
Multi-Pushdown Systems with Budgets
Parosh Aziz Abdulla, Mohamed Faouzi Atig, Othmane Rezine and Jari Stenman

Department of Information Technology
Uppsala University

Uppsala, Sweden

Abstract—We address the verification problem for concurrent
programs modeled as multi-pushdown systems (MPDS). In gen-
eral, MPDS are Turing powerful and hence come along with
undecidability of all basic decision problems. Because of this,
several subclasses of MPDS have been proposed and studied
in the literature [1]–[4]. In this paper, we propose the class
of bounded-budget MPDS where we restrict them in the sense
that each stack can perform an unbounded number of context
switches if its size is below a given bound, and is restricted
to a finite number of context switches when its size is above
that bound. We show that the reachability problem for this
subclass is PSPACE-complete. Furthermore, we propose a code-
to-code translation that inputs a concurrent program P and
produces a sequential program P ′ such that running P under
the bounded-budget restriction yields the same set of reachable
states as running P ′. By leveraging standard sequential analysis
tools, we have implemented a prototype tool and applied it on a
set of benchmarks, showing the feasibility of our translation.

I. INTRODUCTION

In the last few years, a lot of effort has been devoted to
the verification problem for models of concurrent programs
(see, e.g., [1]–[3], [5]). On the other hand, pushdown systems
have been proposed as an adequate formalism to describe se-
quential programs with procedure calls. Therefore, it is natural
to model recursive concurrent programs as Multi-PushDown
Systems (MPDS for short). However, MPDS are in general
Turing powerful, and hence all the basic decision problems
are undecidable for them. To overcome this barrier, several
subclasses of multi-pushdown systems have been proposed and
studied in the literature. The main goals of these works are
(1) to explore the largest possible state space of the modeled
concurrent program, and (2) to retain the decidability of some
properties such as the reachability problem.

Context-bounding has been proposed in [1] as a suitable
technique for the analysis of MPDS. The idea is to consider
only runs of the system that can be divided into a given number
of contexts, where in each context pop and push operations are
exclusive to one stack. The state space which may be explored
is still unbounded in the presence of recursive procedure calls,
but the context-bounded reachability problem is NP-complete
even in this case. Empirically, it has been shown that many
concurrency errors, such as data races and atomicity violations,
manifest themselves in executions with only a few contexts [6].

Another way to regain decidability is to consider depth-
bounded verification for MPDS where the maximal possible

This work was supported in part by the Swedish Research Council and
carried out within the Linnaeus centre of excellence UPMARC, Uppsala
Programming for Multicore Architectures Research Center.

depth (or size) of each stack is bounded by a given constant. In
this case, the reachability problem becomes PSPACE-complete.
However, since the explored state space is bounded, this
approach is more suitable for detecting shallow bugs [7]. In
fact, bounding the stack depth provides a completeness result
for the case where the threads are modeled as finite-state
systems (this is not the case for the context-bounded analysis).

In this paper, we generalize both context-bounded analysis
and depth-bounded verification by introducing the class of
MPDS with budgets. Intuitively, for each thread (or stack),
we associate two values k, d ∈ N ∪ {ω} (where ω is the first
limit ordinal) such that each thread can perform at most k
consecutive context switches unless its stack depth goes below
the given bound d. More precisely, each thread is given a
budget b of contexts. The thread then operates in two modes,
I and II. In mode I, the stack depth of the thread is less than or
equal to d, while in mode II it is strictly above d. The budget
of the thread is unbounded in mode I, i.e., b = ∞. In other
words, the thread is allowed to perform any number of context
switches while it is in mode I. As soon as the stack depth of
the thread grows above d, the thread enters mode II and its
budget b is set to k. Each time the thread performs a context
switch in mode II, its budget b is decremented by one. The
thread leaves mode II in one of two ways: either it consumes
all its budget (its budget b becomes negative) in which case
the thread will be blocked; or the stack depth of the thread
becomes d in which case it enters mode I and its budget is
reset to unbounded (b = ω) again.

We identify two subclasses of MPDS with budgets. We call
the first subclass uniformly bounded-budget MPDS. Here, we
associate finite values to the stack depth d ∈ N and context
budget k ∈ N for each thread (or stack). For this case, we
show that the reachability problem is PSPACE-complete. The
lower bound is proved by a straightforward reduction from the
non-emptiness test of the intersection of a finite set of regular
languages (which is PSPACE-complete). To prove the upper-
bound, we show that it is possible to reduce, in polynomial
time, the reachability problem for a uniformly bounded-budget
MPDS to the non-emptiness test for the synchronous product
of a finite set of depth-bounded pushdown automata (which is
PSPACE-complete).

Then, we consider the class of singly unbounded-budget
MPDS where we have at most one thread that can perform
an unbounded number of context switches regardless of its
stack depth, and all the other threads have finite values for
their stack depth and context-budget bounds. We show that

the reachability problem for this class is EXPTIME-complete.
The lower bound is proved by a reduction from the non-
emptiness test of the intersection of a pushdown automaton
with several regular languages (which is EXPTIME-complete).
For the upper bound, we show that the reachability problem
for a singly unbounded-budget MPDS can be reduced to the
emptiness problem for a pushdown automaton whose size is
exponential.

In the second part of the paper, we investigate the issue
of defining a code-to-code translation that inputs a concurrent
program P and produces a sequential program P ′ such that
running P under the uniformly bounded-budget restriction
yields the same set of reachable states as running P ′. In
other words, we have reduced the problem of verifying (an
under-approximation of) the concurrent P to that of verifying
a sequential program P ′. In fact, the only source of abstraction
in our translation is the fact that we limit the behavior of P
when its stack depth exceeds the given limit. In particular, our
translation preserves the data domains of the original program
in the sense that P and P ′ have the same features (e.g.,
recursive procedure calls, type of data structures). We show
that the translation can be performed using additional copies
of the shared variables and local variables. More importantly,
the fact that P ′ is a sequential program means that our
translation allows us to use existing analysis and verification
tools designed for sequential programs in order to perform the
same kind of analysis and verification for concurrent programs
under uniformly bounded-budget restriction. To show its use in
practice, we have implemented our approach and applied it on
several examples, using the three back end tools MOPED [8],
ESBMC [9], and CBMC [7]. We also compare our results to
the ones obtained using concurrent verification tools, namely
ESBMC [9] and POIROT [10]. In our experiments, bugs (i.e.
violations of state invariants) appear for small bounds.

Related work: Our model is inspired by the work of
Finkel and Sangnier [11], where they propose an extension of
reversal-bounded counter machines, restricting each counter
to a finite number of alternations between the increasing and
decreasing modes when its value goes beyond a given bound.

As mentioned earlier, several decidable classes of multi-
pushdown systems have been proposed [1]–[3], [5]. The
closest model to multi-pushdown systems with budgets is
Scope-bounded Multistack PushDown Systems (SMPDS for
short) [5] where each symbol in a stack can be popped only
if it has been pushed within a bounded number of context
switches. We can show that the reachability problem for
SMPDS can be reduced to the corresponding one for uniformly
bounded-budget MPDS where the value of the stack depth
is 0. This can be done by assuming that a stack symbol
that will never be popped in the context of [5] will not be
pushed into the stack. Thus, each symbol that is pushed into
the stack should be removed within k context-switches. On
the other hand, simulating uniformly bounded-budget MPDS
by SMPDS does not seem to be straightforward without an
exponential explosion (to encode the content of each stack up
to the stack depth bound).

To the best of our knowledge there is no decidable subclass
of multi-stack pushdown system similar to the class of singly
unbounded-budget MPDS (for which we show the reachability
problem to be EXPTIME-COMPLETE).

Our code-to-code translation follows the line of research on
compositional reductions from concurrent to sequential pro-
grams [12]–[15]. Recently, La Torre and Parlato have proposed
in [16] a sequentialization for SMPDS where for each SMPDS,
they construct an equivalent single-stack pushdown system that
faithfully simulates the behavior of each thread. However, the
proposed sequentialization has not been implemented and so
we were not able to compare it with our translation. Moreover,
the two translation schemes were developed independently and
simultaneously [17].

II. PRELIMINARIES

In this section, we fix some basic definitions and notations
that will be used in the rest of the paper. We assume that the
reader is familiar with automata and language theory.

a) Notations: Let N denote the non-negative integers,
and let Nk and Nk

ω denote the set of vectors of dimension k
over N and N∪{ω}, respectively (ω representing the first limit
ordinal). For every i, j ∈ Nω such that i ≤ j, we use [i..j] to
denote the set {k ∈ Nω | i ≤ k ≤ j}.

Let Σ be a finite alphabet. We denote by Σ∗ (resp. Σ+) the
set of all words (resp. non empty words) over Σ, and by ε the
empty word. A language is a (possibly infinite) set of words.
Let u be a word over Σ. The length of u is denoted by |u|
(we have |ε| = 0).

Let L be a language over Σ and let w ∈ Σ∗ be a word. We
define w.L = {w.u | u ∈ L}. We define the shuffle operator
tt over two words inductively as tt(ε, w) = tt(w, ε) =
{w} and tt(a.u

′
, b.v

′
) = a.(tt(u

′
, b.v

′
) ∪ b.(tt(a.u

′
, v
′
).

Given two languages L1 and L2, we define their shuffle as
tt(L1, L2) =

⋃
u∈L1,v∈L2

tt(u, v). The shuffle operator for
multiple languages can be extended analogously.

b) Pushdown Automata: A pushdown automaton is de-
fined by a tuple P= (Q,Σ,Γ,∆, I, F) where: (1) Q is a finite
non-empty set of states, (2) Σ is the input alphabet, (3) Γ is
the stack alphabet, (4) ∆ is the finite set of transition rules
of the form (q, u) a−→(q′, u′) where q, q′ ∈ Q, a ∈ Σ ∪ {ε},
u, u′ ∈ Γ∗ such that |u| + |u′| ≤ 1, (5) I ⊆ Q is the set of
initial states, and (6) F ⊆ Q is the set of final states. The size
of P is defined by |P| = |Q|+ |Σ|+ |Γ|.

A configuration of P is a tuple (q, σ, w) where q ∈ Q is the
current state, σ ∈ Σ∗ is the remaining input word, and w ∈ Γ∗

is the stack content. We define the binary relation⇒P between
configurations as follows: (q, aσ, uw) ⇒P (q′, σ, u′w) iff
(q, u) a−→(q′, u′). The transition relation ⇒∗P is the reflexive
transitive closure of ⇒P.

The language L(P) accepted by P is defined by the set of
finite words σ ∈ Σ∗ such that (qinit, σ, ε) ⇒∗P (qfinal, ε, ε) for
some qinit ∈ I and qfinal ∈ F .

Let d ∈ N. We define the transition relation →>d between
configurations of P as follows: (q, σ, w) →>d (q′, σ′, w′) if

and only if (q, σ, w)⇒P (q′, σ′, w′) and |w′| > d or |w| > d.
Intuitively, the transition relation →>d can be performed only
if the stack depth of the starting or target configuration is
at least d + 1. The transition relation →∗>d is the reflexive
transitive closure of →>d.

Similarly, we can define the transition relation →≤d
between configurations of P as follows: (q, σ, w) →≤d
(q′, σ′, w′) if and only if (q, σ, w) ⇒P (q′, σ′, w′), |w′| ≤ d
and |w| ≤ d. Intuitively, the transition relation →≤d can only
be performed when the stack depths of both the starting and
target configurations are at most d. The transition relation→∗≤d
is the reflexive transitive closure of →≤d.

Given d, k ∈ N, we define the relation→(k,d) between con-
figurations of depth d as follows: (q, σ, w)→(k,d) (q′, σ′, w′)
if and only if (q, σ, w) →∗>d (q′, σ′, w′), |σ| − |σ′| ≤ k,
w′ = w, and |w| = d. This means that the pushdown
automaton can only read k consecutive input symbols without
its stack depth going below the bound d.

Let L(k,d)(P) denote the set of words σ ∈ Σ∗ such that
there is a sequence of configurations c0, c1, . . . , cn where (1)
c0 is of the form (q0, σ, ε) with q0 ∈ I , (2) cn is of the form
(qn, ε, ε) with qn ∈ F , and (3) for every i ∈ [1..n], we have
ci−1 →(k,d) ci or ci−1 →∗≤d ci holds. We call L(k,d)(P) the
(k, d)-bounded language of P.

We also define the language L(−1,d)(P) to be the set of
words σ ∈ Σ∗ such that (qinit, σ, ε) →∗≤d (qfinal, ε, ε) where
qinit ∈ I and qfinal ∈ F . Intuitively, the set L(−1,d)(P) (or
simply Ld(P) when it is clear from the context) contains all
words accepted by the runs of P where the stack depth is
always bounded by d.

Lemma 1: Let d, k ∈ N and P be a pushdown automaton.
Then, it is possible to construct, in polynomial time, a push-
down automaton P ′ such that Lk+d(P ′) = L(k,d)(P).

Proof: To prove this, it is sufficient to show the following
lemma:

Lemma 2: Let k ∈ N be a natural number and P be
a pushdown automaton. Then, it is possible to construct,
in polynomial time, a pushdown automaton P′ such that
Lk(P ′) = L(P) ∩ Σ≤k.

Proof: Let us first recall some basic results about context-
free languages.

A context-free grammar (CFG) G is a tuple (X ,Σ, R, S)
where X is a finite non-empty set of variables (or nonter-
minals), Σ is an alphabet of terminals, R ⊆

(
X × (X 2 ∪

Σ)
)
∪ (S × {ε}) a finite set of productions (the production

(X,w) may also be denoted by X → w), and S ∈ X is a
start variable. The size of G is defined by |G| = (|X |+ |Σ|).
Observe that the form of the productions is restricted, but it
has been shown in [4] that every CFG can be transformed, in
polynomial time, into an equivalent grammar of this form.

Given strings u, v ∈ (Σ∪X)∗ we say u⇒G v if there exists
a production (X,w) ∈ R and some words y, z ∈ (Σ ∪ X)∗

such that u = yXz and v = ywz. We use⇒∗G for the reflexive
transitive closure of ⇒G. We define the context-free language
generated by L(G) as {w ∈ Σ∗ | S ⇒∗G w}.

Let k ∈ N. A derivation α given by α
def
= α0 ⇒G α1 ⇒G

· · · ⇒G αn is k-bounded if |αi| ≤ k for all i ∈ [1..n]. We
denote by L(k)(G) the subset of L(G) such that for every
w ∈ L(k)(G) there exists a k-bounded derivation S ⇒∗G w.
We call L(k)(G) the k-bounded approximation of L(G).

Lemma 3: Given a context-free grammar G and k ∈ N,
then it is possible to construct, in polynomial time, a pushdown
automaton P such that Lk(P) = L(k)(G).

Proof: Since the context-free grammar G is in the normal
form, we know that any k-bounded derivation have a derivation
tree T in which the number of leaves is at most k. Moreover,
any path of the derivation tree T has at most k nodes and
each node has at most two outgoing edges. This implies that
the we can construct a stateless pushdown automaton P′ whose
alphabet is exactly the set of variables of G. The derivation tree
of the grammar G is simulated by the pushdown automaton P′
in a leftmost way in the standard manner. Then, we construct
a pushdown automaton P which results from the intersection
of the pushdown automaton P′ and the finite state automaton
that recognizes words of length at most k. Now, it is easy to
see that L(P) = Lk(P) = L(k)(G) .

To prove lemma 2, we will make use of the fact that for
every pushdown automaton P, it is possible to construct, in
polynomial time in the size of P, a context-free grammar G
such that L(k)(G) = L(P) ∩ Σ≤k [18]. Moreover, we can
assume that this context-free grammar is in the normal form
(based on the result in [4] showing that every context-free
grammar can be transformed, in polynomial time, into an
equivalent grammar in the normal form). Then, we can apply
Lemma 3 to construct, in polynomial time, the pushdown
automaton P′ such that Lk(P) = L(k)(G). Hence, we have
Lk(P) = L(k)(G) = L(P) ∩ Σ≤k.

Let P be a pushdown automaton. To prove Lemma 1,
we construct, in polynomial time, a pushdown automaton P′
such that Lk+d(P′) = L(k,d)(P) as follows: The pushdown
automaton P′ mimics the pushdown automaton P if the current
stack depth of P is less or equal to d. Moreover, P′ keeps
track of the current stack depth in its control state. If the
current depth of the stack of P (and therefore P′) is precisely
d and P performs a push transition t from a state q, then the
pushdown automaton P′ guesses the return state q′ (when the
stack of P is again of depth d). Then, P′ starts to mimic the
pushdown automaton P ′′ (constructed using Lemma 2) from
the pushdown automaton P′′′ built from P by setting the initial
state of P′′′ to q and the final state of P′′′ to q′. Moreover,
we constrain the pushdown automaton P′′′ such that the only
first possible simulated transition of P is precisely the push
transition t and the pushdown automaton P′′′ halts when its
stack is empty (except for the initial configuration). To detect
that the stack of P′′′ is empty, we can use a special symbol⊥ to
mark the bottom of the stack. By construction, the pushdown
automaton P′′ accepts exactly the words of length less than k
(which are the set of words σ generated by the run of P of
the form (q, σ, ε)→(k,d) (q′, ε, ε) and where |σ| ≤ k). Observe
that (q, σσ′, w)→(k,d) (q′, σ, w) for some w such that |w| = d
holds if and only if (q, σ, ε) →(k,d) (q′, ε, ε) holds. Since the
stack depth of P′′ is at most k, the stack depth of P is at most

d+ k.
Given pushdown automata P0, . . . ,Pn and bounds

d0, . . . , dn ∈ N, we define the non-emptiness test of the
synchronization of depth-bounded pushdown automata as
the problem of checking the emptiness of the language
Ld0

(P) ∩ tt(Ld1
(P1), . . . , Ldn

(Pn)).
Lemma 4: The non-emptiness test of the synchronization

of depth-bounded pushdown automata is PSPACE-complete.
Proof: The upper-bound can be obtained by an easy

reduction to the emptiness problem for a Turing machine
having n+ 1-tapes, where each tape i ∈ [0..n] has di cells.

The lower bound follows by a reduction from the non-
emptiness test of the intersection of several regular languages
(particular case of depth-bounded pushdown automata) which
is known to be PSPACE-hard.

III. MULTI-PUSHDOWN SYSTEMS

In this section, we recall the definition of multi-pushdown
systems. Multi-pushdown systems (or MPDS for short) have
a finite set of states along with a finite number of read-write
memory tapes (stacks) with a last-in-first-out rewriting policy.
The types of transitions that can be performed by a MPDS are:
(i) pushing a symbol into one stack, (ii) popping a symbol
from one stack, or (iii) an internal action that changes the state
of the automaton while keeping the stacks unchanged. Note
that since we are not interested in this model as a language
acceptor, it does not include an input alphabet or final states.

Definition 1: A multi-pushdown system (MPDS) is a tuple
M= (n,Q,Γ,∆, qinit) where n ≥ 1 is the number of stacks,
Q is a finite set of states, Γ is the stack alphabet, ∆ ⊆

(
Q×

[1..n] × Q
)
∪
(
Q × [1..n] × Q × Γ

)
∪
(
Q × Γ × [1..n] × Q

)
is the transition relation, and qinit is the initial state.

Let q, q′ ∈ Q be two states, i ∈ [1..n] a stack index, and
γ ∈ Γ a stack symbol. A transition of the form (q, i, q′)
is an internal operation that moves the state from q to q′

while keeping the contents of the stacks unchanged. The stack
index i is included in this operation for technical reasons.
A transition of the form (q, i, q′, γ) corresponds to a push
operation that changes the state from q to q′, and adds the
symbol γ to the top of the i-th stack. Finally, a transition of
the form (q, γ, i, q′) corresponds to a pop operation that moves
the state from q to q′, and removes the symbol γ from the top
of the i-th stack.

A configuration c ofM is an (n+1)-tuple (q, w1, . . . , wn)
where q ∈ Q is a state and for every i ∈ [1..n], wi ∈ Γ∗ is
the content of the i-th stack. We use State(c) and Stack i(c),
with i ∈ [1..n], to respectively denote q and wi. We denote
by cinit

M = (qinit, ε, ε, . . . , ε) the initial configuration of M.
We define the transition relation −→M on the set of configu-

rations as follows. For configurations c = (q, w1, . . . , wn) and
c′ = (q′, w′1, . . . , w

′
n), an index i ∈ [1..n], and a transition

t ∈ ∆, we write c t−→M c′ to denote that one of the following
cases holds:
• Internal operation: t = (q, i, q′) and w′j = wj for all
j ∈ [1..n].

• Push operation: t = (q, i, q′, γ) for some γ ∈ Γ, w′i =
γ · wi, and w′j = wj for all j ∈ ([1..n] \ {i}).

• Pop operation: t = (q, γ, i, q′) for some γ ∈ Γ, wi =
γ · w′i, and w′j = wj for all j ∈ ([1..n] \ {i}).

A computation π of M from a configuration c to a
configuration c′ is a sequence c0t1c1t2 · · · tmcm such that: (1)

c0 = c and cm = c′, and (2) ci−1
ti−−→Mci for all i ∈ [1..m];

each configuration ci is said to be reachable from c. We use
initial(π) and target(π) to denote respectively c0 and cm.

Given two computations π1 = c0t1 · · · tmcm and π2 =
cm+1tm+2 · · · tkck, π1 and π2 are said to be compatible if
cm = cm+1. Then, we write π1 •π2 to denote the computation
π

def
= c0t1c1t2c2 · · · tmcmtm+2cm+2tm+3 · · · · · · tkck.
In the following, we propose the class of bounded-budget

computations of MPDS. Intuitively, with each stack i ∈ [1..n],
we associate two values ki, di ∈ Nω such that the stack i can
perform at most ki contexts without its size going below di.
A context is a run ofMwhere operations are exclusive to one
stack. (Observe that ki and di could be ω.) Next, we describe
bounded-budget computations formally.
Contexts: A context of a stack i ∈ [1..n] is a computation of
the form π = c0t1c1t2 · · · tmcm in which tj ∈ ∆i

def
=
(
Q ×

{i} ×Q
)
∪
(
Q× {i} ×Q× Γ

)
∪
(
Q× {i} × Γ×Q

)
for all

j ∈ [1..m]. Observe that every computation can be seen as the
concatenation of a sequence of contexts π1 • π2 • . . . • π`.

For any two contexts π1 and π2 of the stack i, we write π1•i
π2 to denote that Stack i(initial(π2)) = Stack i(target(π1))
(i.e., in this case we say that π1 and π2 are compatible w.r.t.
stack i). This notation is extended in a straightforward manner
to sequence of contexts. Observe that if π = π1 •π2 • . . .•πm
is a computation where each πj is a context, then if i1 < i2 <
. . . < ik are all the indices j such that πj is a context of stack
i, then πi1 •i πi2 •i . . . •i πik .

A context π = c0t1c1t2 · · · tmcm of the stack i ∈ [1..n] is
said to be of depth at most (resp. least) d ∈ N if and only if for
every j ∈ [0..m], |Stack i(cj)| ≤ d (resp. |Stack i(cj)| ≥ d).
The definition is extended in the straightforward manner to
sequences of contexts as follows: The sequence π = π1 •i
π2 •i . . . •i πm of compatible contexts of the stack i is of
depth at most (resp. least) d ∈ N iff for every j ∈ [1..m], πj
is of depth at most (resp. least) d.
Block: A block ρ of a stack i ∈ [1..n] of size m ∈ N and depth
d ∈ N is a sequence of compatible contexts of the form c0t0 ·
π1 •i π2 •i · · · •i πm · tmcm of stack i such that |Stack i(c0)| =
|Stack i(cm)| = d and πj is a context of depth at least d + 1
for all j ∈ [1..m].
Budget-Bounded Computations: Intuitively, in a budget-
bounded computation, we associate with each stack i ∈ [1..n],
a budget of contexts ki ∈ Nω and depth bound di ∈ Nω

such that if we consider a point in the computation where the
stack i is of depth di and a symbol is being pushed into this
stack (i.e., the depth of the stack now becomes di + 1), then
this newly pushed stack symbol should be removed within ki
contexts involving this stack i. This implies that, in a budget-
bounded computation, each computation of the stack i is a

concatenation of contexts of depth at most di and blocks of
size ki and depth di. The formal definition is as follows:

Let π be a computation of M. Let k̄ = (k1, k2 . . . , kn) ∈
Nn

ω be the context-budget vector and d̄ = (d1, d2, . . . , dn) ∈
Nn

ω the stack depth vector. We say that π is (k̄, d̄)-budget-
bounded if it can be written as a concatenation π1 • π2 • · · · •
πm of contexts (observe that for all j, πj and πj+1 could
be contexts of the same stack) in such a way that if σi =
πi
i1
•i πi

i2
•i · · · •i πi

mi
(with i1 < i2 < · · · < mi) is the

maximal sub-sequence of contexts in π belonging to the stack
i ∈ [1..n], then there is a sequence ρi = ρi1 •i ρi2 •i · · · •i ρi`i of
contexts of depth at most di and blocks of size ki and depth
di such that σi = ρi.

By restricting the allowed bound vectors (k̄, d̄), we can
distinguish two sub-classes of MPDS under budget-bounding.

Definition 2: A (k̄, d̄)-budget-bounded computation π is a
singly unbounded-budget computation if and only if there is at
most one index i ∈ [1..n] such that either ki = ω or di = ω.

In singly unbounded-budget computations, we have at most
one stack i ∈ [1..n] that can perform an unbounded number
of contexts regardless of its depth. Any other stack j (with
i 6= j) of M can at most perform a finite number consecutive
contexts without its size going below a given finite bound.

Definition 3: A (k̄, d̄)-budget-bounded computation π is a
uniformly bounded-budget computation if and only if for
every i ∈ [1..n], we have ki ∈ N and di ∈ N.

Observe that in the case of uniformly bounded-budget
computations, each stack i ∈ [1..n] has a finite context-budget
and a finite stack depth bound.

IV. THE BUDGET-BOUNDED REACHABILITY PROBLEM

In this section, we study the decidability and complex-
ity of the reachability problem for MPDS under budget-
bounding. Let M = (n,Q,Γ,∆, qinit) be a MPDS. Let
k̄ = (k1, k2 . . . , kn) ∈ Nn

ω be the context-budget vector
and d̄ = (d1, d2, . . . , dn) ∈ Nn

ω the stack depth vector. The
(k̄, d̄)-budget-bounded reachability problem is to determine,
for a given state qfinal ∈ Q, whether there is a (k̄, d̄)-budget-
bounded computation from the initial configuration cinit

M to the
configuration (qfinal, ε, . . . , ε). The input size of this problem
is n+ |Q|+ |Γ|+ |∆|+ k + d, where k and d are the largest
natural numbers (or 0 if they do not exist) in the vectors k̄
and d̄, respectively.

A. The Uniformly Budget-Bounded Reachability Problem

In the following, we show that the reachability problem for
MPDS restricted to only uniformly budget-bounded computa-
tions is PSPACE-complete.

Theorem 5: The (k̄, d̄)-budget-bounded reachability prob-
lem for MPDS is PSPACE-complete if for every i ∈ [1..n], we
have ki ∈ N and di ∈ N.

The rest of this section is devoted to the proof of Theorem
5. The lower bound follows by a reduction from the non-
emptiness test of the intersection of several regular languages
(which is known to be PSPACE-hard).

To prove the upper bound, we reduce the reachability prob-
lem for MPDS restricted to only uniformly budget-bounded
computations to the non-emptiness test of the synchroniza-
tion of depth-bounded pushdown automata which is PSPACE-
complete (see Lemma 4). The idea behind the proof is the
following: Let ρ be a (k̄, d̄)-uniformly budget-bounded com-
putation and let i ∈ [1..n] be a stack of M. Then, we know
that the projection of π on the set of transitions performed by
stack i is a compatible sequence ρi of contexts of the form
πi
1 •iπi

2 •i · · ·•iπi
mi

. Since the communication between stacks
is done via control states, we can summarize each context πi

j

(with j ∈ [1..mi]) by a pair of states of the form (qij , q
′i
j)

where qij (resp. q′ij) is the state at the beginning (resp. end) of
the context πj . Then, we can summarize the stack computation
ρi by the summary sequence (qi1, q

′i
1)(qi2, q

′i
2) · · · (qimi

, q′
i
mi

).
We show that it is possible to compute a pushdown automaton
Pi such that the set of all possible summary sequences that
can be generated by stack i along a (k̄, d̄)-uniformly budget-
bounded computation can be characterized by the (−1, d+k)-
bounded language of Pi. Then, we show that we can put
together all summary traces and hence produce only consistent
interleavings of these summaries (for all stacks) that arises
from (k̄, d̄)-uniformly budget-bounded computation.

Before we present the details, we introduce some notations
and definitions that will be useful. For any context π =
c0t1c1t2 · · · tmcm, we can associate a tuple Summary(π) =
(q, q′) of the pair of states encountered at the beginning and
end of the context π (i.e., q = State(c0) and q′ = State(cm)).
Let ρ = π1 •iπ2 •i · · ·•iπ` be a sequence of contexts for some
i ∈ [1..n]. We can then extend the definition of context sum-
maries to sequence of contexts as follows: Summary(ρ) =
Summary(π1)Summary(π2) · · ·Summary(π`). The function
Summary is also extended in straightforward manner to
blocks and sequences of blocks and contexts.

Let w = (q1, q
′
1)(q2, q

′
2) · · · (qm, q′m) be a word over the

summary alphabet Q×Q. The word (or summary) w is said
to be consistent if q1 = qinit, q′m = qfinal and q′j = qj+1 for all
j ∈ [1..m−1]. Observe that the set of all consistent summaries
can be recognized by a finite state automaton (i.e., a pushdown
automaton of depth 0) whose size is polynomial inM. Let P0
be such a pushdown automaton.

Let π be a (k̄, d̄)-budget-bounded computation that reaches
the state qfinal. We can assume that π is of the form π1 •
π2 • π3 • · · · • πm where each πj , with j ∈ [1..m], is a stack
context. Then, let σi = πi

i1
•i πi

i2
•i πi

i3
•i · · · •i πi

mi
(with

i1 < i2 < i3 < · · · < mi) be the maximal sub-sequence of
contexts in π belonging to the stack i ∈ [1..n]. By definition,
we know that for any stack i ∈ [1..n], there is a sequence
ρi = ρi1 •i ρi2 •i · · · •i ρi`i of contexts of depth at most di and
blocks of size ki and depth di such that σi = ρi.

Then, it is easy to see that there is a consistent word
in tt({Summary(σ1)}, . . . , {Summary(σn)}). On the other
hand, we can show that if for every stack i ∈ [1..n], there is
a compatible sequence σi of contexts of depth at most di and
blocks of size ki and depth di such that there is a consistent

word in tt({Summary(σ1)}, . . . , {Summary(σn)}), then M
has a (k̄, d̄)-budget-bounded computation that reaches qfinal.

Now, we can show that checking the existence of such a
consistent word can be reduced, in polynomial time, to the
non-emptiness test of the synchronization of depth-bounded
pushdown automata (which is PSPACE-complete), and hence
we obtain the completeness of Theorem 5.

Lemma 6: The problem of checking whether for every
i ∈ [1..n] there is a compatible sequence σi of contexts
of depth at most di and blocks of size ki and depth di
for the stack i such that there is a consistent word in
tt({Summary(σ1)}, . . . , {Summary(σn)}) can be reduced
to the non-emptiness test of the synchronization of depth-
bounded pushdown automata.

Proof (sketch). For every i ∈ [1..n], let Li(M) be the set
of words Summary(σi) where σi is a compatible sequence
of contexts of depth at most di and blocks of size ki and
depth di for stack i. Then, we can construct if ki > 0
(resp. ki = 0), in polynomial time, a pushdown automaton Pi
whose (ki, di)-bounded (resp. (−1, di)-bounded) language is
precisely Li(M). The pushdown automaton Pi performs the
same operations on its state and stack as the ones specified
by ∆i (i.e., the set of operations of stack i). More precisely,
Pi (1) guesses the occurrence of a context πi of stack
i while making visible as a transition label its summary
Summary(πi) = (qi, q

′
i), and (2) checks if from the current

stack content and the state qi, the state q′i is reachable (and
this will mark the end of the simulation of the context πi).
Moreover, Pi guesses for each context if it is a context of
depth at most di or a context belonging to a block of size ki
and depth di (in the latter case Pi guesses also its position
inside the block), then checks that all these assumptions hold
when checking the feasibility of such contexts.

Now, we can apply Lemma 1 to construct, for each push-
down automaton Pi, a bounded-depth pushdown automaton
P′i such that Lki+di(P′i) = Li(M). Then, checking whether
for every i ∈ [1..n] there is a compatible sequence σi of
contexts of depth at most di and blocks of size ki and
depth di for stack i such that there is a consistent word
in tt({Summary(σ1)}, . . . , {Summary(σn)}) boils down
to checking the non-emptiness of the language L0(P0) ∩
tt(Lk1+d1

(P′1), . . . , Lkn+dn
(P′n)).

B. The Singly Unbounded-Budget Reachability Problem

In the following we show that the reachability problem for
MPDS restricted only to singly unbounded-budget computa-
tions is EXPTIME-complete.

Theorem 7: The (k̄, d̄)-budget-bounded reachability prob-
lem for MPDS is EXPTIME-complete if there is at most one
index i ∈ [1..n] such that either ki = ω or di = ω.

The rest of this section is devoted to the proof of Theorem
7.
Lower bound: It is known that the following problem is
EXPTIME-complete [19]: Given a pushdown automaton P
recognizing a language L, and n − 1 finite state automata

Ai recognizing languages Li, check the non-emptiness of
L∩

⋂n
i=2 Li. We can show that this problem can be reduced,

in polynomial time, to the reachability problem for MPDS
restricted only to singly unbounded-budget computations. The
idea is the following: The first stack (with unbounded number
of contexts regardless of its depth) is used to simulate P, while
each other stack i ∈ [2..n] is used to simulate the automaton
Ai. Each stack i ∈ [1..n] has a depth bound 1 and a context
budget 0. Moreover, the stack i contains at most one symbol
which is the current state of Ai. (We assume here that the
automaton Ai does not contain ε-transitions.)

The simulation proceeds as follows: An ε-labeled transition
of P is simulated by a transition of the first stack while the
other stacks remain unchanged. A labeled transition of P with
an input symbol a is simulated by a transition of the first stack,
followed by a sequence of transitions in which the other stacks
are checked and then updated, one after the other, to ensure
that each Ai is able to perform a transition labeled by a.

Upper bound: To prove the upper bound, we reduce the
reachability problem for M restricted to singly unbounded-
budget computations to the non-emptiness test of a pushdown
automaton whose size is exponential in M. Recall that the
non-emptiness test for pushdown automata is in PTIME [20].
In the following we use the same notations and definitions
as in the previous subsection. We assume here that only the
first stack can perform an unbounded number of contexts
regardless of its depth. Then, we can show that M has
a (k̄, d̄)-budget-bounded computation that reaches qfinal iff
there is a compatible sequence σ1 of contexts of the first
stack and for every stack i ∈ [2..n], there is a compatible
sequence σi of contexts of depth at most di and blocks of
size ki and depth di such that there is a consistent word in
tt({Summary(σ1)}, . . . , {Summary(σn)}). In fact, we can
prove that checking the existence of such a consistent word can
be reduced, in exponential time, to the non-emptiness test of a
pushdown automaton, and hence we obtain the completeness
of Theorem 7.

Lemma 8: The problem of checking whether there is a
compatible sequence σ1 of contexts of the first stack and
for every i ∈ [2..n], there is a compatible sequence σi of
contexts of depth at most di and blocks of size ki and depth
di for the stack i such that there is a consistent word in
tt({Summary(σ1)}, . . . , {Summary(σn)}) can be reduced
to the non-emptiness test of a pushdown automaton P whose
size is exponential in M.

Proof (sketch). We can construct, in polynomial time, a push-
down automaton P1 whose language L(P1) is precisely the set
of words Summary(σ1) where σ1 is a compatible sequence of
contexts of the first stack. On the other hand, as in the previous
subsection, we can easily construct, in polynomial time, for ev-
ery i ∈ [2..n], a pushdown automaton Pi whose (−1, di +ki)-
bounded language is precisely Li(M). Then, checking whether
there is a compatible sequence σ1 of contexts of the first stack
and for every i ∈ [2..n], there is a compatible sequence σi
of contexts of depth at most di and blocks of size ki and

depth di for the stack i such that there is a consistent word
in tt({Summary(σ1)}, . . . , {Summary(σn)}) boils down
to checking the non-emptiness of the language L0(P0) ∩
tt(L(P1), Lk2+d2(P2), . . . , Lkn+dn(Pn)). Finally, we can use
standard automata constructions, to show that we can construct
a pushdown automaton P such that L(P) = L0(P0) ∩
tt(L(P1), Lk2+d2

(P2), . . . , Lkn+dn
(Pn)). Moreover, the size

of P is exponential in M.

V. OTHER SUBCLASSES OF MPDS WITH
BUDGET-BOUNDED COMPUTATIONS

In this section, we will briefly mention two other interesting
subclasses of MPDS.

Definition 4 (Bounded stack-depth computations): We say
that a (k̄, d̄)-budget-bounded computation π is a d̄-bounded
stack-depth computation if and only if for every i ∈ [1..n], we
have ki = 0 and di ∈ N.

In the case of a bounded stack-depth computation, the size
of the i-th stack in each reachable configuration in π is always
bounded by di.

Definition 5 (Unbounded-budget computations): We say
that a (k̄, d̄)-budget-bounded computation π is an unbounded-
budget computation if and only if there are at least two
different stacks i, j ∈ [1..n] such that i 6= j and for every
` ∈ {i, j}, either k` = ω or d` = ω.

Observe that in the case of unbounded-budget computations,
we have at least two different stacks that are allowed to
perform an unbounded number of contexts regardless of their
stack depth.

A. Known Results

In the following we recall some well-known results for
the reachability problem for MPDS under budgets. More
precisely, we consider bounded stack-depth and unbounded-
budget computations.

Recall that, in the case of unbounded-budget computa-
tions, we have at least two different stacks that can perform
unbounded number of context-switches regardless of their
stack sizes. This implies that the reachability problem for
MPDS restricted only to unbounded-budget computations is
undecidable. This result can be shown using a reduction from
the problem of checking non-emptiness of the intersection of
two context-free languages (which is an undecidable problem).

Theorem 9: The (k̄, d̄)-budget-bounded reachability prob-
lem for MPDS is undecidable if there are at least two different
stacks i, j ∈ [1..n] such that i 6= j and for every ` ∈ {i, j},
either k` = ω or d` = ω.

One way to overcome this undecidability barrier is to bound
the depth of each stack (which corresponds to case of MPDS
restricted to bounded-stack-depth computations). In this case,
we show:

Theorem 10: The (k̄, d̄)-budget-bounded reachability prob-
lem for MPDS is PSPACE-complete if for every i ∈ [1..n], we
have ki = 0 and di ∈ N.

Proof: (sketch) Since in the case of a bounded stack-
depth computation π, the depth of the i-th stack is bounded

by di for any reachable configuration in π, the upper-bound
of Theorem 10 can be obtained by an easy reduction to the
emptiness problem for a Turing machine having n-tapes, and
where each tape i ∈ [1..n] has di cells.

The lower bound of Theorem 10 follows by a reduction from
the non-emptiness test of the intersection of several regular
languages (which is known to be PSPACE-hard).

VI. FROM CONCURRENT TO SEQUENTIAL

In this section, we will describe an automatic code-to-
code translation from concurrent to sequential programs. The
resulting sequential program simulates the concurrent program
running under the uniformly bounded-budget restriction. First,
we will briefly explain the language for concurrent programs.
The remainder of the section describes the translation.

We consider a C-like programming language where concur-
rent programs consist of processes, procedures and statements.
We assume that variables range over some (potentially infinite)
data domain D and that we have a language of expressions
〈expr〉 interpreted over D. The statements consists of simple
C-like statements, enriched with nop, assume, assert and
atomic. A procedure consists of a sequence of arguments, a
set of local variables, and a sequence of statements. A process
is a tuple P = 〈G,F1 · · · Fm〉, where G is a finite set of global
variables and each Fi is a procedure. For each process, there
should be exactly one distinguished procedure called main,
which constitutes the entry point of that process. A concurrent
program is a tuple C = 〈S,P1 · · · Pn〉, consisting of a finite
set S of shared variables and a sequence of processes.

Next, we describe an automatic transformation from a con-
current program C = 〈S,P1 · · · Pn〉 to a sequential program S
which simulates the behavior of C up to a given bound ki of
context switches for each Pi whenever the stack of Pi grows
above di. If the stack of Pi never grows above di, there is no
limit on the number of times Pi can be switched out.

A. Programs without Procedure Calls

Assume that we have a concurrent program C =
〈S,P1 · · · Pn〉, where no process Pi contains a procedure
call, i.e. each process consists only of a main procedure. To
construct the sequential program S, we take each statement in
the procedure and put it inside a scheduling loop. We introduce
for each process Pi a variable pc i which keeps track of its
programs counter. In the scheduling loop, each statement is
enclosed in a conditional which contains a nondeterministic
check of a Boolean variable ? and a check for the correct
program counter value. If the program counter check succeeds,
but ? happens to be false, the statement will not be executed.
Additionally, all other program counter checks will fail, so the
control flow will fall through the remainder of the statements.
In this way, a context switch is simulated.

As an example, consider the program in Fig. 1 along with
the sequential program which simulates it. It is easy to see
that the sequential program simulates all behaviors of the
concurrent program, including the interleaving x = x + 2,
x = 1, assert(x != 1), x = 2 in which the assertion fails.

B. Programs with Procedure Calls
Assume now that we add procedure calls. There are two

cases whenever a call happens in Pi. Either the stack height
is above di, in which case we must limit the number of
preemptions of Pi to ki as long as Pi stays above di, or
the stack height is not above di, in which case the number of
preemptions is unbounded. Instead of keeping track of these
two possibilities, we will inline the procedure calls in the main
procedure of each process Pi di times.

1) Inlining: For any process P , let I(P) be the result of
inlining all procedure calls in the main procedure of P . Note
that this inlining might create new local variables. Let Im

denote the result of composing I with itself m times. Given
a concurrent program C = 〈S,P1 · · · Pn〉, we construct an
inlined concurrent program C′ = 〈S, Id1(P1) · · · Idn(Pn)〉. In
the execution of C′, any procedure call in Idi(Pi) means that
the corresponding execution in C would take the process Pi

above its stack limit di. This means that we can differentiate
between code based on whether it is inside or outside the
main procedure of the process. Code that is outside the main
procedure will be transformed in a way that takes into account
the preemption bound ki.

2) Context switching: In [13], La Torre, Madhusudan and
Parlato describe a transformation that only keeps track of the
local state of one process, at the expense of recomputing that
state after context switches. More precisely, the transformation
keeps track of k + 1 valuations s0 · · · sk of shared variables.
The initial values of the shared variables are stored in s0.
Assume that process P1 starts running. When the context
switch occurs, the values of the shared variables are stored
in s1. Another process then runs until there is another context
switch, storing the shared varaibles in s2. When P1 is switched
in, it is executed from the beginning until the values of the
shared variables equal s1, i.e. the values when it was switched
out. The shared variables are then assigned the values stored in
s2, and the execution continues. When the next context switch
occurs, the shared variables are stored in s3, and so on.

We use a similar approach to deal with context switches
when a process Pi is above its stack bound di. The state of
each process is thus stored explicitly up to the point where a
process goes above its stack bound. When several processes
are above their bounds, we only keep the local state of the
one currently running. An important difference between our
model and the one of [13] is that even when all processes are
above their stack bound, we allow k preemptions per process.
To facilitate this, we store 2k+1 copies of the shared variables
for each process.

3) Phases: An execution r of a single process in a con-
current program can be divided into a sequence r0, r1, . . . of
executions separated by preemptions. We call each ri a phase.
In other words, a phase is a continuous sequence of statements.
A process begins in r0 and executes statements until there is
a context switch. When the process gets switched back in, it
runs r1, and so on.

In the special case where a process is always above its
stack bound, the execution of that process may consist of at

most k + 1 phases. For this reason, we introduce for each
process a variable phase, which keeps track of which phase
the execution is in. This variable is increased whenever a
context switch happens. Since we reconstruct the local state
of a process by executing from the beginning, we also store
a virtual phase phase’, which is updated both during the
reconstruction and the actual execution. This means that as
long as phase’< phase, we are reconstructing the local state.

In general, a process is not always above its stack bound.
When a process goes below that bound, the budget of allowed
preemptions is reset. In our transformation, this means that we
reset the phase variables, starting again from phase = 0 the
next time a procedure call happens.

4) Transformation: For a concurrent program C =
〈S,P1 · · · Pn〉, we first construct the corresponding inlined
concurrent program C′ = 〈S, Id1(P1) · · · Idn(Pn)〉. We then
transform C′ into a sequential program S that simulates C′. We
can find among the global variables of S, for each process Pt,
the sets S0

t , . . . , S
2k+1
t of copies of the shared variables of C.

The transformation of the statements in the main procedures
of each process is done in the same way as previously, with
the exception of procedure calls. Before each procedure call
in a process Pt, we insert a code block that, if the process is
not recomputing the local state, saves the current values of the
global variables in S0

t . This code block is shown in Fig. 2.
The set of procedures of the sequential program is the

union of the transformed procedures of its processes. When
we transform a procedure, we perform three steps:
• To simulate context switches, we add the code shown in

the right side in Fig. 2 before any statement that contains
shared variables and therefore is visible to the outside.

• Before any statement that contains shared variables, we
also add code to detect whether the local context has been
reconstructed or not. This code is shown in Fig. 3.

• At the end of the procedure, we check if we are about
to return to the scheduling loop without having recon-
structed the local state. In this case, we abort.

VII. EXPERIMENTAL RESULTS

We have evaluated our approach on several examples,
including one in which a big number of context switches is
needed in order to reach a bad state. The experiments presented
in Fig. 4 were run on a 2.2 GHz Intel Core i7 with 4 GB of
memory. Most literature examples are written in pseudo code
or C-like code. In order to run them, we manually translated
them to our syntax. This operation can be automated. It is in
fact possible to extend our tool in order to parse C code.

We have implemented our code-to-code translation scheme
in HASKELL [21]. The scheme inputs a concurrent program
P and produces a sequential program P ′ such that running
P under the uniformly bounded-budget restriction yields the
same set of reachable states as running P ′. The sequential
program is delivered in different languages, namely: REMO-
PLA for MOPED [8], and a C-like language for CBMC [7] and
ESBMC [9]. We use these three tools as back end to verify
the obtained sequential code. Our experimental results are

1 process example:
2

3 int x = 0;
4

5 process p1:
6 void main(){
7 x = 1;
8 x = 2;
9 }

10

11 process p2:
12 void main(){
13 x = x + 2;
14 assert(x != 1);
15 }

1 process transformed:
2

3 int pc1 = 1;
4 int pc2 = 1;
5 int running;
6 int x = 0;
7

8 void scheduler(){
9 while(progress){

10 progress = false;
11

12 // schedule a process
13 if(? && pc1!=3){
14 running = 1;
15 }
16 if(? && pc2!=3) {

17 running = 2;
18 }
19 // process 1
20 if(running == 1){
21 if(pc1==1 && ?){
22 x = 1;
23 progress = true;
24 pc1 = 2;
25 }
26 if(pc1==2 && ?){
27 x = 2;
28 progress = true;
29 pc1 = 3;
30 }
31 }
32 // process 2

33 if(running == 2){
34 if(pc2==1 && ?){
35 x = x + 2;
36 progress = true;
37 pc2 = 2;
38 }
39 if(pc2==2 && ?){
40 assert(x != 1);
41 progress = true;
42 pc2 = 3;
43 }
44 }
45 }
46 }

Fig. 1. Left: Transformation of Procedure Calls in Process t. Right: Context Switches in Procedures of Process t.

1

2 if(phaset == 0){
3 S0

t = S;
4 S = S0

t ;
5 }

6

.

.

.
7 if(phaset == k){
8 S2k

t = S;
9 S = S0

t ;
10 }

1

2 if(!ret && ?){
3 if(phase′t == phaset){
4 if(phaset == 0){
5 S1

t = S;
6 }

7

.

.

.
8 if(phaset == k){
9 S2k+1

t = S;
10 }
11

12 phaset =
13 phaset + 1;
14 ret = true;
15 }

Fig. 2. Left: Transformation of Procedure Calls in Process t. Right: Context
Switches in Procedures of Process t.

1 if(!ret && ?){
2 if(phase′t < phaset){
3 if(phase′t == 0 && S == S1

t){
4 phase′t = 1;
5 S = S2

t ;
6 }

7

.

.

.
8 if(phaset == k-1 && S == S2k−1

t){
9 phase′t = k;

10 S = S2k
t ;

11 }
12 }

Fig. 3. Checking Reconstruction of Local State in Process t

Type of Analysis
Concurrent to Sequential Concurrent

Examples k1 MOPED CBMC ESBMC k2 POIROT k3 ESBMC
Account [22] 0 -.- -.- 1.1 4 3.34 10 -.-
BigNum [21] 0 8.39 -.- -.- 26 -.- 234 -.-
Bluetooth3a [21] 0 744.49 -.- -.- 11 18.38 28 FP
Token Ring [22] 0 0.13 0.2 0.18 1 2.72 4 1.47
Account Bad [22] 0 -.- 0.48 1.41 1 2.13 4 0.11
BigNum Bad [21] 0 5.9 13.4 239.4 26 -.- 26 -.-
Bluetooth1 [23] 1 4.18 0.37 1.28 2 1.92 5 NF
Bluetooth2 [23] 1 0.64 5.68 34.38 3 2.9 5 0.5
Bluetooth3b [23] 1 1.26 0.95 5.0 2 2.5 5 NF
Infinite Loop 1 [24] 1 4.1 0.2 0.25 2 1.45 1 0.08
Infinite Loop 2 [24] 1 17.3 0.84 3.85 1 0.96 1 0.09
Token Ring Bad [22] 0 0.13 0.16 0.26 2 2.74 4 0.27

Fig. 4. We report the running times of our experimentation results in seconds.
We use the symbol -.- to denote a timeout (set to 900 seconds). The column
k1 contains the context-switch budget for our code-to-code translation. The
columns k2 and k3 are the number of context switches given as input for
POIROT and ESBMC respectively. NF: Bug Not Found. FP: False Positive.

then compared to ones obtained using two verification tools
for concurrent programs, namely ESBMC and POIROT [10].
The time required for sequentialization is negligible and not
included in the results.

The table in Fig. 4 summarizes our experimental results. In
the upper part of the table, only safe (correct) programs are
considered. We fixed the context switch bounds k1, k2, and k3
such that all compared tools are able to cover the same set of
control locations. The results show that our approach manages
to perform better in three out of four examples, in particular
for the BIGNUM example where the concurrent tools timeout.
In this example, a large number of context switches (26) is
required to find the assertion violation. Also, we noticed that
ESBMC finds a bug in the correct example BLUETOOTH3A.
It has been confirmed that this is a false positive [25]. In
the lower part of the table, we consider faulty programs. For
half of those programs, the experimental results show that our
approach succeeds in finding all the bugs within a smaller
amount of time compared to the concurrent tools. In particular,
both POIROT and ESBMC timed out on the BIGNUM BAD
example. Also, ESBMC, which did as well as our approach
in terms of time, failed to find bugs in the faulty examples
BLUETOOTH 1 and 3b regardless of the number of context-
switches it was allowed.

VIII. CONCLUSION

We have introduced the class of MPDS with budgets where
each stack can perform an unbounded number of context
switches if its size is below or equal to a given bound, while
it is restricted to a finite number of context switches when
its size is above that bound. We have identified two decidable
subclasses of MPDS with budgets, namely uniformly bounded-
budget MPDS and singly unbounded-budget MPDS. We have
shown that the reachability problem for uniformly bounded-
budget MPDS and singly unbounded-budget MPDS is respec-
tively PSPACE-complete and EXPTIME-complete. Moreover,
we have proposed a code-to-code translation that inputs a
concurrent program P and produces a sequential program P ′

such that, running P under the uniformly bounded-budget re-
striction yields the same set of reachable states as running P ′.
We have implemented a prototype tool, and run it successfully
on a set of benchmarks.

REFERENCES

[1] S. Qadeer and J. Rehof, “Context-bounded model checking of concurrent
software,” in TACAS, ser. LNCS, vol. 3440. Springer, 2005, pp. 93–107.

[2] S. La Torre, P. Madhusudan, and G. Parlato, “A robust class of context-
sensitive languages,” in LICS. IEEE, 2007, pp. 161–170.

[3] M. F. Atig, B. Bollig, and P. Habermehl, “Emptiness of multi-pushdown
automata is 2ETIME-complete,” in DLT’08, ser. LNCS, vol. 5257.
Springer, 2008, pp. 121–133.

[4] M. Lange and H. Leiß, “To CNF or not to CNF ? An efficient yet
presentable version of the CYK algorithm,” Informatica Didactica,
vol. 8, 2008-2010.

[5] S. La Torre and M. Napoli, “Reachability of multistack pushdown
systems with scope-bounded matching relations,” in CONCUR, ser.
LNCS, vol. 6901. Springer, 2011, pp. 203–218.

[6] M. Musuvathi and S. Qadeer, “Iterative context bounding for systematic
testing of multithreaded programs,” in PLDI. ACM, 2007, pp. 446–455.

[7] E. Clarke, D. Kroening, and F. Lerda, “A tool for checking ANSI-C
programs,” in TACAS, ser. LNCS, vol. 2988, 2004, pp. 168–176.

[8] J. Esparza, S. Kiefer, and S. Schwoon, “Abstraction refinement with
Craig interpolation and symbolic pushdown systems,” in TACAS, ser.
LNCS, vol. 3920, 2006, pp. 489–503.

[9] L. Cordeiro, J. Morse, D. Nicole, and B. F. 0002, “Context-bounded
model checking with esbmc 1.17 - (competition contribution).” in
TACAS, ser. LNCS, vol. 7214, 2012, pp. 534–537.

[10] S. Lahiri, A. Lal, and S. Qadeer, “Poirot,” microsoft Research. [Online].
Available: http://research.microsoft.com/en-us/projects/poirot

[11] A. Finkel and A. Sangnier, “Reversal-bounded counter machines revis-
ited,” in MFCS, ser. LNCS, vol. 5162. Springer, 2008, pp. 323–334.

[12] A. Lal and T. W. Reps, “Reducing concurrent analysis under a context
bound to sequential analysis,” Formal Methods in System Design,
vol. 35, no. 1, pp. 73–97, 2009.

[13] S. La Torre, P. Madhusudan, and G. Parlato, “Reducing context-bounded
concurrent reachability to sequential reachability,” in CAV, ser. LNCS,
vol. 5643. Springer, 2009, pp. 477–492.

[14] ——, “Model-checking parameterized concurrent programs using linear
interfaces,” in CAV, ser. LNCS, vol. 6174. Springer, 2010, pp. 629–644.

[15] M. Emmi, S. Qadeer, and Z. Rakamarić, “Delay-bounded scheduling,”
in POPL. ACM, 2011, pp. 411–422.

[16] S. La Torre and G. Parlato, “Scope-bounded multistack pushdown
systems: fixed-point, sequentialization, and tree-width,” University of
Southampton, Technical Report, march 2012.

[17] G. Parlato, personal communication.
[18] J. E. Hopcroft and J. D. Ullman, Introduction to Automata Theory,

Languages and Computation. Addison-Wesley, 1979.
[19] A. Heußner, J. Leroux, A. Muscholl, and G. Sutre, “Reachability analysis

of communicating pushdown systems,” in FOSSACS, ser. LNCS, vol.
6014. Springer, 2010, pp. 267–281.

[20] A. Bouajjani, J. Esparza, and O. Maler, “Reachability analysis of
pushdown automata: Application to model-checking,” in CONCUR, ser.
LNCS, vol. 1243. Springer, 1997, pp. 135–150.

[21] May 2012. [Online]. Available: http://user.it.uu.se/%7Ejarst116/
fmcad2012/

[22] “Esbmc concurrency benchmark,” Feb. 2009. [Online]. Available: http://
users.ecs.soton.ac.uk/lcc08r/esbmc/concurrent-software-benchmarks.zip

[23] D. Suwimonteerabuth, “Reachability in pushdown systems: Algorithms
and applications,” Ph.D. dissertation, Technische Universität München,
2009.

[24] S. Qadeer, S. K. Rajamani, and J. Rehof, “Summarizing procedures in
concurrent programs,” 2004.

[25] J. Morse, personal communication.

