An Automata-Theoretic Approach to Automatic Program Verification

Moshe Y. Vardi Pierre Wolper Presentation: Carl Leonardsson

Reading Group Seminar 24/2 - 2012

Purpose

- Goal: Verifying programs against temporal formulae
- Same as last time
- This time in LTL

Purpose

- Goal: Verifying programs against temporal formulae
- Same as last time
- This time in LTL

LTL

LTL formulae

- p, $\neg \phi$, $\phi \wedge \psi$ Propositional logic as usual
- $X\phi$ **neXt**: ϕ holds in the next state
- $\phi U \psi$ **Until**: ψ will happen sooner or later, ϕ holds until then
- LTL quantifies universally over paths.
- Comparison: CTL picks quantification at each computation tree branch
- How do we model check against LTL formulae?

LTL

LTL formulae

- p, $\neg \phi$, $\phi \wedge \psi$ Propositional logic as usual
- $X\phi$ **neXt**: ϕ holds in the next state
- $\phi U \psi$ **Until**: ψ will happen sooner or later, ϕ holds until then
- LTL quantifies universally over paths.
- Comparison: CTL picks quantification at each computation tree branch
- How do we model check against LTL formulae?

LTL

LTL formulae

- p, $\neg \phi$, $\phi \wedge \psi$ Propositional logic as usual
- $X\phi$ **neXt**: ϕ holds in the next state
- $\phi U \psi$ **Until**: ψ will happen sooner or later, ϕ holds until then
- LTL quantifies universally over paths.
- Comparison: CTL picks quantification at each computation tree branch
- How do we model check against LTL formulae?

Preliminary: Büchi Automata

Automata accepting languages of infinite words.

Definition

A Büchi automaton is $(\Sigma, S, \rho, S_0, F)$

- Σ an alphabet
- S a set of states
- $\rho: S \times \Sigma \to 2^S$ the transition function
- S_0 the set of initial states
- F the set of accepting states
- An infinite word w is accepted by a Büchi automaton A if there is a run of A, following w, which passes through accepting states an infinite number of times.

Preliminary: Büchi Automata

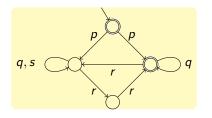
Automata accepting languages of infinite words.

Definition

A Büchi automaton is $(\Sigma, S, \rho, S_0, F)$

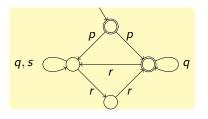
- Σ an alphabet
- S a set of states
- $\rho: S \times \Sigma \to 2^S$ the transition function
- S_0 the set of initial states
- F the set of accepting states
- An infinite word w is accepted by a Büchi automaton A if there is a run of A, following w, which passes through accepting states an infinite number of times.

 An infinite word w is accepted by a Büchi automaton A if there is a run of A, following w, which passes through accepting states an infinite number of times.



```
p
pqqqqqqq · · ·
psssssss · · ·
ppppppppp · · ·
prrrrrr · · ·
```

 An infinite word w is accepted by a Büchi automaton A if there is a run of A, following w, which passes through accepting states an infinite number of times.



```
p Not infinite!

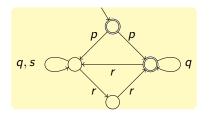
pqqqqqqq···

psssssss···

ppppppppp···

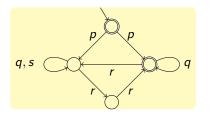
prrrrrr···
```

 An infinite word w is accepted by a Büchi automaton A if there is a run of A, following w, which passes through accepting states an infinite number of times.



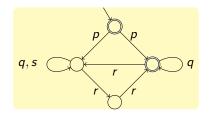
```
p Not infinite!
pqqqqqqq··· Accepted
psssssss···
ppppppppp···
prrrrrr···
```

 An infinite word w is accepted by a Büchi automaton A if there is a run of A, following w, which passes through accepting states an infinite number of times.



nrrrrrr . . .

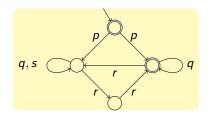
 An infinite word w is accepted by a Büchi automaton A if there is a run of A, following w, which passes through accepting states an infinite number of times.



 $\begin{array}{ll} p & \text{Not infinite!} \\ pqqqqqqq \cdots & \text{Accepted} \\ psssssss \cdots & \text{Not accepted} \\ ppppppppp \cdots & \text{Not accepted} \end{array}$

prrrrrrr · · ·

 An infinite word w is accepted by a Büchi automaton A if there is a run of A, following w, which passes through accepting states an infinite number of times.



Goal: Verification of a program P against an LTL formula ϕ I.e. Check that all computations of P satisfy ϕ .

- Represent P as a Büchi automaton A^P
- ② Represent $\neg \phi$ as a Büchi automaton $A^{\neg \phi}$
- **3** Compute the Büchi automaton $A = A^P \cap A^{\neg \phi}$
- Check that the language of *A* is empty.

- Linear in |P| (size of model)
- Exponential in $|\phi|$ (number of symbols)

Goal: Verification of a program P against an LTL formula ϕ I.e. Check that all computations of P satisfy ϕ .

- lacktriangle Represent P as a Büchi automaton A^P
- ② Represent $\neg \phi$ as a Büchi automaton $A^{\neg \phi}$
- **3** Compute the Büchi automaton $A = A^P \cap A^{\neg \phi}$
- Check that the language of *A* is empty.

- Linear in |P| (size of model)
- Exponential in $|\phi|$ (number of symbols)

Goal: Verification of a program P against an LTL formula ϕ I.e. Check that all computations of P satisfy ϕ .

- lacktriangle Represent P as a Büchi automaton A^P
- ② Represent $\neg \phi$ as a Büchi automaton $A^{\neg \phi}$
- **3** Compute the Büchi automaton $A = A^P \cap A^{\neg \phi}$
- Check that the language of *A* is empty.

- Linear in |P| (size of model)
- Exponential in $|\phi|$ (number of symbols)

Goal: Verification of a program P against an LTL formula ϕ I.e. Check that all computations of P satisfy ϕ .

- lacktriangle Represent P as a Büchi automaton A^P
- **2** Represent $\neg \phi$ as a Büchi automaton $A^{\neg \phi}$
- **3** Compute the Büchi automaton $A = A^P \cap A^{\neg \phi}$
- Oheck that the language of A is empty.

- Linear in |P| (size of model)
- Exponential in $|\phi|$ (number of symbols)

Goal: Verification of a program P against an LTL formula ϕ I.e. Check that all computations of P satisfy ϕ .

- lacktriangle Represent P as a Büchi automaton A^P
- **2** Represent $\neg \phi$ as a Büchi automaton $A^{\neg \phi}$
- **3** Compute the Büchi automaton $A = A^P \cap A^{\neg \phi}$
- Check that the language of *A* is empty.

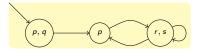
- Linear in |P| (size of model)
- Exponential in $|\phi|$ (number of symbols)

Goal: Verification of a program P against an LTL formula ϕ I.e. Check that all computations of P satisfy ϕ .

- Represent P as a Büchi automaton A^P
- 2 Represent $\neg \phi$ as a Büchi automaton $A^{\neg \phi}$
- **3** Compute the Büchi automaton $A = A^P \cap A^{\neg \phi}$
- Check that the language of A is empty.

- Linear in |P| (size of model)
- Exponential in $|\phi|$ (number of symbols)

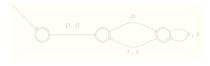
A program (model) is an automaton with states labeled by propositions.



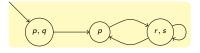
A computation of P is an infinite sequence of propositional valuations.

$${p,q}{p}{r,s}{r,s}{r,s}\cdots$$

Compute Büchi Automaton which accepts precisely the computations of P.



A program (model) is an automaton with states labeled by propositions.

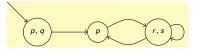


A computation of P is an infinite sequence of propositional valuations.

$${p,q}{p}{r,s}{r,s}{r,s}\cdots$$

Compute Büchi Automaton which accepts precisely the computations of *P*.

A program (model) is an automaton with states labeled by propositions.



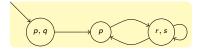
A computation of P is an infinite sequence of propositional valuations.

$${p,q}{p}{r,s}{r,s}{r,s}\cdots$$

Compute Büchi Automaton which accepts precisely the computations of P.

$$p,q$$
 p r,s

A program (model) is an automaton with states labeled by propositions.



A computation of P is an infinite sequence of propositional valuations.

$${p,q}{p}{r,s}{r,s}{r,s}\cdots$$

Compute Büchi Automaton which accepts precisely the computations of P.

- Construct automaton L^{ϕ} that checks *local* conformance with formulae.
- ② Construct automaton E^{ϕ} that checks that for $\phi_0 U \phi_1$, eventually ϕ_1 holds.
- **3** Compute $A^{\phi} = L^{\phi} \times E^{\phi}$

¹For more detail see Appendix B in VW85.

- **①** Construct automaton L^{ϕ} that checks *local* conformance with formulae.
- ② Construct automaton E^{ϕ} that checks that for $\phi_0 U \phi_1$ eventually ϕ_1 holds.
- **3** Compute $A^{\phi} = L^{\phi} \times E^{\phi}$

¹For more detail see Appendix B in VW85.

- Construct automaton L^{ϕ} that checks *local* conformance with formulae.
- ② Construct automaton E^{ϕ} that checks that for $\phi_0 U \phi_1$, eventually ϕ_1 holds.
- **3** Compute $A^{\phi} = L^{\phi} \times E^{\phi}$

¹For more detail see Appendix B in VW85.

- Construct automaton L^{ϕ} that checks *local* conformance with formulae.
- ② Construct automaton E^{ϕ} that checks that for $\phi_0 U \phi_1$, eventually ϕ_1 holds.
- **3** Compute $A^{\phi} = L^{\phi} \times E^{\phi}$

¹For more detail see Appendix B in VW85.

Idea: Construct an automaton which keeps track of how we can transition between valuations of subformulae of ϕ .

Let $cl(\phi)$ denote the set of subformulae of ϕ .

Construct an automaton where the states are *consistent* valuations of $cl(\phi)$. A *consistent* valuation s of cl satisfies

- s is propositionally consistent
- $\phi U \psi \in s \rightarrow \phi \in s \lor \psi \in s$
- $\psi \in s \rightarrow \phi U \psi \in s$

Transitions are of the form $s \stackrel{s}{\rightarrow} t$ where

- $X\phi \in s$ iff $\phi \in t$
- $\phi U \psi \in s$ iff
 - $\bullet \ \psi \in s \ {
 m or}$
 - $\phi \in s \land \phi U \psi \in t$

Idea: Construct an automaton which keeps track of how we can transition between valuations of subformulae of ϕ .

Let $cl(\phi)$ denote the set of subformulae of ϕ .

Construct an automaton where the states are *consistent* valuations of $cl(\phi)$. A *consistent* valuation s of cl satisfies

- s is propositionally consistent
- $\bullet \ \phi U\psi \in s \to \phi \in s \lor \psi \in s$
- $\psi \in s \to \phi U \psi \in s$

Transitions are of the form $s \stackrel{5}{\rightarrow} t$ where

- $X\phi \in s$ iff $\phi \in t$
- $\phi U \psi \in s$ iff
 - $\psi \in s$ or
 - $\phi \in s \land \phi U \psi \in t$

Idea: Construct an automaton which keeps track of how we can transition between valuations of subformulae of ϕ .

Let $cl(\phi)$ denote the set of subformulae of ϕ .

Construct an automaton where the states are *consistent* valuations of $cl(\phi)$. A *consistent* valuation s of cl satisfies

- s is propositionally consistent
- $\bullet \ \phi U\psi \in s \to \phi \in s \lor \psi \in s$
- $\psi \in s \to \phi U \psi \in s$

Transitions are of the form $s \stackrel{s}{\rightarrow} t$ where

- $X\phi \in s$ iff $\phi \in t$
- $\phi U \psi \in s$ iff
 - $\psi \in s$ or
 - $\phi \in s \land \phi U \psi \in t$

Idea: Construct an automaton which keeps track of how we can transition between valuations of subformulae of ϕ .

Let $cl(\phi)$ denote the set of subformulae of ϕ .

Construct an automaton where the states are *consistent* valuations of $cl(\phi)$. A *consistent* valuation s of cl satisfies

- s is propositionally consistent
- $\bullet \ \phi U\psi \in s \to \phi \in s \lor \psi \in s$
- $\psi \in s \to \phi U \psi \in s$

Transitions are of the form $s \stackrel{s}{\rightarrow} t$ where

- $X\phi \in s$ iff $\phi \in t$
- $\phi U \psi \in s$ iff
 - $\bullet \ \psi \in s \ {
 m or}$
 - $\phi \in s \land \phi U \psi \in t$

Example:
$$\phi = pUq$$

Consistent state s:

- *s* is propositionally consistent
- $\phi U\psi \in s \to$ $\phi \in s \lor \psi \in s$
- $\bullet \ \psi \in \mathbf{s} \to \phi \mathbf{U} \psi \in \mathbf{s}$

Transition $s \stackrel{s}{\rightarrow} t$:

- $X\phi \in s$ iff $\phi \in t$
- $\phi U \psi \in s$ iff
 - $\bullet \ \psi \in s \ {
 m or}$
 - $\phi \in s \land \phi U \psi \in t$

Subformulae: p, q, pUq

States

Nice automaton! ... but what is it good for?

Example:
$$\phi = pUq$$

Consistent state s:

- *s* is propositionally consistent
- $\phi U\psi \in s \to \\
 \phi \in s \lor \psi \in s$
- $\psi \in s \to \phi U \psi \in s$

Transition $s \stackrel{s}{\rightarrow} t$:

- $X\phi \in s$ iff $\phi \in t$
- $\phi U \psi \in s$ iff
 - $\bullet \ \psi \in s \ {
 m or}$
 - $\phi \in s \land \phi U \psi \in t$

Subformulae: p, q, pUq
States:

$$\{pUq\} \qquad \{p, pUq\}$$

$$\{q, pUq\} \qquad \{p, q\}$$

$$\{q\} \qquad \{p, q, pUq\}$$

Example:
$$\phi = pUq$$

Consistent state s:

- *s* is propositionally consistent
- $\phi U\psi \in s \to$ $\phi \in s \lor \psi \in s$
- $\psi \in s \to \phi U \psi \in s$

Transition $s \stackrel{s}{\rightarrow} t$:

- $X\phi \in s$ iff $\phi \in t$
- $\phi U \psi \in s$ iff
 - $\bullet \ \psi \in s \ {
 m or}$
 - $\phi \in s \land \phi U \psi \in t$

Subformulae: p, q, pUq
Inconsistent States:

$$\{ p Uq \} \qquad \{ p, p Uq \}$$

$$\{ q, p Uq \} \qquad \{ p, q \}$$

$$\{ q \} \qquad \{ p, q, p Uq \}$$

Example:
$$\phi = pUq$$

Consistent state s:

- s is propositionally consistent
- $\phi U\psi \in s \to$ $\phi \in s \lor \psi \in s$
- $\bullet \ \psi \in \mathbf{s} \to \phi \mathbf{U} \psi \in \mathbf{s}$

Transition $s \stackrel{s}{\rightarrow} t$:

- $X\phi \in s$ iff $\phi \in t$
- $\phi U \psi \in s$ iff
 - $\bullet \ \psi \in s \ {
 m or}$
 - $\phi \in s \land \phi U \psi \in t$

Subformulae: p, q, pUqConsistent States: $\{\} \qquad \{p\}$

$$\{p, pUq\}$$

$$\{p, q, pUq\}$$

$$\{p, q, pUq\}$$

Example:
$$\phi = pUq$$

Consistent state s:

- *s* is propositionally consistent
- $\phi U\psi \in s \to$ $\phi \in s \lor \psi \in s$
- $\bullet \ \psi \in \mathbf{s} \to \phi \mathbf{U} \psi \in \mathbf{s}$

Transition $s \stackrel{s}{\rightarrow} t$:

- $X\phi \in s$ iff $\phi \in t$
- $\phi U \psi \in s$ iff
 - $\bullet \ \psi \in s \ {
 m or}$
 - $\phi \in s \land \phi U \psi \in t$

Subformulae: p, q, pUqTransitions {*p*} $\{p, pUq\}$ $\{q, pUq\}$ $\{p, q, pUq\}$

Example:
$$\phi = pUq$$

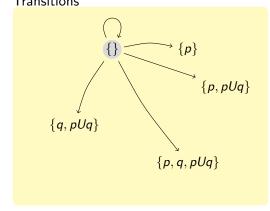
Consistent state s:

- *s* is propositionally consistent
- $\phi U\psi \in s \to \\
 \phi \in s \lor \psi \in s$
- $\psi \in s \to \phi U \psi \in s$

Transition $s \stackrel{s}{\rightarrow} t$:

- $X\phi \in s$ iff $\phi \in t$
- $\phi U \psi \in s$ iff
 - $\bullet \ \psi \in s \ {
 m or}$
 - $\phi \in s \land \phi U \psi \in t$

Subformulae: p, q, pUqTransitions



Nice automaton! ... but what is it good for?

Example:
$$\phi = pUq$$

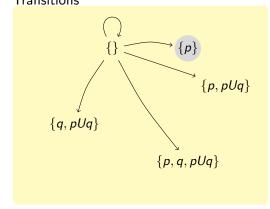
Consistent state s:

- *s* is propositionally consistent
- $\phi U\psi \in s \to \\
 \phi \in s \lor \psi \in s$
- $\psi \in s \to \phi U \psi \in s$

Transition $s \stackrel{s}{\rightarrow} t$:

- $X\phi \in s$ iff $\phi \in t$
- $\phi U \psi \in s$ iff
 - $\bullet \ \psi \in s \ {
 m or}$
 - $\phi \in s \land \phi U \psi \in t$

Subformulae: p, q, pUq Transitions



Nice automaton! ... but what is it good for?

Example:
$$\phi = pUq$$

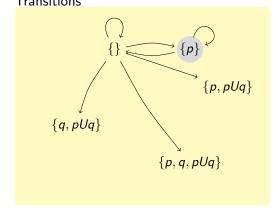
Consistent state s:

- *s* is propositionally consistent
- $\phi U\psi \in s \to$ $\phi \in s \lor \psi \in s$
- $\psi \in s \to \phi U \psi \in s$

Transition $s \stackrel{s}{\rightarrow} t$:

- $X\phi \in s$ iff $\phi \in t$
- $\phi U \psi \in s$ iff
 - $\bullet \ \psi \in s \ {
 m or}$
 - $\phi \in s \land \phi U \psi \in t$

Subformulae: p, q, pUqTransitions



Example:
$$\phi = pUq$$

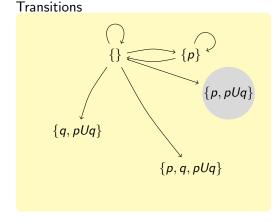
Consistent state s:

- *s* is propositionally consistent
- $\phi U\psi \in s \to$ $\phi \in s \lor \psi \in s$
- $\psi \in s \to \phi U \psi \in s$

Transition $s \stackrel{s}{\rightarrow} t$:

- $X\phi \in s$ iff $\phi \in t$
- $\phi U \psi \in s$ iff
 - $\bullet \ \psi \in s \ {
 m or}$
 - $\phi \in s \land \phi U \psi \in t$

Subformulae: p, q, pUq



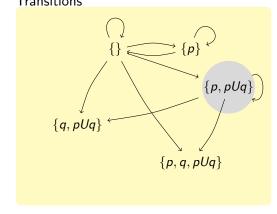
Example:
$$\phi = pUq$$

Consistent state s:

- *s* is propositionally consistent
- $\phi U\psi \in s \to$ $\phi \in s \lor \psi \in s$
- $\bullet \ \psi \in \mathbf{s} \to \phi \mathbf{U} \psi \in \mathbf{s}$

Transition $s \stackrel{s}{\rightarrow} t$:

- $X\phi \in s$ iff $\phi \in t$
- $\phi U \psi \in s$ iff
 - $\bullet \ \psi \in s \ {
 m or}$
 - $\phi \in s \land \phi U \psi \in t$



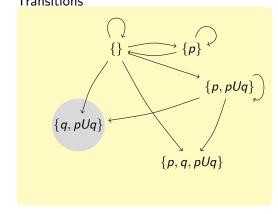
Example:
$$\phi = pUq$$

Consistent state s:

- s is propositionally consistent
- $\phi U\psi \in s \to$ $\phi \in s \lor \psi \in s$
- $\psi \in s \to \phi U \psi \in s$

Transition $s \stackrel{s}{\rightarrow} t$:

- $X\phi \in s$ iff $\phi \in t$
- $\phi U \psi \in s$ iff
 - $\bullet \ \psi \in s \ {
 m or}$
 - $\phi \in s \land \phi U \psi \in t$



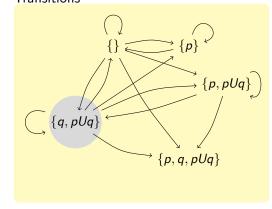
Example:
$$\phi = pUq$$

Consistent state s:

- *s* is propositionally consistent
- $\phi U\psi \in s \to$ $\phi \in s \lor \psi \in s$
- $\bullet \ \psi \in \mathbf{s} \to \phi \mathbf{U} \psi \in \mathbf{s}$

Transition $s \stackrel{s}{\rightarrow} t$:

- $X\phi \in s$ iff $\phi \in t$
- $\phi U \psi \in s$ iff
 - $\bullet \ \psi \in s \ {
 m or}$
 - $\phi \in s \land \phi U \psi \in t$



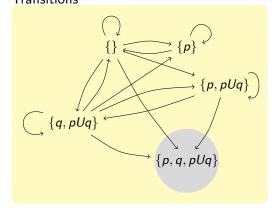
Example:
$$\phi = pUq$$

Consistent state s:

- *s* is propositionally consistent
- $\phi U\psi \in s \to$ $\phi \in s \lor \psi \in s$
- $\bullet \ \psi \in \mathbf{s} \to \phi \mathbf{U} \psi \in \mathbf{s}$

Transition $s \stackrel{s}{\rightarrow} t$:

- $X\phi \in s$ iff $\phi \in t$
- $\phi U \psi \in s$ iff
 - $\bullet \ \psi \in s \ {
 m or}$
 - $\phi \in s \land \phi U \psi \in t$



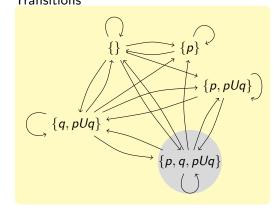
Example:
$$\phi = pUq$$

Consistent state s:

- *s* is propositionally consistent
- $\phi U\psi \in s \to$ $\phi \in s \lor \psi \in s$
- $\psi \in s \to \phi U \psi \in s$

Transition $s \stackrel{s}{\rightarrow} t$:

- $X\phi \in s$ iff $\phi \in t$
- $\phi U \psi \in s$ iff
 - $\bullet \ \psi \in s \ {
 m or}$
 - $\phi \in s \land \phi U \psi \in t$



Example:
$$\phi = pUq$$

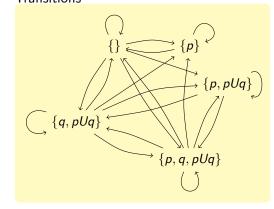
Consistent state s:

- *s* is propositionally consistent
- $\phi U\psi \in s \to$ $\phi \in s \lor \psi \in s$
- $\bullet \ \psi \in \mathbf{s} \to \phi \mathbf{U} \psi \in \mathbf{s}$

Transition $s \stackrel{s}{\rightarrow} t$:

- $X\phi \in s$ iff $\phi \in t$
- $\phi U \psi \in s$ iff
 - $\bullet \ \psi \in s \ {
 m or}$
 - $\phi \in s \land \phi U \psi \in t$

Subformulae: p, q, pUqTransitions



Nice automaton! ... but what is it good for?

Example:
$$\phi = pUq$$

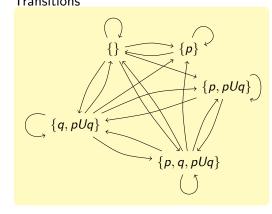
Consistent state s:

- *s* is propositionally consistent
- $\phi U\psi \in s \to$ $\phi \in s \lor \psi \in s$
- $\bullet \ \psi \in \mathbf{s} \to \phi \mathbf{U} \psi \in \mathbf{s}$

Transition $s \stackrel{s}{\rightarrow} t$:

- $X\phi \in s$ iff $\phi \in t$
- $\phi U \psi \in s$ iff
 - $\bullet \ \psi \in s \ {
 m or}$
 - $\phi \in s \land \phi U \psi \in t$

Subformulae: p, q, pUqTransitions



Nice automaton! ... but what is it good for?

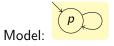
L^{ϕ} is not sufficient!

Consider the following scenario:

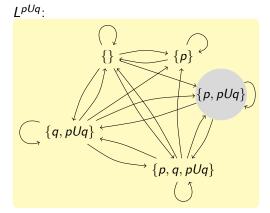
Model:

The model never performs an illegal transition, but still it does not satisfy the assumption that pUq

 L^{ϕ} is not sufficient! Consider the following scenario:



The model never performs an illegal transition, but still it does not satisfy the assumption that *pUq*.

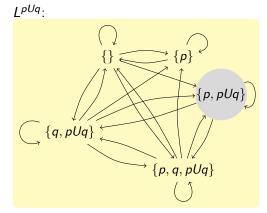


 L^{ϕ} is not sufficient! Consider the following scenario:

P

Model:

The model never performs an illegal transition, but still it does not satisfy the assumption that pUq.



Construction of E^{ϕ}

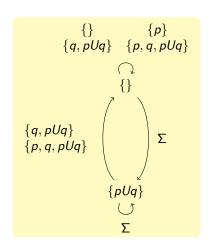
- Let the states be sets of formulae $\phi_0 U \phi_1 \in cl(\phi)$.
 - $\phi_0 U \phi_1 \in u$ means that in state u we are waiting for ϕ_1 .
- Label transitions with consistent valuations of $cl(\phi)$.
- For a transition $u \stackrel{a}{\rightarrow} v$
 - If $u = \emptyset \land \phi_0 U \phi_1 \in a \land \phi_1 \not\in a$ then $\phi_0 U \phi_1 \in v$
 - If $\phi_0 U \phi_1 \in u \land \phi_1 \not\in a$ then $\phi_0 U \phi_1 \in v$

Construction of E^{ϕ}

- Let the states be sets of formulae $\phi_0 U \phi_1 \in cl(\phi)$.
 - $\phi_0 U \phi_1 \in u$ means that in state u we are waiting for ϕ_1 .
- Label transitions with consistent valuations of $cl(\phi)$.
- For a transition $u \stackrel{a}{\rightarrow} v$
 - If $u = \emptyset \land \phi_0 U \phi_1 \in a \land \phi_1 \not\in a$ then $\phi_0 U \phi_1 \in v$
 - If $\phi_0 U \phi_1 \in u \land \phi_1 \not\in a$ then $\phi_0 U \phi_1 \in v$

Example:
$$\phi = pUq$$

$$\Sigma = \left\{ egin{array}{l} \{p\} \ \{p,pUq\} \ \{q,pUq\} \ \{p,q,pUq\} \end{array}
ight\}$$

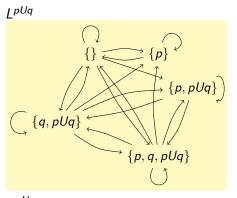


- States: cross product
- ② $(I,e) \stackrel{a}{\rightarrow} (I',e')$ iff $I \stackrel{a}{\rightarrow} I'$ and $e \stackrel{a}{\rightarrow} e'$.
 - Intuition: Require both satisfaction of both L^{ϕ} and E^{ϕ}
- **③** Starting states: (I,\emptyset) where $\phi \in I$
 - Intuition: Assume that ϕ holds for the start of computation.
- 4 Accepting states: (I,\emptyset)
 - Intuition: Any state is fine as long as we are not still waiting for ϕ_1 in $\phi_0 U \phi_1$.

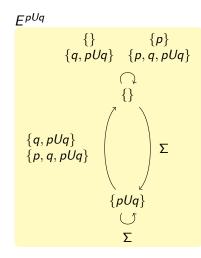
- States: cross product
- $(I,e) \stackrel{a}{\rightarrow} (I',e') \text{ iff } I \stackrel{a}{\rightarrow} I' \text{ and } e \stackrel{a}{\rightarrow} e'.$
 - Intuition: Require both satisfaction of both L^{ϕ} and E^{ϕ}
- ③ Starting states: (I,\emptyset) where $\phi \in I$
 - ullet Intuition: Assume that ϕ holds for the start of computation.
- ① Accepting states: (I,\emptyset)
 - Intuition: Any state is fine as long as we are not still waiting for ϕ_1 in $\phi_0 U \phi_1$.

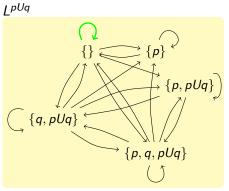
- States: cross product
- $(I,e) \stackrel{a}{\rightarrow} (I',e') \text{ iff } I \stackrel{a}{\rightarrow} I' \text{ and } e \stackrel{a}{\rightarrow} e'.$
 - ullet Intuition: Require both satisfaction of both L^ϕ and E^ϕ
- **3** Starting states: (I, \emptyset) where $\phi \in I$
 - ullet Intuition: Assume that ϕ holds for the start of computation.
- \bigcirc Accepting states: (I,\emptyset)
 - Intuition: Any state is fine as long as we are not still waiting for ϕ_1 in $\phi_0 U \phi_1$.

- States: cross product
- $(I,e) \stackrel{a}{\rightarrow} (I',e') \text{ iff } I \stackrel{a}{\rightarrow} I' \text{ and } e \stackrel{a}{\rightarrow} e'.$
 - Intuition: Require both satisfaction of both L^ϕ and E^ϕ
- **3** Starting states: (I, \emptyset) where $\phi \in I$
 - ullet Intuition: Assume that ϕ holds for the start of computation.
- **4** Accepting states: (I, \emptyset)
 - Intuition: Any state is fine as long as we are not still waiting for ϕ_1 in $\phi_0 U \phi_1$.



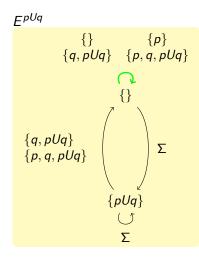
$$A^{pUq}$$
 (partial)
$$(\{\},\{\}) \qquad (\{\},\{pUq\})$$

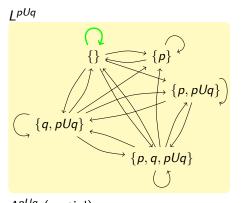




 A^{pUq} (partial)

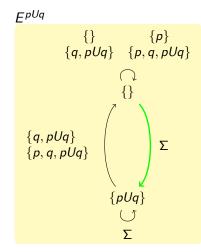
$$(\{\},\{\})$$
 $(\{\},\{pUq\})$

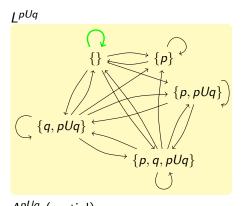


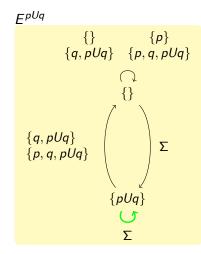


$$A^{pUq} \text{ (partial)}$$

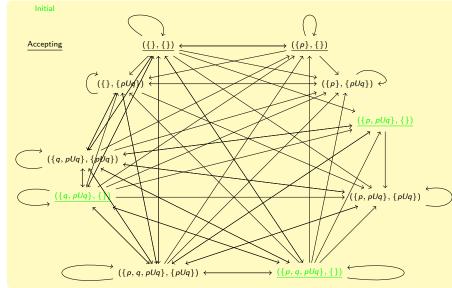
$$(\{\}, \{\}) \longrightarrow (\{\}, \{pUq\})$$







LTL ightarrow Büchi Automaton: $(L^\phi, E^\phi) ightarrow A^\phi$: Example



How to use $A^{\neg \phi}$ to verify a model

Using $A^{\neg \phi}$ to verify a model P:

- Compute the model automaton A^P .
- Compute the intersection $A = A^{\neg \phi} \cap A^P$
 - Basically run $A^{\neg \phi}$ and A^P together and accept whenever $A^{\neg \phi}$ accepts.
- Check emptiness for *A*.
 - DFS

How to use $A^{\neg \phi}$ to verify a model

Using $A^{\neg \phi}$ to verify a model P:

- Compute the model automaton A^P .
- Compute the intersection $A = A^{\neg \phi} \bigcap A^P$
 - Basically run $A^{\neg\phi}$ and A^P together and accept whenever $A^{\neg\phi}$ accepts.
- Check emptiness for A.
 - DFS

How to use $A^{\neg \phi}$ to verify a model

Using $A^{\neg \phi}$ to verify a model P:

- Compute the model automaton A^P .
- Compute the intersection $A = A^{\neg \phi} \cap A^P$
 - Basically run $A^{\neg\phi}$ and A^P together and accept whenever $A^{\neg\phi}$ accepts.
- Check emptiness for *A*.
 - DFS