Counterexample-Guided Abstraction Refinement

Edmund Clarke Orna Grumberg Somesh Jha Yuan Lu Helmut Veith

Seminal Papers in Verification (Reading Group) June 2012

Motivations:

Apply model checking to industrial problems.

- Main challenge: State explosion.
- How to tackle that:
 - ▶ Use BDD (10²⁰ states), Symmetry Reductions, POR, ...
 - Abstraction Techniques.

Abstraction Techniques:

Idea: Remove details, simplify components that are *irrelevant*.

Concrete model \sim Abstract model.

The abstract model is *smaller* \Rightarrow Easier to verify.

It comes with an information loss:

- Over-approximation comes with False negatives.
- Under-approximation comes with False positives.

CounterExample Guided Abstraction Refinement:

Integrates:

- Symbolic model checking.
- Over-approximation abstraction.
 - \Rightarrow It comes with false negatives.

Fully automatic, including abstraction refinement.

CEGAR general scheme

- Model extraction: Initial abstraction.
- Model-Check the Abstract Model.
- If no bug is found:
 - The concrete Model is safe.
- If a counterexample is found: Is it a concrete one?
 - ▶ Yes. "Happy" end.
 - ▶ No. Refine the abstraction and model-check again.

Summary:

We talked so far about:

- Motivations behind CEGAR.
- General scheme of the approach.

Now we will talk about:

- Abstraction validity.
- Initial (abstract) model extraction.
- Algorithms used to:
 - Check validity of the counterexample.
 - Refine the abstraction.

Later we will present extensions and use of CEGAR approach.

Existential abstraction definition:

Formally, a program P can be modeled as a Kripke structure (S, I, R, L) where:

- *S* is the set of states.
- $I \in S$ is the set of initial states.
- $R \in S \times S$ is the transition relation.
- $L: S \mapsto 2^{Atoms(P)}$ is the state labeling function.

Atoms(P) being the set of atomic propositions of the the program P.

Existential abstraction definition:

An abstraction is a surjection $h: D \mapsto \widehat{D}$ that induces an equivalence relation:

$$d \equiv e \text{ iff } h(d) = h(e)$$

The corresponding abstract Kripke tructure $(\hat{S}, \hat{I}, \hat{R}, \hat{L})$ is:

This is called the *Existential Abstraction*.

Abstraction Validity:

An atomic formula f respects an abstraction h iff:

$$\forall d_1, d_2 \in D$$
 we have: $d_1 \equiv d_2 \Rightarrow (d_1 \models f \Leftrightarrow d_2 \models f)$

For an abstract state \hat{d} we say that $\hat{L}(\hat{d})$ is consistent iff:

$$\forall d \in D$$
 such that $h(d) = \hat{d}$ we have: $d \models \bigwedge_{f \in \widehat{L}(\hat{d})} f$

Abstraction Validity:

ACTL* is the fragment of CTL* that:

- Contains only A as path operator (no E).
- The only negations it contains concerns the atomic propositions. Exmaple: A F p.

Theorem

Let h be an abstraction and φ be an ACTL^{*} specification where the atomic subformulas respect h. then the following holds:

• $\widehat{L}(\widehat{d})$ is consistent for all abstract state \widehat{d} in \widehat{M} .

•
$$\widehat{M} \models \varphi \Rightarrow M \models \varphi$$

CEGAR general scheme

- Model extraction: Initial abstraction.
- Model-Check the Abstract Model.
- If no bug is found:
 - The concrete Model is safe.
- If a counterexample is found: Is it a concrete one?
 - ▶ Yes. "Happy" end.
 - ▶ No. Refine the abstraction and model-check again.

Example:

We will model a program P using transition blocks associated to its variables.

	$\frac{\text{init}}{\text{next}}(x) := 0;$ next(x) := case		<u>init</u> (y) := 1; <u>next</u> (y) := <u>case</u>		
3	reset=TRUE : 0;		reset=TRUE	:	0;
	x <y :="" td="" x+1;<=""><td>11</td><td>(x=y) && !(y=2)</td><td>:</td><td>x+1;</td></y>	11	(x=y) && !(y=2)	:	x+1;
5	x=y : 0;		x=y	:	0;
	<u>else</u> : x;	13	<u>else</u>	:	у;
7	<u>esac</u> ;		<u>esac;</u>		

Model Extraction:

We construct the initial abstraction such that:

 $\forall d_1, d_2 \text{ such that } d_1 \equiv d_2 \text{ we have } \bigwedge_{\forall f \in Atoms(P)} d_1 \models f \Leftrightarrow d_2 \models f$

How to:

- Define formula clusters *FC_i* of formulas dealing with the same variable set.
- Define the corresponding variable clusters VC_i .
- For each variable cluster, define an abstraction whose abstract states are consistent with the cluster formulas.
- Cross-product all the cluster abstractions to obtain The abstraction.

Example:

We will model a program P using transition blocks associated to its variables.

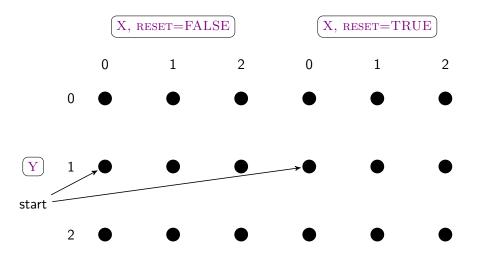
	$\frac{\text{init}}{\text{next}}(x) := 0;$ next(x) := case		<u>init</u> (y) := 1; <u>next</u> (y) := <u>case</u>		
3	reset=TRUE : 0;		reset=TRUE	:	0;
	x <y :="" td="" x+1;<=""><td>11</td><td>(x=y) && !(y=2)</td><td>:</td><td>x+1;</td></y>	11	(x=y) && !(y=2)	:	x+1;
5	x=y : 0;		x=y	:	0;
	<u>else</u> : x;	13	<u>else</u>	:	у;
7	<u>esac</u> ;		<u>esac;</u>		

Model Extraction:

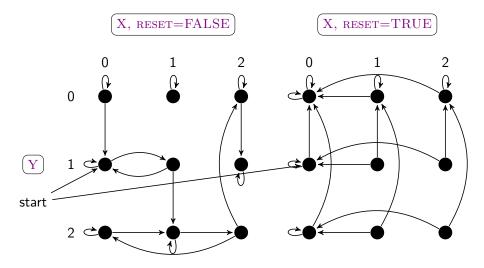
- Atoms(P) = {(reset=TRUE), (x=y), (x<y), (y=2)} = $FC_1 \cup FC_2$.
- $VC_1 = \{\text{reset}\}, VC_2 = \{x, y\}.$

• FC_1 equivalence classes: $\begin{cases} 0 \\ 1 \\ \end{cases} \quad \begin{cases} reset \\ \{(0,0),(1,1) \\ \{(x = y) \\ \{(0,1) \\ \{(x < y), \} \\ \{(0,2),(1,2) \\ \{(x < y),(y = 2) \\ \{(1,0),(2,0),(2,1) \\ \} \\ \{(x = y),(y = 2) \\ \} \end{cases}$

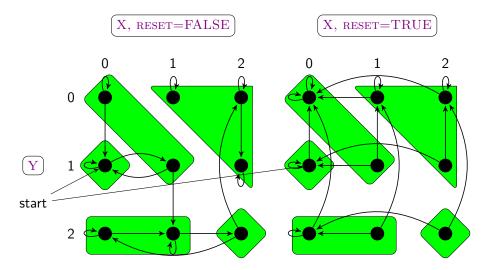
Model Extraction: Concrete State Space



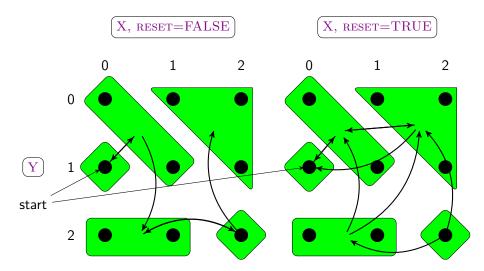
Model Extraction: Concrete Transition Relation



Model Extraction: Abstract State Space



Model Extraction: Abstract Transition Relation



CEGAR general scheme

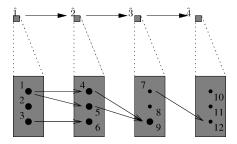
- Model extraction: Initial abstraction.
- Model-Check the Abstract Model.
- If no bug is found:
 - The concrete Model is safe.
- If a counterexample is found: Is it a concrete one?
 - ► Yes. "Happy" end.
 - No. Refine the abstraction and model-check again.

Checking finite counterexample:

Counterexample $\widehat{T} = \langle \widehat{s_1}, \ldots, \widehat{s_n} \rangle$.

Concrete traces are given by:

 $\{\langle s_1,\ldots,s_n\rangle \mid \bigwedge_{i=1}^n h(s_i) = \widehat{s_i} \land I(s_1) \land \bigwedge_{i=1}^{n-1} R(s_i,s_{i+1})\}$



Checking finite counterexample:

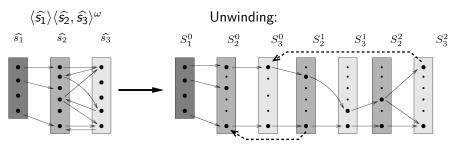
SplitPATH: Symbolic algorithm to compute concrete paths:

```
S := h^{-1}(\widehat{s_1}) \cap I
i := 1
while (S \neq \emptyset and j < n) {
  i := i + 1:
  S_{prev} := S
  S := Img(S, R) \cap h^{-1}(\widehat{s_i})
}
if S \neq \emptyset then output counterexample // -> Happy end.
else output j, S_{prev} // -> Move to the refinement step.
```

Checking infinite counterexample:

$$\mathsf{Counterexample} \ \widehat{\mathcal{T}} = \langle \widehat{s_1}, \dots, \widehat{s_i} \rangle \langle \widehat{s_{i+1}}, \dots, \widehat{s_n} \rangle^{\omega}.$$

Example:



For one abstract loop we get:

- Many concrete loops with different sizes.
- Different start points.

Checking infinite counterexample:

Also, the unwinding become eventually periodic.

Question: How many unwindings are necessary to check the abstract loop?

Theorem The following are equivalent: • \hat{T} corresponds to a concrete counterexample. • $h_{nath}^{-1}(\widehat{T}_{unwind})$ is not empty. Where: • $\widehat{T} = \langle \widehat{s_1}, \ldots, \widehat{s_i} \rangle \langle \widehat{s_{i+1}}, \ldots, \widehat{s_n} \rangle^{\omega}$ • $\widehat{T}_{unwind} = \langle \widehat{s}_1, \ldots, \widehat{s}_i \rangle \langle \widehat{s_{i+1}}, \ldots, \widehat{s}_n \rangle^{min}$ • $min = min_{i+1 \le i \le n} |h^{-1}(\widehat{s}_i)|$

We can use SplitPATH to check \widehat{T}_{unwind}

CEGAR general scheme

- Model extraction: Initial abstraction.
- Model-Check the Abstract Model.
- If no bug is found:
 - The concrete Model is safe.
- If a counterexample is found: Is it a concrete one?
 - ► Yes. "Happy" end.
 - ▶ No. Refine the abstraction and model-check again.

We consider here only finite path counterexample.

Let's recall SplitPATH algorithm:

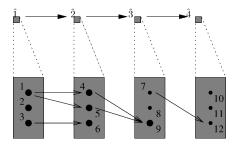
```
S := h^{-1}(\widehat{s_1}) \cap I
i := 1
while (S \neq \emptyset and j < n) {
  i := i + 1;
  S_{prev} := S
  S := Img(S, R) \cap h^{-1}(\widehat{s_i})
if S \neq \emptyset then output counterexample // -> Happy end.
 else output j, S_{prev} // -> Move to the refinement step.
```

There exist *i*, such that $S_i \subset h^{-1}(\widehat{s_i})$, $Img(S_i, R) \cap h^{-1}(\widehat{s_{i+1}}) = \emptyset$ and S_i reachable from $h^{-1}(\widehat{s_1}) \cap I$

We partition $h^{-1}(\widehat{s_i})$ into three subsets:

•
$$S_{i,0} = S_i$$

• $S_{i,1} = \{s \in h^{-1}(\widehat{s_i}) | \exists s' \in h^{-1}(\widehat{s_{i+1}}).R(s,s')\}$
• $S_{i,x} = h^{-1}(\widehat{s_i}) \setminus (S_{i,0} \cup S_{i,1})$



Abstraction defined by $h^{-1}(\hat{s}) = E_1 \times \ldots E_m$, *m* being the number of variable clusters.

We need to separate $S_{i,o}$ and $S_{i,1}$ by refining our abstraction, i.e. refining the equivalence classes $\equiv_j, 1 \leq j \leq m$.

Objective: Maintain the smallest possible abstraction.

Theorem

The problem of finding the coarsest refinement is NP-hard. When $S_{i,x} = \emptyset$, the problem can be solved in polynomial time.

Abstraction refining algorithm:

for
$$j := 1$$
 to m {
 $\equiv'_j := \equiv_j$
for every $a, b \in E_j$ {
if $proj(S_{i,0}, j, a) \neq proj(S_{i,0}, j, b)$
then $\equiv'_j := \equiv'_j \setminus \{(a, b)\}$
}

Where $proj(S_{i,0}, j, a) \neq proj(S_{i,0}, j, b)$ means that:

$$\exists (d_1, \ldots, d_j, d_{j+1}, \ldots, d_m) \text{ such that:} \\ (d_1, \ldots, d_j, a, d_{j+1}, \ldots, d_m) \in S_{i,0} \\ (d_1, \ldots, d_j, b, d_{j+1}, \ldots, d_m) \notin S_{i,0}$$

Abstraction refining algorithm:

for
$$j := 1$$
 to m {
 $\equiv'_j := \equiv_j$
for every $a, b \in E_j$ {
if $proj(S_{i,0}, j, a) \neq proj(S_{i,0}, j, b)$
then $\equiv'_j := \equiv'_j \setminus \{(a, b)\}$
}

Lemma

When $S_{i,x} = \emptyset$ the relation \equiv'_j computed by PolyRefine is an equivalence relation which refines \equiv_j and separates $S_{i,0}$ and $S_{i,1}$. Furthermore, the equivalence relation \equiv'_j is the coarsest refinement of \equiv_j

Theorem

Given a model M and an ACTL^{*} specification φ whose counterexample is either path or loop, CEGAR will find a model \widehat{M} such that $\widehat{M} \models \varphi \Leftrightarrow M \models \varphi$

CEGAR has been implemented in many tools such as Blast, Moped ...

It has been also enriched with:

• Use of SAT Solvers instead of OBDD.

• Use of Inerpolants in order to refine the abstraction.

Has been also applied for infinite state systems

Thanks for your attention.