Counterexample-Guided Abstraction Refinement

Edmund Clarke Orna Grumberg Somesh Jha Yuan Lu
Helmut Veith

Seminal Papers in Verification (Reading Group)

June 2012

O. Rezine () Verification Reading Group 1/33

Motivations:

Apply model checking to industrial problems.

@ Main challenge: State explosion.

@ How to tackle that:

» Use BDD (10% states), Symmetry Reductions, POR, ...

» Abstraction Techniques.

O. Rezine () Verification Reading Group 2/33

Abstraction Techniques:

Idea: Remove details, simplify components that are irrelevant.
Concrete model ~ Abstract model.

The abstract model is smaller = Easier to verify.

It comes with an information loss:

@ Over-approximation comes with False negatives.
@ Under-approximation comes with False positives.

O. Rezine () Verification Reading Group 3/33

CounterExample Guided Abstraction Refinement:

Integrates:

@ Symbolic model checking.

@ Over-approximation abstraction.
= It comes with false negatives.

Fully automatic, including abstraction refinement.

O. Rezine () Verification Reading Group 4 /33

CEGAR general scheme

Model extraction: Initial abstraction.

@ Model-Check the Abstract Model.

@ If no bug is found:
» The concrete Model is safe.
o If a counterexample is found: Is it a concrete one?

» Yes. "Happy" end.

» No. Refine the abstraction and model-check again.

O. Rezine () Verification Reading Group

5/33

Summary:

We talked so far about:
@ Motivations behind CEGAR.

@ General scheme of the approach.

Now we will talk about:
@ Abstraction validity.

o Initial (abstract) model extraction.
@ Algorithms used to:

» Check validity of the counterexample.
> Refine the abstraction.

Later we will present extensions and use of CEGAR approach.

O. Rezine () Verification Reading Group

6/33

Existential abstraction definition:

Formally, a program P can be modeled as a Kripke structure (S, I, R, L)
where:

@ S is the set of states.

o | € S is the set of initial states.

@ R €5 x S is the transition relation.

o L: S — 2Atoms(P) is the state labeling function.

Atoms(P) being the set of atomic propositions of the the program P.

O. Rezine () Verification Reading Group 7/33

Existential abstraction definition:

An abstraction is a surjection h: D — D that induces an equivalence
relation:

d = e iff h(d) = h(e)

The corresponding abstract Kripke tructure (3,7, ﬁ,/L\) is
o S=h(S).
o 1(d) iff 3d € I such that h(d) = d
o R(d,d) iff 3d1, d> € S such that
(h(dh) = di A h(do) = do A R(dh, o))

o L(d) = Ujg)—g L(d)

This is called the Existential Abstraction.

O. Rezine () Verification Reading Group 8 /33

Abstraction Validity:

An atomic formula f respects an abstraction h iff:

le,dzeDwe have: d1£d2=>(d1):f(:)d2’:f)

~

For an abstract state d we say that L(d) is consistent iff:

¥d € D such that h(d) = d we have: d = A;pq f

O. Rezine () Verification Reading Group 9 /33

Abstraction Validity:

ACTL* is the fragment of CTL* that:
e Contains only A as path operator (no E).

@ The only negations it contains concerns the atomic propositions.
Exmaple: A F p.

Theorem

Let h be an abstraction and ¢ be an ACTL* specification where the
atomic subformulas respect h. then the following holds:

° Z(H) is consistent for all abstract state d in M.
oMEp=MEy

O. Rezine () Verification Reading Group 10 / 33

CEGAR general scheme

o Model extraction: Initial abstraction.
@ Model-Check the Abstract Model.
@ If no bug is found:

» The concrete Model is safe.

@ If a counterexample is found: Is it a concrete one?

» Yes. "Happy” end.

» No. Refine the abstraction and model-check again.

O. Rezine () Verification Reading Group

11 /33

Example:

We will model a program P using transition blocks associated to its
variables.

1 init(x) := 0; init(y) := 1;
next (x) := case 9 next(y) := case
3 reset=TRUE : 0; reset=TRUE : 0y
x<y :ox+1; un (x=y) && !'(y=2) : x+1;
5 xX=y 3 ©p xX=y : 0
else X, 13 else DY
7 esac; esac;

O. Rezine () Verification Reading Group 12 /33

Model Extraction:

We construct the initial abstraction such that:

Vd1, d» such that di = d» we have /\WeAtoms(P) dEfedhET

How to:

@ Define formula clusters FC; of formulas dealing with the same variable
set.

@ Define the corresponding variable clusters VC;.

@ For each variable cluster, define an abstraction whose abstract states
are consistent with the cluster formulas.

@ Cross-product all the cluster abstractions to obtain The abstraction.

O. Rezine () Verification Reading Group 13 /33

Example:

We will model a program P using transition blocks associated to its
variables.

1 init(x) := 0; init(y) := 1;
next (x) := case 9 next(y) := case
3 reset=TRUE : 0; reset=TRUE : 0y
x<y :ox+1; un (x=y) && !'(y=2) : x+1;
5 xX=y 3 ©p xX=y : 0
else X, 13 else DY
7 esac; esac;

O. Rezine () Verification Reading Group 14 / 33

Model Extraction:

e Atoms(P) = {(reset=TRUE), (x=y), (x<y), (y=2)} = FC; U FG,.

o V(C; = {reset}, VG={x,y}.

@ F(C; equivalence classes:

@ F(C, equivalence classes:

{op {}
{1} {reset}

Verification Reading Group

15 / 33

Model Extraction: Concrete State Space

[X, RESET:FALSE] [X, RESET:TRUE]

0 1 2 0 1 2

O. Rezine () Verification Reading Group 16 / 33

Model Extraction: Concrete Transition Relation

[X, RESET:FALSE] [X, RESETzTRUE]

o N

o———

O. Rezine () Verification Reading Group 17 / 33

Model Extraction: Abstract State Space

(X, RESET:FALSE) (X, RESET:TRUE)

0 1 2 0 1 2

O. Rezine () Verification Reading Group

Model Extraction: Abstract Transition Relation

[X, RESET:FALSE) [X7 RESET:TRUEj

0 1 2 0 1 2

O. Rezine () Verification Reading Group

CEGAR general scheme

o Model extraction: Initial abstraction.

@ Model-Check the Abstract Model.

@ If no bug is found:
» The concrete Model is safe.

° If a counterexample is found: Is it a concrete one?
> Yes. "Happy” end.

» No. Refine the abstraction and model-check again.

O. Rezine () Verification Reading Group

Checking finite counterexample:

Counterexample T = (51,...,5p).

Concrete traces are given by:
{ <$17 s 7SI7> | /\7:1 h(S,‘) = 37 A I(Sl) A /\7:_]3[R(Sia SH-l)}

O. Rezine () Verification Reading Group

Checking finite counterexample:

SplitPATH: Symbolic algorithm to compute concrete paths:

S:=hi(s5)NI
j=1
while (S# 0 andj<n) {
j=j+1
Sprev ' =S
S:=1Img(S,R)Nh71(s)
¥
if S # () then output counterexample // —> Happy end.
else output j,Sprey // —> Move to the refinement step.

O. Rezine () Verification Reading Group 22 /33

Checking infinite counterexample:

Counterexample T = (51,...,5)(511,- .., 50)%.
Example:
(51)(%2,53)" Unwinding:
9

For one abstract loop we get:

@ Many concrete loops with different sizes.
o Different start points.

O. Rezine () Verification Reading Group

23 /33

Checking infinite counterexample:

Also, the unwinding become eventually periodic.

Question: How many unwindings are necessary to check the abstract loop?

Theorem
The following are equivalent:
° 7’ corresponds to a concrete counterexample.

° h;alth(Tunwind) is not empty.

Where:
@ T =(5,...,5)(Sit1,---,5n)"
® Tunwind = (S1,---+5)(Six1,---,5m)™"

® min = miniy1<j<alh™(5)]

We can use SplitPATH to check ?’u,,w,-,,d

O. Rezine () Verification Reading Group 24 /33

CEGAR general scheme

o Model extraction: Initial abstraction.

@ Model-Check the Abstract Model.

@ If no bug is found:
» The concrete Model is safe.

> If 2 counterexample is found: Is it a concrete one?
> Yes. "Happy" end.

» No. _ and model-check again.

O. Rezine () Verification Reading Group

Abstraction Refinement:

We consider here only finite path counterexample.

Let’s recall SplitPATH algorithm:

S:=hs)NI

j=1

while (S#0 and j <n) {
ji=i+ 1
Sprev ' =S
S:=1Img(S,R)N h~1(s)

}

if S # () then output counterexample // —> Happy end.

O. Rezine () Verification Reading Group

Abstraction Refinement:

There exist i, such that S; € h=1(5;), Img(S;, R) N h=%(5;1) = 0 andS;
reachable from h=1(5) N/
We partition h~1(5;) into three subsets:

@ S50=35

o Si1={sehi(s)3s' € h"1(551)-R(s,s')}

o Six=h"1(5)\(SioUSi1)

O. Rezine () Verification Reading Group 27 /33

Abstraction Refinement:

Abstraction defined by h™1(s) = E; x ... E,,, m being the number of
variable clusters.

We need to separate S;, and S; 1 by refining our abstraction, i.e. refining
the equivalence classes =;,1 < j < m.

Objective: Maintain the smallest possible abstraction.

Theorem

The problem of finding the coarsest refinement is NP-hard.
When S; , = (), the problem can be solved in polynomial time.

O. Rezine () Verification Reading Group 28 /33

Abstraction Refinement:

Abstraction refining algorithm:
for j:=1tom{

/

—J
for every a, b € Ej {
if ,DrO_j(Si,(),j, a) ;é proj(Sf,o,j, b)
then =; := =/ \{(a,b)}

= EJ'

}

Where proj(Sj o, j,a) # proj(Sio,j, b) means that:

I(di,...,dj,djt1,...,dm) such that:
(dl,...,dj,a,de,...,dm)ES,-,o
(di,...,dj,b,dit1,...,dm) € Sio

O. Rezine () Verification Reading Group 29 /33

Abstraction Refinement:

Abstraction refining algorithm:
for j:=1tom{

—
:J ==y
for every a,b € E; {
if proj(S;,o,j, a) # proj(5f,o,j, b)

then =} := =/ \{(a,b)}

Lemma

When S; x = () the relation =, computed by PolyRefine is an equivalence

relation which refines =; and separates S; o and S; 1. Furthermore, the

equivalence relation E} is the coarsest refinement of =;

O. Rezine () Verification Reading Group 30/ 33

Abstraction Refinement:

Theorem

Given a model M and an ACTL* specification ¢ whose counterexample is
either path or loop, CEGAR will find a model M such that
MEpeME©

O. Rezine () Verification Reading Group

31/33

Extensions and tools:

CEGAR has been implemented in many tools such as Blast, Moped ..
It has been also enriched with:

@ Use of SAT Solvers instead of OBDD.

@ Use of Inerpolants in order to refine the abstraction.

Has been also applied for infinite state systems ...

O. Rezine () Verification Reading Group 32/33

Thanks for your attention.

O. Rezine () Verification Reading Group

