
An Automata-Theoretic Approach to Automatic
Program Verification

Moshe Y. Vardi Pierre Wolper
Presentation: Carl Leonardsson

Reading Group Seminar 24/2 - 2012



Purpose

Goal: Verifying programs against temporal formulae

Same as last time

This time in LTL



Purpose

Goal: Verifying programs against temporal formulae

Same as last time

This time in LTL



LTL

LTL formulae

p, ¬φ, φ ∧ ψ - Propositional logic as usual

Xφ - neXt: φ holds in the next state

φUψ - Until: ψ will happen sooner or later, φ holds until then

LTL quantifies universally over paths.

Comparison: CTL picks quantification at each computation
tree branch

How do we model check against LTL formulae?



LTL

LTL formulae

p, ¬φ, φ ∧ ψ - Propositional logic as usual

Xφ - neXt: φ holds in the next state

φUψ - Until: ψ will happen sooner or later, φ holds until then

LTL quantifies universally over paths.

Comparison: CTL picks quantification at each computation
tree branch

How do we model check against LTL formulae?



LTL

LTL formulae

p, ¬φ, φ ∧ ψ - Propositional logic as usual

Xφ - neXt: φ holds in the next state

φUψ - Until: ψ will happen sooner or later, φ holds until then

LTL quantifies universally over paths.

Comparison: CTL picks quantification at each computation
tree branch

How do we model check against LTL formulae?



Preliminary: Büchi Automata

Automata accepting languages of infinite words.

Definition

A Büchi automaton is (Σ,S , ρ,S0,F )

Σ an alphabet

S a set of states

ρ : S × Σ→ 2S the transition function

S0 the set of initial states

F the set of accepting states

An infinite word w is accepted by a Büchi automaton A if
there is a run of A, following w , which passes through
accepting states an infinite number of times.



Preliminary: Büchi Automata

Automata accepting languages of infinite words.

Definition

A Büchi automaton is (Σ,S , ρ,S0,F )

Σ an alphabet

S a set of states

ρ : S × Σ→ 2S the transition function

S0 the set of initial states

F the set of accepting states

An infinite word w is accepted by a Büchi automaton A if
there is a run of A, following w , which passes through
accepting states an infinite number of times.



Büchi Automata: Example

An infinite word w is accepted by a Büchi automaton A if
there is a run of A, following w , which passes through
accepting states an infinite number of times.

p

q, s

p

q
r

r r

p
pqqqqqqq · · ·
psssssss · · ·
pppppppp · · ·
prrrrrrr · · ·



Büchi Automata: Example

An infinite word w is accepted by a Büchi automaton A if
there is a run of A, following w , which passes through
accepting states an infinite number of times.

p

q, s

p

q
r

r r

p Not infinite!
pqqqqqqq · · ·
psssssss · · ·
pppppppp · · ·
prrrrrrr · · ·



Büchi Automata: Example

An infinite word w is accepted by a Büchi automaton A if
there is a run of A, following w , which passes through
accepting states an infinite number of times.

p

q, s

p

q
r

r r

p Not infinite!
pqqqqqqq · · · Accepted
psssssss · · ·
pppppppp · · ·
prrrrrrr · · ·



Büchi Automata: Example

An infinite word w is accepted by a Büchi automaton A if
there is a run of A, following w , which passes through
accepting states an infinite number of times.

p

q, s

p

q
r

r r

p Not infinite!
pqqqqqqq · · · Accepted
psssssss · · · Not accepted
pppppppp · · ·
prrrrrrr · · ·



Büchi Automata: Example

An infinite word w is accepted by a Büchi automaton A if
there is a run of A, following w , which passes through
accepting states an infinite number of times.

p

q, s

p

q
r

r r

p Not infinite!
pqqqqqqq · · · Accepted
psssssss · · · Not accepted
pppppppp · · · Not accepted
prrrrrrr · · ·



Büchi Automata: Example

An infinite word w is accepted by a Büchi automaton A if
there is a run of A, following w , which passes through
accepting states an infinite number of times.

p

q, s

p

q
r

r r

p Not infinite!
pqqqqqqq · · · Accepted
psssssss · · · Not accepted
pppppppp · · · Not accepted
prrrrrrr · · · Accepted



Outline

Goal: Verification of a program P against an LTL formula φ
I.e. Check that all computations of P satisfy φ.

1 Represent P as a Büchi automaton AP

2 Represent ¬φ as a Büchi automaton A¬φ

3 Compute the Büchi automaton A = AP
⋂

A¬φ

4 Check that the language of A is empty.

Complexity

Linear in |P| (size of model)

Exponential in |φ| (number of symbols)



Outline

Goal: Verification of a program P against an LTL formula φ
I.e. Check that all computations of P satisfy φ.

1 Represent P as a Büchi automaton AP

2 Represent ¬φ as a Büchi automaton A¬φ

3 Compute the Büchi automaton A = AP
⋂

A¬φ

4 Check that the language of A is empty.

Complexity

Linear in |P| (size of model)

Exponential in |φ| (number of symbols)



Outline

Goal: Verification of a program P against an LTL formula φ
I.e. Check that all computations of P satisfy φ.

1 Represent P as a Büchi automaton AP

2 Represent ¬φ as a Büchi automaton A¬φ

3 Compute the Büchi automaton A = AP
⋂

A¬φ

4 Check that the language of A is empty.

Complexity

Linear in |P| (size of model)

Exponential in |φ| (number of symbols)



Outline

Goal: Verification of a program P against an LTL formula φ
I.e. Check that all computations of P satisfy φ.

1 Represent P as a Büchi automaton AP

2 Represent ¬φ as a Büchi automaton A¬φ

3 Compute the Büchi automaton A = AP
⋂

A¬φ

4 Check that the language of A is empty.

Complexity

Linear in |P| (size of model)

Exponential in |φ| (number of symbols)



Outline

Goal: Verification of a program P against an LTL formula φ
I.e. Check that all computations of P satisfy φ.

1 Represent P as a Büchi automaton AP

2 Represent ¬φ as a Büchi automaton A¬φ

3 Compute the Büchi automaton A = AP
⋂

A¬φ

4 Check that the language of A is empty.

Complexity

Linear in |P| (size of model)

Exponential in |φ| (number of symbols)



Outline

Goal: Verification of a program P against an LTL formula φ
I.e. Check that all computations of P satisfy φ.

1 Represent P as a Büchi automaton AP

2 Represent ¬φ as a Büchi automaton A¬φ

3 Compute the Büchi automaton A = AP
⋂

A¬φ

4 Check that the language of A is empty.

Complexity

Linear in |P| (size of model)

Exponential in |φ| (number of symbols)



Program → Büchi Automaton

A program (model) is an au-
tomaton with states labeled by
propositions.

p, q p r, s

A computation of P is an in-
finite sequence of propositional
valuations.

{p, q}{p}{r , s}{r , s}{r , s} · · ·

Compute Büchi Automaton which accepts precisely the com-
putations of P.

Just move propositions out of
the states and make every state
accepting.

p, q
p

r, s

r, s



Program → Büchi Automaton

A program (model) is an au-
tomaton with states labeled by
propositions.

p, q p r, s

A computation of P is an in-
finite sequence of propositional
valuations.

{p, q}{p}{r , s}{r , s}{r , s} · · ·

Compute Büchi Automaton which accepts precisely the com-
putations of P.

Just move propositions out of
the states and make every state
accepting.

p, q
p

r, s

r, s



Program → Büchi Automaton

A program (model) is an au-
tomaton with states labeled by
propositions.

p, q p r, s

A computation of P is an in-
finite sequence of propositional
valuations.

{p, q}{p}{r , s}{r , s}{r , s} · · ·

Compute Büchi Automaton which accepts precisely the com-
putations of P.

Just move propositions out of
the states and make every state
accepting.

p, q
p

r, s

r, s



Program → Büchi Automaton

A program (model) is an au-
tomaton with states labeled by
propositions.

p, q p r, s

A computation of P is an in-
finite sequence of propositional
valuations.

{p, q}{p}{r , s}{r , s}{r , s} · · ·

Compute Büchi Automaton which accepts precisely the com-
putations of P.

Just move propositions out of
the states and make every state
accepting.

p, q
p

r, s

r, s



LTL → Büchi Automaton

For a given LTL formula φ, construct Büchi automaton Aφ such
that L(Aφ) = {w |w |= φ}.1

1 Construct automaton Lφ that checks local conformance with
formulae.

2 Construct automaton Eφ that checks that for φ0Uφ1,
eventually φ1 holds.

3 Compute Aφ = Lφ × Eφ

1For more detail see Appendix B in VW85.



LTL → Büchi Automaton

For a given LTL formula φ, construct Büchi automaton Aφ such
that L(Aφ) = {w |w |= φ}.1

1 Construct automaton Lφ that checks local conformance with
formulae.

2 Construct automaton Eφ that checks that for φ0Uφ1,
eventually φ1 holds.

3 Compute Aφ = Lφ × Eφ

1For more detail see Appendix B in VW85.



LTL → Büchi Automaton

For a given LTL formula φ, construct Büchi automaton Aφ such
that L(Aφ) = {w |w |= φ}.1

1 Construct automaton Lφ that checks local conformance with
formulae.

2 Construct automaton Eφ that checks that for φ0Uφ1,
eventually φ1 holds.

3 Compute Aφ = Lφ × Eφ

1For more detail see Appendix B in VW85.



LTL → Büchi Automaton

For a given LTL formula φ, construct Büchi automaton Aφ such
that L(Aφ) = {w |w |= φ}.1

1 Construct automaton Lφ that checks local conformance with
formulae.

2 Construct automaton Eφ that checks that for φ0Uφ1,
eventually φ1 holds.

3 Compute Aφ = Lφ × Eφ

1For more detail see Appendix B in VW85.



LTL → Büchi Automaton: Lφ

Idea: Construct an automaton which keeps track of how we can
transition between valuations of subformulae of φ.

Let cl(φ) denote the set of subformulae of φ.

Construct an automaton where the states are consistent valuations
of cl(φ). A consistent valuation s of cl satisfies

s is propositionally consistent

φUψ ∈ s → φ ∈ s ∨ ψ ∈ s

ψ ∈ s → φUψ ∈ s

Transitions are of the form s
s→ t where

Xφ ∈ s iff φ ∈ t
φUψ ∈ s iff

ψ ∈ s or
φ ∈ s ∧ φUψ ∈ t



LTL → Büchi Automaton: Lφ

Idea: Construct an automaton which keeps track of how we can
transition between valuations of subformulae of φ.

Let cl(φ) denote the set of subformulae of φ.

Construct an automaton where the states are consistent valuations
of cl(φ). A consistent valuation s of cl satisfies

s is propositionally consistent

φUψ ∈ s → φ ∈ s ∨ ψ ∈ s

ψ ∈ s → φUψ ∈ s

Transitions are of the form s
s→ t where

Xφ ∈ s iff φ ∈ t
φUψ ∈ s iff

ψ ∈ s or
φ ∈ s ∧ φUψ ∈ t



LTL → Büchi Automaton: Lφ

Idea: Construct an automaton which keeps track of how we can
transition between valuations of subformulae of φ.

Let cl(φ) denote the set of subformulae of φ.

Construct an automaton where the states are consistent valuations
of cl(φ). A consistent valuation s of cl satisfies

s is propositionally consistent

φUψ ∈ s → φ ∈ s ∨ ψ ∈ s

ψ ∈ s → φUψ ∈ s

Transitions are of the form s
s→ t where

Xφ ∈ s iff φ ∈ t
φUψ ∈ s iff

ψ ∈ s or
φ ∈ s ∧ φUψ ∈ t



LTL → Büchi Automaton: Lφ

Idea: Construct an automaton which keeps track of how we can
transition between valuations of subformulae of φ.

Let cl(φ) denote the set of subformulae of φ.

Construct an automaton where the states are consistent valuations
of cl(φ). A consistent valuation s of cl satisfies

s is propositionally consistent

φUψ ∈ s → φ ∈ s ∨ ψ ∈ s

ψ ∈ s → φUψ ∈ s

Transitions are of the form s
s→ t where

Xφ ∈ s iff φ ∈ t
φUψ ∈ s iff

ψ ∈ s or
φ ∈ s ∧ φUψ ∈ t



LTL → Büchi Automaton: Lφ: Example

Example: φ = pUq

Consistent state s:

s is propositionally
consistent
φUψ ∈ s →
φ ∈ s ∨ ψ ∈ s

ψ ∈ s → φUψ ∈ s

Transition s
s→ t:

Xφ ∈ s iff φ ∈ t

φUψ ∈ s iff

ψ ∈ s or
φ ∈ s ∧φUψ ∈ t

Subformulae: p, q, pUq
States:

{}

{q, pUq}

{p}

{p, pUq}

{p, q, pUq}

Nice automaton! ... but what is it good for?



LTL → Büchi Automaton: Lφ: Example

Example: φ = pUq

Consistent state s:

s is propositionally
consistent
φUψ ∈ s →
φ ∈ s ∨ ψ ∈ s

ψ ∈ s → φUψ ∈ s

Transition s
s→ t:

Xφ ∈ s iff φ ∈ t

φUψ ∈ s iff

ψ ∈ s or
φ ∈ s ∧φUψ ∈ t

Subformulae: p, q, pUq
States:

{}

{pUq}

{q, pUq}

{q}

{p}

{p, pUq}

{p, q}

{p, q, pUq}

Nice automaton! ... but what is it good for?



LTL → Büchi Automaton: Lφ: Example

Example: φ = pUq

Consistent state s:

s is propositionally
consistent
φUψ ∈ s →
φ ∈ s ∨ ψ ∈ s

ψ ∈ s → φUψ ∈ s

Transition s
s→ t:

Xφ ∈ s iff φ ∈ t

φUψ ∈ s iff

ψ ∈ s or
φ ∈ s ∧φUψ ∈ t

Subformulae: p, q, pUq
Inconsistent States:

{}

{pUq}

{q, pUq}

{q}

{p}

{p, pUq}

{p, q}

{p, q, pUq}

Nice automaton! ... but what is it good for?



LTL → Büchi Automaton: Lφ: Example

Example: φ = pUq

Consistent state s:

s is propositionally
consistent
φUψ ∈ s →
φ ∈ s ∨ ψ ∈ s

ψ ∈ s → φUψ ∈ s

Transition s
s→ t:

Xφ ∈ s iff φ ∈ t

φUψ ∈ s iff

ψ ∈ s or
φ ∈ s ∧φUψ ∈ t

Subformulae: p, q, pUq
Consistent States:

{}

{q, pUq}

{p}

{p, pUq}

{p, q, pUq}

Nice automaton! ... but what is it good for?



LTL → Büchi Automaton: Lφ: Example

Example: φ = pUq

Consistent state s:

s is propositionally
consistent
φUψ ∈ s →
φ ∈ s ∨ ψ ∈ s

ψ ∈ s → φUψ ∈ s

Transition s
s→ t:

Xφ ∈ s iff φ ∈ t

φUψ ∈ s iff

ψ ∈ s or
φ ∈ s ∧φUψ ∈ t

Subformulae: p, q, pUq
Transitions

{}

{q, pUq}

{p}

{p, pUq}

{p, q, pUq}

Nice automaton! ... but what is it good for?



LTL → Büchi Automaton: Lφ: Example

Example: φ = pUq

Consistent state s:

s is propositionally
consistent
φUψ ∈ s →
φ ∈ s ∨ ψ ∈ s

ψ ∈ s → φUψ ∈ s

Transition s
s→ t:

Xφ ∈ s iff φ ∈ t

φUψ ∈ s iff

ψ ∈ s or
φ ∈ s ∧φUψ ∈ t

Subformulae: p, q, pUq
Transitions

{}

{q, pUq}

{p}

{p, pUq}

{p, q, pUq}

Nice automaton! ... but what is it good for?



LTL → Büchi Automaton: Lφ: Example

Example: φ = pUq

Consistent state s:

s is propositionally
consistent
φUψ ∈ s →
φ ∈ s ∨ ψ ∈ s

ψ ∈ s → φUψ ∈ s

Transition s
s→ t:

Xφ ∈ s iff φ ∈ t

φUψ ∈ s iff

ψ ∈ s or
φ ∈ s ∧φUψ ∈ t

Subformulae: p, q, pUq
Transitions

{}

{q, pUq}

{p}

{p, pUq}

{p, q, pUq}

Nice automaton! ... but what is it good for?



LTL → Büchi Automaton: Lφ: Example

Example: φ = pUq

Consistent state s:

s is propositionally
consistent
φUψ ∈ s →
φ ∈ s ∨ ψ ∈ s

ψ ∈ s → φUψ ∈ s

Transition s
s→ t:

Xφ ∈ s iff φ ∈ t

φUψ ∈ s iff

ψ ∈ s or
φ ∈ s ∧φUψ ∈ t

Subformulae: p, q, pUq
Transitions

{}

{q, pUq}

{p}

{p, pUq}

{p, q, pUq}

Nice automaton! ... but what is it good for?



LTL → Büchi Automaton: Lφ: Example

Example: φ = pUq

Consistent state s:

s is propositionally
consistent
φUψ ∈ s →
φ ∈ s ∨ ψ ∈ s

ψ ∈ s → φUψ ∈ s

Transition s
s→ t:

Xφ ∈ s iff φ ∈ t

φUψ ∈ s iff

ψ ∈ s or
φ ∈ s ∧φUψ ∈ t

Subformulae: p, q, pUq
Transitions

{}

{q, pUq}

{p}

{p, pUq}

{p, q, pUq}

Nice automaton! ... but what is it good for?



LTL → Büchi Automaton: Lφ: Example

Example: φ = pUq

Consistent state s:

s is propositionally
consistent
φUψ ∈ s →
φ ∈ s ∨ ψ ∈ s

ψ ∈ s → φUψ ∈ s

Transition s
s→ t:

Xφ ∈ s iff φ ∈ t

φUψ ∈ s iff

ψ ∈ s or
φ ∈ s ∧φUψ ∈ t

Subformulae: p, q, pUq
Transitions

{}

{q, pUq}

{p}

{p, pUq}

{p, q, pUq}

Nice automaton! ... but what is it good for?



LTL → Büchi Automaton: Lφ: Example

Example: φ = pUq

Consistent state s:

s is propositionally
consistent
φUψ ∈ s →
φ ∈ s ∨ ψ ∈ s

ψ ∈ s → φUψ ∈ s

Transition s
s→ t:

Xφ ∈ s iff φ ∈ t

φUψ ∈ s iff

ψ ∈ s or
φ ∈ s ∧φUψ ∈ t

Subformulae: p, q, pUq
Transitions

{}

{q, pUq}

{p}

{p, pUq}

{p, q, pUq}

Nice automaton! ... but what is it good for?



LTL → Büchi Automaton: Lφ: Example

Example: φ = pUq

Consistent state s:

s is propositionally
consistent
φUψ ∈ s →
φ ∈ s ∨ ψ ∈ s

ψ ∈ s → φUψ ∈ s

Transition s
s→ t:

Xφ ∈ s iff φ ∈ t

φUψ ∈ s iff

ψ ∈ s or
φ ∈ s ∧φUψ ∈ t

Subformulae: p, q, pUq
Transitions

{}

{q, pUq}

{p}

{p, pUq}

{p, q, pUq}

Nice automaton! ... but what is it good for?



LTL → Büchi Automaton: Lφ: Example

Example: φ = pUq

Consistent state s:

s is propositionally
consistent
φUψ ∈ s →
φ ∈ s ∨ ψ ∈ s

ψ ∈ s → φUψ ∈ s

Transition s
s→ t:

Xφ ∈ s iff φ ∈ t

φUψ ∈ s iff

ψ ∈ s or
φ ∈ s ∧φUψ ∈ t

Subformulae: p, q, pUq
Transitions

{}

{q, pUq}

{p}

{p, pUq}

{p, q, pUq}

Nice automaton! ... but what is it good for?



LTL → Büchi Automaton: Lφ: Example

Example: φ = pUq

Consistent state s:

s is propositionally
consistent
φUψ ∈ s →
φ ∈ s ∨ ψ ∈ s

ψ ∈ s → φUψ ∈ s

Transition s
s→ t:

Xφ ∈ s iff φ ∈ t

φUψ ∈ s iff

ψ ∈ s or
φ ∈ s ∧φUψ ∈ t

Subformulae: p, q, pUq
Transitions

{}

{q, pUq}

{p}

{p, pUq}

{p, q, pUq}

Nice automaton! ... but what is it good for?



LTL → Büchi Automaton: Lφ: Example

Example: φ = pUq

Consistent state s:

s is propositionally
consistent
φUψ ∈ s →
φ ∈ s ∨ ψ ∈ s

ψ ∈ s → φUψ ∈ s

Transition s
s→ t:

Xφ ∈ s iff φ ∈ t

φUψ ∈ s iff

ψ ∈ s or
φ ∈ s ∧φUψ ∈ t

Subformulae: p, q, pUq
Transitions

{}

{q, pUq}

{p}

{p, pUq}

{p, q, pUq}

Nice automaton! ... but what is it good for?



LTL → Büchi Automaton: Lφ: Example

Example: φ = pUq

Consistent state s:

s is propositionally
consistent
φUψ ∈ s →
φ ∈ s ∨ ψ ∈ s

ψ ∈ s → φUψ ∈ s

Transition s
s→ t:

Xφ ∈ s iff φ ∈ t

φUψ ∈ s iff

ψ ∈ s or
φ ∈ s ∧φUψ ∈ t

Subformulae: p, q, pUq
Transitions

{}

{q, pUq}

{p}

{p, pUq}

{p, q, pUq}

Nice automaton! ... but what is it good for?



LTL → Büchi Automaton: Eφ

Lφ is not sufficient!
Consider the following scenario:

Model:
p

The model never
performs an illegal
transition, but still it
does not satisfy the
assumption that pUq.

LpUq:

{}

{q, pUq}

{p}

{p, pUq}

{p, q, pUq}



LTL → Büchi Automaton: Eφ

Lφ is not sufficient!
Consider the following scenario:

Model:
p

The model never
performs an illegal
transition, but still it
does not satisfy the
assumption that pUq.

LpUq:

{}

{q, pUq}

{p}

{p, pUq}

{p, q, pUq}



LTL → Büchi Automaton: Eφ

Lφ is not sufficient!
Consider the following scenario:

Model:
p

The model never
performs an illegal
transition, but still it
does not satisfy the
assumption that pUq.

LpUq:

{}

{q, pUq}

{p}

{p, pUq}

{p, q, pUq}



LTL → Büchi Automaton: Eφ

Construction of Eφ

Let the states be sets of formulae φ0Uφ1 ∈ cl(φ).

φ0Uφ1 ∈ u means that in state u we are waiting for φ1.

Label transitions with consistent valuations of cl(φ).

For a transition u
a→ v

If u = ∅ ∧ φ0Uφ1 ∈ a ∧ φ1 6∈ a then φ0Uφ1 ∈ v
If φ0Uφ1 ∈ u ∧ φ1 6∈ a then φ0Uφ1 ∈ v



LTL → Büchi Automaton: Eφ

Construction of Eφ

Let the states be sets of formulae φ0Uφ1 ∈ cl(φ).

φ0Uφ1 ∈ u means that in state u we are waiting for φ1.

Label transitions with consistent valuations of cl(φ).

For a transition u
a→ v

If u = ∅ ∧ φ0Uφ1 ∈ a ∧ φ1 6∈ a then φ0Uφ1 ∈ v
If φ0Uφ1 ∈ u ∧ φ1 6∈ a then φ0Uφ1 ∈ v



LTL → Büchi Automaton: Eφ

Example: φ = pUq

Σ =


{}
{p}
{p, pUq}
{q, pUq}
{p, q, pUq}



{}

{pUq}

Σ
{q, pUq}
{p, q, pUq}

Σ

{} {p}
{q, pUq} {p, q, pUq}



LTL → Büchi Automaton: (Lφ,Eφ)→ Aφ

Combine Lφ and Eφ into a Büchi automaton Aφ:

1 States: cross product

2 (l , e)
a→ (l ′, e ′) iff l

a→ l ′ and e
a→ e ′.

Intuition: Require both satisfaction of both Lφ and Eφ

3 Starting states: (l , ∅) where φ ∈ l

Intuition: Assume that φ holds for the start of computation.

4 Accepting states: (l , ∅)
Intuition: Any state is fine as long as we are not still waiting
for φ1 in φ0Uφ1.



LTL → Büchi Automaton: (Lφ,Eφ)→ Aφ

Combine Lφ and Eφ into a Büchi automaton Aφ:

1 States: cross product

2 (l , e)
a→ (l ′, e ′) iff l

a→ l ′ and e
a→ e ′.

Intuition: Require both satisfaction of both Lφ and Eφ

3 Starting states: (l , ∅) where φ ∈ l

Intuition: Assume that φ holds for the start of computation.

4 Accepting states: (l , ∅)
Intuition: Any state is fine as long as we are not still waiting
for φ1 in φ0Uφ1.



LTL → Büchi Automaton: (Lφ,Eφ)→ Aφ

Combine Lφ and Eφ into a Büchi automaton Aφ:

1 States: cross product

2 (l , e)
a→ (l ′, e ′) iff l

a→ l ′ and e
a→ e ′.

Intuition: Require both satisfaction of both Lφ and Eφ

3 Starting states: (l , ∅) where φ ∈ l

Intuition: Assume that φ holds for the start of computation.

4 Accepting states: (l , ∅)
Intuition: Any state is fine as long as we are not still waiting
for φ1 in φ0Uφ1.



LTL → Büchi Automaton: (Lφ,Eφ)→ Aφ

Combine Lφ and Eφ into a Büchi automaton Aφ:

1 States: cross product

2 (l , e)
a→ (l ′, e ′) iff l

a→ l ′ and e
a→ e ′.

Intuition: Require both satisfaction of both Lφ and Eφ

3 Starting states: (l , ∅) where φ ∈ l

Intuition: Assume that φ holds for the start of computation.

4 Accepting states: (l , ∅)
Intuition: Any state is fine as long as we are not still waiting
for φ1 in φ0Uφ1.



LTL → Büchi Automaton: (Lφ,Eφ)→ Aφ: Example

LpUq

{}

{q, pUq}

{p}

{p, pUq}

{p, q, pUq}

ApUq (partial)

({}, {}) ({}, {pUq})

EpUq

{}

{pUq}

Σ
{q, pUq}
{p, q, pUq}

Σ

{} {p}
{q, pUq} {p, q, pUq}



LTL → Büchi Automaton: (Lφ,Eφ)→ Aφ: Example

LpUq

{}

{q, pUq}

{p}

{p, pUq}

{p, q, pUq}

ApUq (partial)

({}, {}) ({}, {pUq})

EpUq

{}

{pUq}

Σ
{q, pUq}
{p, q, pUq}

Σ

{} {p}
{q, pUq} {p, q, pUq}



LTL → Büchi Automaton: (Lφ,Eφ)→ Aφ: Example

LpUq

{}

{q, pUq}

{p}

{p, pUq}

{p, q, pUq}

ApUq (partial)

({}, {}) ({}, {pUq})

EpUq

{}

{pUq}

Σ
{q, pUq}
{p, q, pUq}

Σ

{} {p}
{q, pUq} {p, q, pUq}



LTL → Büchi Automaton: (Lφ,Eφ)→ Aφ: Example

LpUq

{}

{q, pUq}

{p}

{p, pUq}

{p, q, pUq}

ApUq (partial)

({}, {}) ({}, {pUq})

EpUq

{}

{pUq}

Σ
{q, pUq}
{p, q, pUq}

Σ

{} {p}
{q, pUq} {p, q, pUq}



LTL → Büchi Automaton: (Lφ,Eφ)→ Aφ: Example

ApUq

Initial

Accepting ({}, {})

({}, {pUq})

({q, pUq}, {})

({q, pUq}, {pUq})

({p}, {})

({p}, {pUq})

({p, pUq}, {})

({p, pUq}, {pUq})

({p, q, pUq}, {})({p, q, pUq}, {pUq})



How to use A¬φ to verify a model

Using A¬φ to verify a model P:

Compute the model automaton AP .

Compute the intersection A = A¬φ⋂AP

Basically run A¬φ and AP together and accept whenever A¬φ

accepts.

Check emptiness for A.

DFS



How to use A¬φ to verify a model

Using A¬φ to verify a model P:

Compute the model automaton AP .

Compute the intersection A = A¬φ⋂AP

Basically run A¬φ and AP together and accept whenever A¬φ

accepts.

Check emptiness for A.

DFS



How to use A¬φ to verify a model

Using A¬φ to verify a model P:

Compute the model automaton AP .

Compute the intersection A = A¬φ⋂AP

Basically run A¬φ and AP together and accept whenever A¬φ

accepts.

Check emptiness for A.

DFS


