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Motivations:

Apply model checking to industrial problems.

Main challenge: State explosion.

How to tackle that:

I Use BDD (1020 states), Symmetry Reductions, POR, . . .

I Abstraction Techniques.
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Abstraction Techniques:

Idea: Remove details, simplify components that are irrelevant.

Concrete model ∼ Abstract model.

The abstract model is smaller ⇒ Easier to verify.

It comes with an information loss:

Over-approximation comes with False negatives.

Under-approximation comes with False positives.

O. Rezine () Verification Reading Group 3 / 33



CounterExample Guided Abstraction Refinement:

Integrates:

Symbolic model checking.

Over-approximation abstraction.

⇒ It comes with false negatives.

Fully automatic, including abstraction refinement.
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CEGAR general scheme

Model extraction: Initial abstraction.

Model-Check the Abstract Model.

If no bug is found:

I The concrete Model is safe.

If a counterexample is found: Is it a concrete one?

I Yes. ”Happy” end.

I No. Refine the abstraction and model-check again.
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Summary:

We talked so far about:

Motivations behind CEGAR.

General scheme of the approach.

Now we will talk about:

Abstraction validity.

Initial (abstract) model extraction.

Algorithms used to:
I Check validity of the counterexample.
I Refine the abstraction.

Later we will present extensions and use of CEGAR approach.
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Existential abstraction definition:

Formally, a program P can be modeled as a Kripke structure (S, I, R, L)
where:

S is the set of states.

I ∈ S is the set of initial states.

R ∈ S × S is the transition relation.

L : S 7→ 2Atoms(P) is the state labeling function.

Atoms(P) being the set of atomic propositions of the the program P.
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Existential abstraction definition:

An abstraction is a surjection h : D 7→ D̂ that induces an equivalence
relation:

d ≡ e iff h(d) = h(e)

The corresponding abstract Kripke tructure (Ŝ , Î , R̂, L̂) is:

Ŝ = h(S).

Î (d̂) iff ∃d ∈ I such that h(d) = d̂

R̂(d̂1, d̂2) iff ∃d1, d2 ∈ S such that
(h(d1) = d̂1 ∧ h(d2) = d̂2 ∧ R(d1, d2))

L̂(d̂) =
⋃

h(d)=d̂
L(d)

This is called the Existential Abstraction.
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Abstraction Validity:

An atomic formula f respects an abstraction h iff:

∀d1, d2 ∈ D we have: d1 ≡ d2 ⇒ (d1 |= f ⇔ d2 |= f )

For an abstract state d̂ we say that L̂(d̂) is consistent iff:

∀d ∈ D such that h(d) = d̂ we have: d |=
∧

f ∈L̂(d̂)
f
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Abstraction Validity:

ACTL∗ is the fragment of CTL∗ that:

Contains only A as path operator (no E ).

The only negations it contains concerns the atomic propositions.

Exmaple: A F p.

Theorem

Let h be an abstraction and ϕ be an ACTL∗ specification where the
atomic subformulas respect h. then the following holds:

L̂(d̂) is consistent for all abstract state d̂ in M̂.

M̂ |= ϕ⇒ M |= ϕ
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CEGAR general scheme

Model extraction: Initial abstraction.

Model-Check the Abstract Model.

If no bug is found:

I The concrete Model is safe.

If a counterexample is found: Is it a concrete one?

I Yes. ”Happy” end.

I No. Refine the abstraction and model-check again.
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Example:

We will model a program P using transition blocks associated to its
variables.

1 init(x) := 0;

next(x) := case

3 reset=TRUE : 0;

x<y : x+1;

5 x=y : 0;

else : x;

7 esac;

init(y) := 1;

9 next(y) := case

reset=TRUE : 0;

11 (x=y) && !(y=2) : x+1;

x=y : 0;

13 else : y;

esac;
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Model Extraction:

We construct the initial abstraction such that:

∀d1, d2 such that d1 ≡ d2 we have
∧
∀f ∈Atoms(P) d1 |= f ⇔ d2 |= f

How to:

Define formula clusters FCi of formulas dealing with the same variable
set.

Define the corresponding variable clusters VCi .

For each variable cluster, define an abstraction whose abstract states
are consistent with the cluster formulas.

Cross-product all the cluster abstractions to obtain The abstraction.
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Example:

We will model a program P using transition blocks associated to its
variables.

1 init(x) := 0;

next(x) := case

3 reset=TRUE : 0;

x<y : x+1;

5 x=y : 0;

else : x;

7 esac;

init(y) := 1;

9 next(y) := case

reset=TRUE : 0;

11 (x=y) && !(y=2) : x+1;

x=y : 0;

13 else : y;

esac;
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Model Extraction:

Atoms(P) = {(reset=TRUE), (x=y), (x<y), (y=2)} = FC1 ∪ FC2.

VC1 = {reset}, VC2={x,y}.

FC1 equivalence classes:
{0} {}
{1} {reset}

FC2 equivalence classes:

{(0, 0), (1, 1)} {(x = y)}
{(0, 1)} {(x < y), }
{(0, 2), (1, 2)} {(x < y), (y = 2)}
{(1, 0), (2, 0), (2, 1)} {}
{(2, 2)} {(x = y), (y = 2)}
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Model Extraction: Concrete State Space
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start
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Model Extraction: Concrete Transition Relation
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Model Extraction: Abstract State Space
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Model Extraction: Abstract Transition Relation
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CEGAR general scheme

Model extraction: Initial abstraction.

Model-Check the Abstract Model.

If no bug is found:

I The concrete Model is safe.

If a counterexample is found: Is it a concrete one?

I Yes. ”Happy” end.

I No. Refine the abstraction and model-check again.
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Checking finite counterexample:

Counterexample T̂ = 〈ŝ1, . . . , ŝn〉.

Concrete traces are given by:

{ 〈s1, . . . , sn〉 |
∧n

i=1 h(si ) = ŝi ∧ I (s1) ∧
∧n−1

i=1 R(si , si+1) }Counterexample-Guided Abstraction Refinement 773

FIG. 6. An abstract counterexample.

si ∈ Si . By the definition of h−1(T̂ ), si+1 ∈ Img(si , R) and si+1 ∈ h−1(ŝi+1).
Therefore, si+1 ∈ Img(Si , R) ∩ h−1(ŝi+1) = Si+1. By induction, Si $= ∅,
for i ≤ n.
(iii) → (ii). Assume that Si $= ∅ for 1 ≤ i ≤ n. We choose a state sn ∈ Sn and
inductively construct a trace backward. Assume that si ∈ Si . From the definition
of Si , if follows that si ∈ Img(Si−1, R) ∩ h−1(ŝi ) and Si−1 is not empty. Select si−1
from Si−1 such that (si−1, si ) ∈ R. There is such and si−1 since every state in si is
a successor of some state in Si−1. From the definition of Si−1, Si−1 ⊆ h−1(ŝi−1).
Hence, si−1 ∈ h−1(ŝi−1). By induction, s1 ∈ S1 = h−1(ŝ1) ∩ I . Therefore, the
trace 〈s1, . . . , sn〉 that we have constructed satisfies the definition of h−1(T̂ ). Thus,
h−1(T̂ ) is not empty.
Suppose that condition (iii) of Lemma 4.10 is violated, and let i be the largest

index such that Si $= ∅. Then ŝi is called the failure state of the spurious counterex-
ample T̂ .

Example 4.11. Consider a program with only one variable with domain D =
{1, . . . , 12}. Assume that the abstraction function h maps x ∈ D to +(x−1)/3,+1.
There are four abstract states corresponding to the equivalence classes {1, 2, 3},
{4, 5, 6}, {7, 8, 9}, and {10, 11, 12}. We call these abstract states 1̂, 2̂, 3̂, and 4̂.
The transitions between states in the concrete model are indicated by the arrows in
Figure 6; small dots denote nonreachable states. Suppose that we obtain an abstract
counterexample T̂ = 〈̂1, 2̂, 3̂, 4̂〉. It is easy to see that T̂ is spurious. Using the
terminology of Lemma 4.10, we have S1 = {1, 2, 3}, S2 = {4, 5, 6}, S3 = {9}, and
S4 = ∅. Notice that Img(S3, R) and therefore S4 are both empty. Thus, ŝ3 is the
failure state.

It follows from Lemma 4.10 that if h−1(T̂ ) is empty (i.e., if the counterexample
T̂ is spurious), then there exists a minimal i (2 ≤ i ≤ n) such that Si = ∅. The
symbolic Algorithm SplitPATH in Figure 7 computes this number and the set of
states Si−1; the states in Si−1 are called dead-end states. After the detection of the
dead-end states, we proceed to the refinement step (see Section 4.4). On the other
hand, if the conditions stated in Lemma 4.10 are true, then SplitPATH will report
a “real” counterexample and we can stop.

4.3.2. Identification of Spurious Loop Counterexamples. Now we consider
the case when the counterexample T̂ includes a loop, which we write as
〈ŝ1, . . . , ŝi 〉〈ŝi+1, . . . , ŝn〉ω. The loop starts at the abstract state ŝi+1 and ends at
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Checking finite counterexample:

SplitPATH: Symbolic algorithm to compute concrete paths:

S := h−1(ŝ1) ∩ I

j := 1

while ( S 6= ∅ and j < n ) {
j := j + 1;

Sprev := S

S := Img(S ,R) ∩ h−1(ŝj)

}
if S 6= ∅ then output counterexample // –> Happy end.

else output j ,Sprev // –> Move to the refinement step.
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Checking infinite counterexample:

Counterexample T̂ = 〈ŝ1, . . . , ŝi 〉〈ŝi+1, . . . , ŝn〉ω.

Example:

〈ŝ1〉〈ŝ2, ŝ3〉ω Unwinding:

774 E. CLARKE ET AL.

FIG. 7. SplitPATH checks if an abstract path is spurious.

FIG. 8. A loop counterexample, and its unwinding.

ŝn . Since this case is more complicated than the path counterexamples, we first
present an example in which some of the typical situations occur.
Example 4.12. We consider a loop 〈ŝ1〉〈ŝ2, ŝ3〉ω as shown in Figure 8. In or-

der to find out if the abstract loop corresponds to concrete loops, we unwind the
counterexample as demonstrated in the figure. There are two situations where cy-
cles occur. In the figure, for each of these situations, an example cycle (the first
one occurring) is indicated by a fat dashed arrow. We make the following impor-
tant observations:
(i) A given abstract loop may correspond to several concrete loops of different

size.
(ii) Each of these loops may start at different stages of the unwinding.
(iii) The unwinding eventually becomes periodic (in our case S03 = S23 ), but only

after several stages of the unwinding. The size of the period is the least common
multiple of the size of the individual loops, and thus, in general exponential.

We conclude from the example that a naive algorithm may have exponential time
complexity due to an exponential number of loop unwindings. The following the-
orem however shows that a polynomial number of unwindings is sufficient. (In
Section 6, we indicate further practical improvements.) Let min be the minimum
size of all abstract states in the loop, that is, min = mini+1≤ j≤n|h−1(ŝ j )|. T̂ unwind
denotes the finite abstract path 〈ŝ1, . . . , ŝi 〉〈ŝi+1, . . . , ŝn〉min+1, that is, the path ob-
tained by unwinding the loop part of T̂ min times.
THEOREM 4.13. The following are equivalent:
(i) T̂ corresponds to a concrete counterexample.
(ii) h−1

path(T̂ unwind) is not empty.

For one abstract loop we get:

Many concrete loops with different sizes.

Different start points.
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Checking infinite counterexample:

Also, the unwinding become eventually periodic.

Question: How many unwindings are necessary to check the abstract loop?

Theorem

The following are equivalent:

T̂ corresponds to a concrete counterexample.

h−1
path(T̂unwind) is not empty.

Where:

T̂ = 〈ŝ1, . . . , ŝi 〉〈ŝi+1, . . . , ŝn〉ω

T̂unwind = 〈ŝ1, . . . , ŝi 〉〈ŝi+1, . . . , ŝn〉min

min = mini+1≤j≤n|h−1(ŝj)|

We can use SplitPATH to check T̂unwind
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CEGAR general scheme

Model extraction: Initial abstraction.

Model-Check the Abstract Model.

If no bug is found:

I The concrete Model is safe.

If a counterexample is found: Is it a concrete one?

I Yes. ”Happy” end.

I No. Refine the abstraction and model-check again.
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Abstraction Refinement:

We consider here only finite path counterexample.

Let’s recall SplitPATH algorithm:

S := h−1(ŝ1) ∩ I

j := 1

while ( S 6= ∅ and j < n ) {
j := j + 1;

Sprev := S

S := Img(S ,R) ∩ h−1(ŝj)

}
if S 6= ∅ then output counterexample // –> Happy end.

else output j ,Sprev // –> Move to the refinement step.
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Abstraction Refinement:

There exist i , such that Si ⊂ h−1(ŝi ), Img(Si ,R) ∩ h−1(ŝi+1) = ∅ andSi

reachable from h−1(ŝ1) ∩ I

We partition h−1(ŝi ) into three subsets:

Si ,0 = Si

Si ,1 = {s ∈ h−1(ŝi )|∃s ′ ∈ h−1(ŝi+1).R(s, s ′)}
Si ,x = h−1(ŝi )\(Si ,0 ∪ Si ,1)Counterexample-Guided Abstraction Refinement 773

FIG. 6. An abstract counterexample.

si ∈ Si . By the definition of h−1(T̂ ), si+1 ∈ Img(si , R) and si+1 ∈ h−1(ŝi+1).
Therefore, si+1 ∈ Img(Si , R) ∩ h−1(ŝi+1) = Si+1. By induction, Si $= ∅,
for i ≤ n.
(iii) → (ii). Assume that Si $= ∅ for 1 ≤ i ≤ n. We choose a state sn ∈ Sn and
inductively construct a trace backward. Assume that si ∈ Si . From the definition
of Si , if follows that si ∈ Img(Si−1, R) ∩ h−1(ŝi ) and Si−1 is not empty. Select si−1
from Si−1 such that (si−1, si ) ∈ R. There is such and si−1 since every state in si is
a successor of some state in Si−1. From the definition of Si−1, Si−1 ⊆ h−1(ŝi−1).
Hence, si−1 ∈ h−1(ŝi−1). By induction, s1 ∈ S1 = h−1(ŝ1) ∩ I . Therefore, the
trace 〈s1, . . . , sn〉 that we have constructed satisfies the definition of h−1(T̂ ). Thus,
h−1(T̂ ) is not empty.
Suppose that condition (iii) of Lemma 4.10 is violated, and let i be the largest

index such that Si $= ∅. Then ŝi is called the failure state of the spurious counterex-
ample T̂ .

Example 4.11. Consider a program with only one variable with domain D =
{1, . . . , 12}. Assume that the abstraction function h maps x ∈ D to +(x−1)/3,+1.
There are four abstract states corresponding to the equivalence classes {1, 2, 3},
{4, 5, 6}, {7, 8, 9}, and {10, 11, 12}. We call these abstract states 1̂, 2̂, 3̂, and 4̂.
The transitions between states in the concrete model are indicated by the arrows in
Figure 6; small dots denote nonreachable states. Suppose that we obtain an abstract
counterexample T̂ = 〈̂1, 2̂, 3̂, 4̂〉. It is easy to see that T̂ is spurious. Using the
terminology of Lemma 4.10, we have S1 = {1, 2, 3}, S2 = {4, 5, 6}, S3 = {9}, and
S4 = ∅. Notice that Img(S3, R) and therefore S4 are both empty. Thus, ŝ3 is the
failure state.

It follows from Lemma 4.10 that if h−1(T̂ ) is empty (i.e., if the counterexample
T̂ is spurious), then there exists a minimal i (2 ≤ i ≤ n) such that Si = ∅. The
symbolic Algorithm SplitPATH in Figure 7 computes this number and the set of
states Si−1; the states in Si−1 are called dead-end states. After the detection of the
dead-end states, we proceed to the refinement step (see Section 4.4). On the other
hand, if the conditions stated in Lemma 4.10 are true, then SplitPATH will report
a “real” counterexample and we can stop.

4.3.2. Identification of Spurious Loop Counterexamples. Now we consider
the case when the counterexample T̂ includes a loop, which we write as
〈ŝ1, . . . , ŝi 〉〈ŝi+1, . . . , ŝn〉ω. The loop starts at the abstract state ŝi+1 and ends at
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Abstraction Refinement:

Abstraction defined by h−1(ŝ) = E1 × . . .Em, m being the number of
variable clusters.

We need to separate Si ,o and Si ,1 by refining our abstraction, i.e. refining
the equivalence classes ≡j , 1 ≤ j ≤ m.

Objective: Maintain the smallest possible abstraction.

Theorem

The problem of finding the coarsest refinement is NP-hard.
When Si ,x = ∅, the problem can be solved in polynomial time.
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Abstraction Refinement:

Abstraction refining algorithm:

for j := 1 to m {
≡′

j := ≡j

for every a, b ∈ Ej {
if proj(Si,0, j , a) 6= proj(Si,0, j , b)
then ≡′

j := ≡′
j \{(a, b)}

}
}

Where proj(Si ,0, j , a) 6= proj(Si ,0, j , b) means that:

∃(d1, . . . , dj , dj+1, . . . , dm) such that:
(d1, . . . , dj , a, dj+1, . . . , dm) ∈ Si ,0

(d1, . . . , dj , b, dj+1, . . . , dm) /∈ Si ,0
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Abstraction Refinement:

Abstraction refining algorithm:

for j := 1 to m {
≡′

j := ≡j

for every a, b ∈ Ej {
if proj(Si,0, j , a) 6= proj(Si,0, j , b)
then ≡′

j := ≡′
j \{(a, b)}

}
}

Lemma

When Si ,x = ∅ the relation ≡′j computed by PolyRefine is an equivalence
relation which refines ≡j and separates Si .0 and Si ,1. Furthermore, the
equivalence relation ≡′j is the coarsest refinement of ≡j

O. Rezine () Verification Reading Group 30 / 33



Abstraction Refinement:

Theorem

Given a model M and an ACTL∗ specification ϕ whose counterexample is
either path or loop, CEGAR will find a model M̂ such that
M̂ |= ϕ⇔ M |= ϕ
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Extensions and tools:

CEGAR has been implemented in many tools such as Blast, Moped ..

It has been also enriched with:

Use of SAT Solvers instead of OBDD.

Use of Inerpolants in order to refine the abstraction.

Has been also applied for infinite state systems . . .
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Thanks for your attention.
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