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Johannes Åman Pohjola Introduction to Bisimulation and Coinduction



Outline

After this seminar, you should (hopefully):

Understand what bisimulation is.

Know how to use the bisimulation proof method.

Kind of sort of vaguely understand coinduction and its duality
with induction.
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Introduction

We seek a behavioural equivalence between processes.

That is, an equivalence relation that relates processes that exhibit
the same observable behaviour.

What would be a sensible such equivalence?

And besides, what is a process anyway?
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LTS

We will model processes and their behaviour using labelled
transition systems (LTS).

Definition (LTS)

An LTS is a triple (Pr ,Act,−→) where

Pr is a non-empty set called the domain

Act is the set of labels

−→⊆ Pr × Act × Pr is the transition relation.

We will write P
α−→ Q when (P, α,Q) ∈−→.

We call elements of Pr states, or interchangeably, processes.
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Graph isomorphism

An LTS is similar to a graph, so let’s try graph isomorphism!

Two graphs are isomorphic if there is a bijection between their
components: the states and the transitions.

Two isomorphic LTSs would certainly have the same behaviour.

Unfortunately, the converse is false.
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Graph isomorphism

These two LTSs have the same behaviour:

s1

s2

t1

t2 t3

ab a

b

a

But they are not isomorphic.

Johannes Åman Pohjola Introduction to Bisimulation and Coinduction



Trace equivalence

LTSs are similar to automata, so let’s try language equivalence!

Two automata are language equivalent if they accept the same set
of strings.

Analogously, two LTS processes are trace equivalent if they give
rise to the same (finite) transition sequences.
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Trace equivalence

These coffee machines are trace equivalent.

s1

s2

s3 s4

t1

t2 t3

t4 t5

1c

tea?

coffee?

tea
coffee

1c 1c

tea? coffee?

tea
coffee

But not behaviourally equivalent.
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Bisimulation

Definition (Bisimulation)

A binary relation R on the states of an LTS is a bisimulation
relation iff whenever P R Q,

1 For all P’ such that P
α−→ P ′, there exists Q’ such that

Q
α−→ Q ′ and P ′ R Q ′

2 For all Q’ such that Q
α−→ Q ′, there exists P’ such that

P
α−→ P ′ and P ′ R Q ′

Bisimilarity, denoted ∼, is the union of all bisimulations. Hence
P ∼ Q iff there exists a bisimulation R with P R Q.
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Bisimulation proof method

Immediately from the definition of bisimulation, we obtain the
bisimulation proof method:

To prove P ∼ Q, find a bisimulation R such that P R Q.
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Bisimulation proof method: examples

s1 s2 t1 t2 t3

a

b

a
b

a

Theorem

s1 ∼ t1

Proof.

Pick R = {(s1, t1), (s2, t2), (s1, t3)}.
Then check that all transitions from R take us back to R.

Hint: be lazy! Pick the smallest possible candidate relation!
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Bisimulation proof method: examples

Theorem

∼ itself is a bisimulation.

Proof.

By intimidation.

Theorem

∼ is an equivalence relation, ie for all P, Q and R:

1 P ∼ P

2 P ∼ Q ⇒ Q ∼ P

3 P ∼ Q ∧ Q ∼ R ⇒ P ∼ R

Proof.

On blackboard.
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Simulation

Definition (Simulation)

A binary relation R on the states of an LTS is a simulation relation
iff whenever P R Q,

1 For all P’ such that P
α−→ P ′, there exists Q’ such that

Q
α−→ Q ′ and P ′ R Q ′

2 There is no second clause

We say that Q simulates P iff there exists a simulation R and
P R Q.

Intuitively, this means that the behaviour of Q includes the
behaviour of P.
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Simulation

One might expect the following to hold:

Proposition

If P simulates Q and Q simulates P, then P ∼ Q.

And one would rejoice, since it would allow for simpler bisimulation
proofs.

Unfortunately, it is false.
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Simulation

Here s1 simulates t1, and vice versa.

s1

s2

s3

t1

t2 t3

t4

a

a

a
a

a

But s1 ∼ t1 does not hold.
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Coinduction

Since ∼ itself is a bisimulation, we could define ∼ as:

Definition

∼ is the largest bisimulation, ie the largest relation such that
P ∼ Q implies:

1 For all P’ such that P
α−→ P ′, there exists Q’ such that

Q
α−→ Q ′ and P ′ ∼ Q ′

2 The converse

Looks kinda like an inductive definition, but it’s not.

Where’s the base case? What’s the well-founded order?

In fact, it’s a coinductive definition!
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Coinduction

nil ∈ L
l ∈ L a ∈ A

cons(a, l) ∈ L

The set inductively defined by these rules is the smallest set closed
forward under the rules.

Ie, the set of finite lists over A.
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Coinduction

nil ∈ L
l ∈ L a ∈ A

cons(a, l) ∈ L

The set coinductively defined by these rules is the largest set closed
backward under the rules.

Ie, the set of finite and infinite lists over A.
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Coinduction

nil ∈ L
l ∈ L a ∈ A

cons(a, l) ∈ L

Let X be the strings over the alphabet A ∪ {nil , cons, (, ), , }.

The rule functional F : X → X of the above rules is:

F (S) = {nil} ∪ {cons(a, s) : a ∈ A, s ∈ S}

The least fixed point of F is the set inductively defined by the rules.

The greatest fixed point of F is the set coinductively defined by
the rules.
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The end
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