Graph-Based Algorithms for Boolean Function Manipulation

Sofia Cassel

March 9, 2012

Boolean Algebra

- Building blocks:

0,1 (true, false)
$x \wedge y$
$x \vee y$
$x \rightarrow y$
$x \leftrightarrow y$

- Any Boolean expression can be written using these (and parentheses)
- Truth table: represents assignment of truth values to variables
- Tautology: always true regardless of truth assignments Satisfiable: there is a truth assignment that renders the formula true
- Normal forms: CNF, DNF
- Satisfiability: NP-complete

If-then-else normal form (INF)

- "if x then t_{1} else t_{0} " denotes $\left(x \rightarrow t_{1}\right) \wedge\left(\neg x \rightarrow t_{0}\right)$ $t=x \rightarrow t_{1}, t_{0}$
- Boolean expression built from an if-then-else operator and $\{0,1\}$: all tests performed on variables
- Every Boolean formula has an INF

Example (INF)

$\neg p$: if p then \perp else T

Shannon expansion

- Represent a Boolean function as the sum of two subfunctions:

$$
f=\left.x_{i} \cdot f\right|_{x_{i}=1}+\left.\neg x_{i} \cdot f\right|_{x_{i}=0}
$$

- f is expanded around variable x_{i}
- $\left.f\right|_{x_{i}=b}=$ the restriction of f to the case where $x_{i}=b$
- Use Shannon expansion to generate an INF from any Boolean expression:
- Expression contains no variables $\rightarrow 0,1$ (true, false)
- Expression contains variables \rightarrow Do Shannon expansion
- Result of Shannon expansion: binary decision tree
- A binary decision tree can be transformed into a BDD!

Binary Decision Diagrams

Definition (BDD)

A BDD is a rooted DAG with:

- one or two terminal nodes, outdegree 0 , labeled 0 or 1
- a set of nonterminal nodes u of outdegree 2. The edge are $\operatorname{high}(u)$; low (u); the associated variable is $\operatorname{var}(u)$
- Introduced by Lee \& Akers

Ordered and Reduced BDDs

- Introduced by Bryant [this paper]
- OBDD: a BDD where variables are ordered Minimality depends on ordering of variables
- ROBDD: a reduced OBDD

All identical nodes are shared
All redundant tests are eliminated

- Example [on blackboard]

Operations on ROBDDs

- Apply: Takes graphs representing f_{1} and f_{2} and an operator op, produces graph representing f_{1} op f_{2} Start at the root of both graphs $\left(v_{1}, v_{2}\right)$ Reduce if necessary.
- Restriction: restricts a Boolean function with respect to truth value of a variable x_{i}
Replace each node with variable x_{i} by the corresponding branch Transforms f into $\left.f\right|_{x_{i}=b}$ where b is a constant
- Composition, Satisfy

BDDs in Verification

- Used in hardware verification (equivalence of circuits)
- Used in model checking to determine whether model M satisfies set of properties P
Every Boolean expression has a unique canonical BDD representation

References

- Randal E. Bryant (1986): Graph-Based Algorithms for Boolean Function Manipulation [the main paper]
- Henrik Reif Andersen (1997, rev. 1998): An Introduction to Binary Decision Diagrams [additional material]

