Model Checking with Computation Tree Logic

Joe Scott

February 17, 2012
Different Approaches to Verification

- **Proof-Based**
 - Representation:
 - System description is a set of formulas Γ in a suitable logic.
 - Specification is another formula ϕ
 - Find a proof that $\Gamma \vdash \phi$
 - Deductive
 - Usually requires guidance from the user

- **Model-Based**
 - Representation:
 - System description is a model \mathcal{M} of a suitable logic.
 - Specification still a formula ϕ
 - Determine whether $\mathcal{M} \models \phi$
 - Algorithmic
 - Automatic
Why model checking?

- Given a logical proof system that is sound and complete\(^1\): \(\Gamma \vdash \phi\) (provability) holds iff \(\Gamma \models \phi\) (semantic entailment).
- Semantic entailment means for all models \(\mathcal{M}\):
 if for all \(\psi \in \Gamma\) we have \(\mathcal{M} \models \psi\), then \(\mathcal{M} \models \phi\).

Intuition
A verification method based on a single model \(\mathcal{M}\) should be simpler than a method based on a potentially infinite class of them.

\(^1\)Of course, Hoare Logic is not complete.
Temporal Logic

- Classical propositional and predicate logics are static
 - formulas are always true or false
- In modal logic, truth is dynamic
 - models contain several states
 - a formula may be true in some states, false in others
- Temporal logic is a modal logic with a semantics based on “when”
 - a path is a sequence of time instances (states)

<table>
<thead>
<tr>
<th>Temporal model</th>
<th>Linear</th>
<th>Branching</th>
</tr>
</thead>
<tbody>
<tr>
<td>Path Quantification</td>
<td>set of paths</td>
<td>tree</td>
</tr>
<tr>
<td>∀ (implicit)</td>
<td>LTL</td>
<td>∀ or ∃ (explicit)</td>
</tr>
<tr>
<td>LTL</td>
<td>CTL</td>
<td>CTL*</td>
</tr>
</tbody>
</table>
Model: Transition System

\[M = \langle S, \rightarrow, L \rangle \]

- (finite) set of states \(S \)
- transition relation \(\rightarrow \):
 - Binary relation on \(S \)
 - Every \(s \in S \) has some \(s' \in S \) such that \(s \rightarrow s' \)
- labelling function \(L : S \rightarrow \mathcal{P}(\text{atoms}) \)
CTL Syntax

Valid formulas:
- True, False
- Any atomic proposition p
- For valid subformulas ϕ_1, ϕ_2:
 $$ \neg \phi_1, \phi_1 \land \phi_2, \phi_1 \lor \phi_2, \phi_1 \Rightarrow \phi_2, \ldots $$
- temporal formula:

 ![Diagram of CTL syntax]

 path quantifier:
 - All paths
 - Exists a path

 temporal operator:
 - next state
 - some future state
 - all future states (Globally)
 - all states Until (binary)

 subformula
CTL Equivalences

- $\neg AF\phi \equiv EG\neg\phi$
- $\neg EF\phi \equiv AG\neg\phi$
- $\neg AX\phi \equiv EX\neg\phi$
- $AF\phi \equiv A[\top U\phi]$
- $EF\phi \equiv E[\top U\phi]$

Theorem (Adequate sets of CTL connectivesa)

A set of temporal connectives in CTL is adequate iff it contains:

- at least one of \{AX, EX\}
- at least one of \{EG, AF, AU\}
- EU
Labelling Algorithm for \(\{ AF, EU, EX \} \)

Starting from innermost subformulas:
- \(\bot \): do nothing
- \(p \): label \(s \) if \(p \in L(s) \)
- \(\phi_1 \land \phi_2 \): label \(s \) if \(s \) is already labelled with \(\phi_1 \) and \(\phi_2 \)
- \(\neg \phi_1 \): label all \(s \) not already labelled \(\phi_1 \)
- \(AF\phi_1 \):
 1. If any \(s \) is labelled \(\phi_1 \), label it \(AF\phi_1 \)
 2. Label any state \(AF\phi_1 \) if all its successor states are labelled \(AF\phi_1 \)
 3. Repeat 2 until no change
- \(E[\phi_1 U \phi_2] \):
 1. If any \(s \) is labelled \(\phi_2 \), label it \(E[\phi_1 U \phi_2] \)
 2. For any \(s \) labelled \(\phi_1 \), label \(s \) if it has a successor labelled \(E[\phi_1 U \phi_2] \)
 3. Repeat 2 until no change
- \(EX\phi_1 \): label any state that has a successor labelled \(\phi_1 \)
A final example

Does $AF \ AG p$ hold? No.

LTL formula $F \ G p$ does hold.
References

- Today’s paper:
 Clarke, Emerson, Sistla
 Automatic verification of finite-state concurrent systems using temporal logic specifications.

- Supplementary slides courtesy:

- Other material based on: