositions
\(AP = \{ a, b, c \} \)

The set of states
\(S = \{ s_0, s_1, s_2 \} \)

The set of transitions
\(T = \{ (s_0, s_1), (s_1, s_0), (s_0, s_2), (s_2, s_1) \} \)

The labelling function
\(L = \{ (s_0, \{ a, b \}), (s_1, \{ b, c \}), (s_2, \{ a, c \}) \} \)
CTL formulae:
\[f = EX \, c \]

Mu-Calculus:
\[R = \lambda s[\exists t[c(t) \land T(s, t)]] \]
States are described by means of a vector of boolean variables

\[s_i = (x_1, x_2) \]

Boolean vectors can be represented as formulas

\[s_0 = \neg e_1 \land e_2, \ s_1 = \neg e_1 \land e_2, \ s_2 = e_1 \land e_2 \]

Transitions, described by the pairs \((s_i, s'_i)\), can be represented as

\[s_i \land s'_i \]
The Mu-Calculus
Model Checking
Example
Results

c(t)

\[T(s, t) \]

Andreína Francisco
Symbolic Model Checking
\(c(t) \land T(s, t) \)
\[\exists t [c(t) \land T(s, t)] \]

\[
e'_{2} = 0 \land e'_{1} = 0
\]

\[0 \]

\[
e'_{2} = 0 \land e'_{1} = 1
\]

\[0 \]

\[
e'_{2} = 1 \land e'_{1} = 0
\]

\[0 \rightarrow 1 \]

\[
e'_{2} = 1 \land e'_{1} = 1
\]

\[0 \rightarrow 1 \]
\[\exists t [c(t) \land T(s, t)] = [c(t) \land T(s, t)] e_2^0, e_1^0 \lor [c(t) \land T(s, t)] e_2^0, e_1^1 \lor \ldots \]
Symbolic model checking allows larger models (many magnitudes).

- Interesting result: BDDs grow linearly
- State space very large
- Execution time still rises quickly
Symbolic Model Checkers

- Most hardware design companies have their own Symbolic Model Checker(s)
 - Intel, IBM, Motorola, Siemens, ST, Cadence, ...
 - very advanced tools
 - proprietary technology!

- On the academic side
 - CMU SMV [McMillan]
 - VIS [Berkeley, Colorado]
 - Bwolen Yang's SMV [CMU]
 - NuSMV [CMU, IRST, UNITN, UNIGE]
 - ...

Alessandro Artale
Formal Methods Lecture VII Symbolic Model Checking