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Hoare Logic

Hoare - An axiomatic basis for computer programming (1969)
Describes a deductive system for proving program correctness.
A set of axioms and inference rules about asserted programs.
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While Programs

Assume that we have an underlying logic L, e.g. Integer Arithmetic

Defined inductively:

for every variable x and term t, x := t is a program
if S1 and S2 are programs, and e is a boolean expression, the following
are also programs

I S1 ; S2
I if e then S1 else S2 fi
I while e do S1 od
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States

We have a set of variables, typically integers
A program can be seen as a set of states, and a set of transitions
between states

In the case of integers x1, . . . , xn, the state space of the program is Zn.

A predicate on x1, . . . , xn characterizes a set of states, i.e. a subset of
Zn.
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Hoare Triples

The formulas of Hoare Logic are asserted programs

{p} S {q}

Here, S is a program, and p, q are assertions

p is called the precondition
q is called the postcondition

The above formula states that whenever p holds before running S , and S
terminates, then q will hold after running S .
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Hoare Triples

Example
{x < 1} x := x + 1; x = x + 1 {x < 3}

How can we prove this?
Hoare Logic provides axioms and inference rules for proving asserted
programs.
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Assignment Axiom Schema

Assignment

{p[t/x ]} x := t {p}

p[t/x ] stands for substituting t for free occurences of x in p

Example
{y + 5 = 42} x := y + 5 {x = 42}

Example
What is p if the following is an instance?
{p} x := x + 1 {x < 10}
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Composition Rule

Composition
{p} S1 {r} {r} S2 {q}
{p} S1 ; S2 {q}
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Composition Rule

Example
P: {true} x := 2 ; y := x {x > 0 ∧ y = 2}

We can infer P if we can infer
{true} x := 2 {ϕ} and
{ϕ} y := x {x > 0 ∧ y = 2}

for some predicate ϕ.
By Assignment, we can infer

{x > 0 ∧ x = 2} y := x {x > 0 ∧ y = 2} and
{2 > 0 ∧ 2 = 2} x := 2 {x > 0 ∧ x = 2}

Since 2 > 0 ∧ 2 = 2 ≡ true, we have proved the asserted program.
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Conditional Rule

Conditional
{p ∧ e} S1 {q} {p ∧ ¬e} S2 {q}
{p} if e then S1 else S2 fi {q}
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Conditional Rule

Conditional
{p ∧ e} S1 {q} {p ∧ ¬e} S2 {q}
{p} if e then S1 else S2 fi {q}

Example
{true} if x < 10 then x := 10 else x := 0 fi {x = 10 ∨ x = 0}

We can infer this if we can infer

{true ∧ x < 10} x := 10 {x = 10 ∨ x = 0}
{true ∧ x ≥ 10} x := 0 {x = 10 ∨ x = 0}
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Iteration Rule

Iteration
{p ∧ e} S {p}

{p}while e do S od {p ∧ ¬e}
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Iteration Rule

Iteration
{p ∧ e} S {p}

{p}while e do S od {p ∧ ¬e}

Example
{x ≤ 10}while x < 10 do x := x + 1 od {x = 10}

A: {x + 1 ≤ 10} x := x + 1 {x ≤ 10}
L: {x ≤ 10 ∧ x + 1 ≤ 10} x := x + 1 {x ≤ 10}
L: {x + 1 ≤ 10 ∧ x ≤ 10} x := x + 1 {x ≤ 10}
I: {x ≤ 10}while x + 1 ≤ 10 do x := x + 1 od {x ≤ 10∧ x + 1 6≤ 10}
L: {x ≤ 10}while x < 10 do x := x + 1 od {x ≤ 10 ∧ x ≥ 10}
L: {x ≤ 10}while x < 10 do x := x + 1 od {x = 10}
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Rule of Consequence

Consequence
p ⇒ p′ {p′} S {q′} q′ ⇒ q

{p} S {q}

We can strengthen the precondition, i.e. assume more than we need
We can weaken the postcondition, i.e. conclude less than we are
allowed to
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Rule of Consequence

Consequence
p ⇒ p′ {p′} S {q′} q′ ⇒ q

{p} S {q}

Example
{true ∧ x < 10} x := 10 {x = 10 ∨ x = 0}

We have
{true} x := 10 {x = 10 ∨ x = 0} by Assignment
true ∧ x < 10⇒ true
x = 10 ∨ x = 0⇒ x = 10 ∨ x = 0
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Proofs in Hoare Logic

An asserted program is sequence {p0} S1 ; S2 ; . . . ; Sn {pn}
each Si is either an if-statement, a while-statement or an assignment.

By Composition, the problem of proving this program correct amounts to
finding pi s.t. {p0} S1 {p1}, {p1} S2 {p2}, ... , {pn−1} Sn {pn}

Hoare’s paper doesn’t include any way of computing these intermediate
assertions.
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Weakest Preconditions

Dijkstra’s paper “Guarded Commands, Nondeterminancy and Formal
Derivation of Programs” introduces the notion of weakest precondition.

Definition
The weakest precondition of a predicate q wrt. a program S , denoted by
wp(S , q) is the weakest predicate characterizing all states from which a run
of S is guaranteed to terminate in q.
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Weakest Preconditions

Start with postcondition and “push” it backwards

{p} S1 ; S2 ; S3 {q}
{p} S1 ; S2 {wp(S3, q)}
{p} S1 {wp(S2,wp(S3, q))}
p ⇒ wp(S1,wp(S2,wp(S3, q)))?

A kind of symbolic execution of statements in the domain of predicates.
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Conclusions

Hoare’s paper founded a whole school of research

A swarm of extensions, for e.g.
procedure calls
arrays
goto
pointers
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Conclusions

Hoare’s paper founded a whole school of research

A number of tools work like follows:

1 Use Hoare-style Logic and WP to generate verification conditions
2 Use a general-purpose tool to prove these

Verification conditions do not contain program constucts
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Conclusions

Thank You!
Next presentation: Joe Scott on CTL, Friday 17th in P1112
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