Sangiorgi: Introduction to Bisimulation and Coinduction

Johannes Åman Pohjola
Uppsala University
June 1, 2012

Outline

After this seminar, you should (hopefully):

- Understand what bisimulation is.
- Know how to use the bisimulation proof method.
- Kind of sort of vaguely understand coinduction and its duality with induction.

Introduction

We seek a behavioural equivalence between processes.
That is, an equivalence relation that relates processes that exhibit the same observable behaviour.

What would be a sensible such equivalence?

And besides, what is a process anyway?

We will model processes and their behaviour using labelled transition systems (LTS).

Definition (LTS)

An LTS is a triple $(\operatorname{Pr}, A c t, \longrightarrow)$ where

- Pr is a non-empty set called the domain
- Act is the set of labels
- $\longrightarrow \subseteq \operatorname{Pr} \times \operatorname{Act} \times \operatorname{Pr}$ is the transition relation.

We will write $P \xrightarrow{\alpha} Q$ when $(P, \alpha, Q) \in \longrightarrow$.
We call elements of Pr states, or interchangeably, processes.

Graph isomorphism

An LTS is similar to a graph, so let's try graph isomorphism!

Two graphs are isomorphic if there is a bijection between their components: the states and the transitions.

Two isomorphic LTSs would certainly have the same behaviour.
Unfortunately, the converse is false.

Graph isomorphism

These two LTSs have the same behaviour:

But they are not isomorphic.

Trace equivalence

LTSs are similar to automata, so let's try language equivalence!

Two automata are language equivalent if they accept the same set of strings.

Analogously, two LTS processes are trace equivalent if they give rise to the same (finite) transition sequences.

Trace equivalence

These coffee machines are trace equivalent.

But not behaviourally equivalent.

Bisimulation

Definition (Bisimulation)

A binary relation \mathcal{R} on the states of an LTS is a bisimulation relation iff whenever $P \mathcal{R} Q$,
(1) For all P^{\prime} such that $P \xrightarrow{\alpha} P^{\prime}$, there exists Q^{\prime} such that $Q \xrightarrow{\alpha} Q^{\prime}$ and $P^{\prime} \mathcal{R} Q^{\prime}$
(2) For all Q^{\prime} such that $Q \xrightarrow{\alpha} Q^{\prime}$, there exists P^{\prime} such that $P \xrightarrow{\alpha} P^{\prime}$ and $P^{\prime} \mathcal{R} Q^{\prime}$

Bisimilarity, denoted \sim, is the union of all bisimulations. Hence $P \sim Q$ iff there exists a bisimulation \mathcal{R} with $P \mathcal{R} Q$.

Bisimulation proof method

Immediately from the definition of bisimulation, we obtain the bisimulation proof method:

To prove $P \sim Q$, find a bisimulation \mathcal{R} such that $P \mathcal{R} Q$.

Bisimulation proof method: examples

Theorem

$s_{1} \sim t_{1}$

Proof.

Pick $\mathcal{R}=\left\{\left(s_{1}, t_{1}\right),\left(s_{2}, t_{2}\right),\left(s_{1}, t_{3}\right)\right\}$.
Then check that all transitions from \mathcal{R} take us back to \mathcal{R}.

Hint: be lazy! Pick the smallest possible candidate relation!

Bisimulation proof method: examples

Theorem

~ itself is a bisimulation.

Proof.

By intimidation.

Theorem

\sim is an equivalence relation, ie for all P, Q and R :
(1) $P \sim P$
(2) $P \sim Q \Rightarrow Q \sim P$
(3) $P \sim Q \wedge Q \sim R \Rightarrow P \sim R$

Proof.

On blackboard.

Definition (Simulation)

A binary relation \mathcal{R} on the states of an LTS is a simulation relation iff whenever $P \mathcal{R} Q$,
(1) For all P^{\prime} such that $P \xrightarrow{\alpha} P^{\prime}$, there exists Q^{\prime} such that $Q \xrightarrow{\alpha} Q^{\prime}$ and $P^{\prime} \mathcal{R} Q^{\prime}$
(2) There is no second clause

We say that Q simulates P iff there exists a simulation \mathcal{R} and $P \mathcal{R} Q$.

Intuitively, this means that the behaviour of Q includes the behaviour of P.

One might expect the following to hold:

Proposition
 If P simulates Q and Q simulates P, then $P \sim Q$.

And one would rejoice, since it would allow for simpler bisimulation proofs.

Unfortunately, it is false.

Simulation

Here s_{1} simulates t_{1}, and vice versa.

But $s_{1} \sim t_{1}$ does not hold.

Coinduction

Since \sim itself is a bisimulation, we could define \sim as:

Definition

\sim is the largest bisimulation, ie the largest relation such that
$P \sim Q$ implies:
(1) For all P^{\prime} such that $P \xrightarrow{\alpha} P^{\prime}$, there exists Q^{\prime} such that $Q \xrightarrow{\alpha} Q^{\prime}$ and $P^{\prime} \sim Q^{\prime}$
(2) The converse

Looks kinda like an inductive definition, but it's not.
Where's the base case? What's the well-founded order?
In fact, it's a coinductive definition!

Coinduction

$$
\overline{\text { nil } \in \mathcal{L}} \quad \frac{l \in \mathcal{L} \quad a \in A}{\operatorname{cons}(a, l) \in \mathcal{L}}
$$

The set inductively defined by these rules is the smallest set closed forward under the rules.
le, the set of finite lists over A.

Coinduction

$$
\overline{\text { nil } \in \mathcal{L}} \quad \frac{l \in \mathcal{L} \quad a \in A}{\operatorname{cons}(a, l) \in \mathcal{L}}
$$

The set coinductively defined by these rules is the largest set closed backward under the rules.
le , the set of finite and infinite lists over A.

Coinduction

$$
\overline{\text { nil } \in \mathcal{L}} \quad \overline{\operatorname{cons}(a, l) \in \mathcal{L}}
$$

Let X be the strings over the alphabet $A \cup\{$ nil, cons, $(),,$,$\} .$
The rule functional $F: X \rightarrow X$ of the above rules is:
$F(S)=\{n i l\} \cup\{\operatorname{cons}(a, s): a \in A, s \in S\}$
The least fixed point of F is the set inductively defined by the rules.
The greatest fixed point of F is the set coinductively defined by the rules.

The end

