Model Checking with Computation Tree Logic

Joe Scott

February 17, 2012

Joe Scott ()

Different Approaches to Verification

- Proof-Based
 - Representation:
 - * System description is a set of formulas Γ in a suitable logic.
 - Find a proof that $\Gamma \vdash \phi$
 - ★ Deductive
 - ★ Usually requires guidance from the user
- Model-Based
 - Representation:
 - **\star** System description is a model \mathcal{M} of a suitable logic.
 - \star Specification still a formula ϕ
 - Determine whether $\mathcal{M} \models \phi$
 - ★ Algorithmic
 - * Automatic

Why model checking?

- Given a logical proof system that is sound and complete¹: $\Gamma \vdash \phi$ (provability) holds iff $\Gamma \models \phi$ (semantic entailment).
- Semantic entailment means for all models \mathcal{M} : if for all $\psi \in \Gamma$ we have $\mathcal{M} \models \psi$, then $\mathcal{M} \models \phi$.

Intuition

A verification method based on a single model \mathcal{M} should be simpler than a method based on a potentially infinite class of them.

¹Of course, Hoare Logic is not complete.

Temporal Logic

- Classical propositional and predicate logics are static
 - formulas are always true or false
- In modal logic, truth is dynamic
 - models contain several states
 - a formula may be true in some states, false in others
- Temporal logic is a modal logic with a semantics based on "when"
 - a path is a sequence of time instances (states)

Model: Transition System

$$\mathcal{M} = \langle S, \longrightarrow, L \rangle$$

- (finite) set of states S
- transition relation \longrightarrow :
 - Binary relation on S
 - \blacktriangleright Every $s\in S$ has some $s'\in S$ such that $s\longrightarrow s'$
- labelling function $L: S \to \mathcal{P}(atoms)$

CTL Syntax

Valid formulas:

- True, False
- Any atomic proposition p
- For valid subformulas ϕ_1 , ϕ_2 :

$$\neg \phi_1, \phi_1 \land \phi_2, \phi_1 \lor \phi_2, \phi_1 \implies \phi_2, \ldots$$

• temporal formula:

CTL Equivalences

- $\neg AF\phi \equiv EG\neg\phi$
- $\neg EF\phi \equiv AG\neg\phi$
- $\neg AX\phi \equiv EX\neg\phi$
- $AF\phi \equiv A[\top U\phi]$
- $EF\phi \equiv E[\top U\phi]$

Theorem (Adequate sets of CTL connectives^a)

^aA. Martin, Adequate sets of temporal connectives in CTL. Elec. Notes in Theor. Comp. Sc. 52(1), 2001.

A set of temporal connectives in CTL is adequate iff it contains:

- at least one of $\{AX, EX\}$
- at least one of $\{EG, AF, AU\}$

• *EU*

Labelling Algorithm for $\{AF, EU, EX\}$

Starting from innermost subformulas:

- \perp : do nothing
- p: label s if $p \in L(s)$
- $\phi_1 \wedge \phi_2$: label s if s is already labelled with ϕ_1 and ϕ_2
- $\neg \phi_1$: label all s not already labelled ϕ_1
- $AF\phi_1$:
 - **1** If any s is labelled ϕ_1 , label it $AF\phi_1$
 - 2 Label any state $AF\phi_1$ if all its successor states are labelled $AF\phi_1$
 - 8 Repeat 2 until no change
- $E[\phi_1 U \phi_2]$:
 - **1** If any s is labelled ϕ_2 , label it $E[\phi_1 U \phi_2]$
 - 2 For any s labelled ϕ_1 , label s if it has a successor labelled $E[\phi_1 U \phi_2]$
 - 8 Repeat 2 until no change
- $EX\phi_1$: label any state that has a successor labelled ϕ_1

Does AF AG p hold?

LTL formula F G p does hold.

References

- Today's paper: Clarke, Emerson, Sistla Automatic verification of finite-state concurrent systems using temporal logic specifications. ACM Trans. Program. Lang. Syst., 8:244–263. 1986
- Supplementary slides courtesy: http://www.tn.refer.org/unesco/semestre6/CoursUNESCO_intro2.pdf
- Other material based on:
 - ► Logic in Computer Science, Huth & Ryan, 2004.
 - Principles of Model Checking, Baier & Katoen, 2008.