

Probabilistic Programming

Presentation at the Machine Learning Journal Club

Lawrence Murray, Jan Kudlicka

Department of Information Technology Uppsala University

March 29, 2017

State-Space Model (SSM)

Ising Model

Bayesian Logistic Regression Model

Latent Dirichlet Allocation (LDA) Model

 Not all models can be represented as graphical models, and the graphical language does not necessarily capture all attributes of a model.

- Not all models can be represented as graphical models, and the graphical language does not necessarily capture all attributes of a model.
- ► Inference methods are often tailored for specific models, e.g. the Kalman filter for a linear-Gaussian SSM, collapsed Gibbs samplers for LDA, Polya–Gamma samplers for Bayesian logistic regression.

- Not all models can be represented as graphical models, and the graphical language does not necessarily capture all attributes of a model.
- ► Inference methods are often tailored for specific models, e.g. the Kalman filter for a linear-Gaussian SSM, collapsed Gibbs samplers for LDA, Polya–Gamma samplers for Bayesian logistic regression.
- Implementations are often bespoke: of a specific inference method for a specific model.

 Write a program that simulates from the joint distribution. Let this define the model.

- Write a program that simulates from the joint distribution. Let this define the model.
- The program is stochastic, so that each time it runs, it may produce different output.

- Write a program that simulates from the joint distribution. Let this define the model.
- The program is stochastic, so that each time it runs, it may produce different output.
- Consider constraining the output of the program, or constraining its execution.

- Write a program that simulates from the joint distribution. Let this define the model.
- The program is stochastic, so that each time it runs, it may produce different output.
- Consider constraining the output of the program, or constraining its execution. This is inference.

- Write a program that simulates from the joint distribution. Let this define the model.
- The program is stochastic, so that each time it runs, it may produce different output.
- Consider constraining the output of the program, or constraining its execution. This is inference.
- Programs are more expressive than graphs, because a program can do stochastic branching.

- Write a program that simulates from the joint distribution. Let this define the model.
- The program is stochastic, so that each time it runs, it may produce different output.
- Consider constraining the output of the program, or constraining its execution. This is inference.
- Programs are more expressive than graphs, because a program can do stochastic branching. This makes inference difficult.

- Write a program that simulates from the joint distribution. Let this define the model.
- The program is stochastic, so that each time it runs, it may produce different output.
- Consider constraining the output of the program, or constraining its execution. This is inference.
- Programs are more expressive than graphs, because a program can do stochastic branching. This makes inference difficult.
- Ideally the implementation of models is decoupled from the implementation of inference methods.

 Probabilistic programming is a programming paradigm, in the same way that object-oriented, functional and logic programming are programming paradigms.

- Probabilistic programming is a programming paradigm, in the same way that object-oriented, functional and logic programming are programming paradigms.
- Probabilistic programming languages (PPLs) have ergonomic support for random variables, probability distributions and inference.

- Probabilistic programming is a programming paradigm, in the same way that object-oriented, functional and logic programming are programming paradigms.
- Probabilistic programming languages (PPLs) have ergonomic support for random variables, probability distributions and inference.
- The hard bit is getting a correct result.

- Probabilistic programming is a programming paradigm, in the same way that object-oriented, functional and logic programming are programming paradigms.
- Probabilistic programming languages (PPLs) have ergonomic support for random variables, probability distributions and inference.
- The hard bit is getting a correct result.
- The really hard bit is getting the best result.

EXAMPLE: TWO DICE

```
die1 ~ duniform(1, 6)
die2 ~ duniform(1, 6)
sum = die1 + die2
observe sum <= 4
infer die1
```


Figure generated at webppl.org.

EXAMPLE: LINEAR GAUSSIAN STATE SPACE (LGSS) MODEL


```
y = read_from_file('measurements.txt', separator='\n')
x[0] ~ normal(0, 0.1)
for t in range(100)
    observe y[t] ~ normal(0.5*x[t], 0.1)
    x[t+1] ~ normal(0.7*x[t], 0.1)
end
infer E(x[100])
```

Probabilistic constructs in PPL:

- Assume declaring and defining a random variable by specifying its probability distribution.
- Observe conditioning based on a observation.
- ▶ Infer calculating / estimating
 - distribution of a random variable given by an expression, or
 - its expected value, or
 - its mode(s).

COMPARISON OF PPL WITH STD. PROGRAMMING AND ML

- Clear separation between model and inference.
- Programs might be easier and/or quicker to "write down" than mathematical models.
- Less need for experts to find out how to do the inference and to implement it.
- Huge scope of applications (comparing to e.g. Probabilistic Graphical Models).

The inference is, in general, a difficult task.

- Exact inference
 - ▶ Closed-form posterior distribution cases (e. g. Kalman filtering)
 - Enumeration discrete models of limited dimension
- Approximate inference
 - Monte Carlo inference
 - Variational inference

USING MONTE CARLO FOR ESTIMATING EXPECTED VALUE

Monte Carlo can be used to estimate the expected value of a function of random variable:

$$I = \mathbb{E}[h(x)] = \int h(x)p(x)dx.$$

Sample *L* points $\{x^{\ell}\}_{\ell=1}^{L}$ from p(x).

$$\mathbb{E}[h(x)] \approx \hat{l}_L = \frac{1}{L} \sum_{\ell=1}^{L} h(x^\ell).$$

The law of large numbers: $\lim_{L\to\infty} \hat{l}_L = I$ with probability 1. The central limit theorem: $\sqrt{L}(\hat{l}_L - I) \rightarrow \mathcal{N}(0, \sigma^2)$ in distribution, where $\sigma^2 = \operatorname{var} h(x)$. What if we cannot sample from p(x)?

Assume that

we can evaluate

$$\tilde{p}(x) = Zp(x)$$

for all x, where Z is a (possibly unknown) constant, and

► there is another distribution q(x) from which we can sample and $q(x) = 0 \Rightarrow p(x) = 0$.

We can use samples from the proposal distribution q(x) to calculate the expected value w. r. t. p(x).

IMPORTANCE SAMPLING, CONT'D

$$\mathbb{E}[h(x)] = \int h(x)p(x)dx = \frac{1}{Z} \int h(x) \underbrace{\frac{\tilde{p}(x)}{q(x)}}_{w(x)} q(x)dx.$$

Since p(x) is a probability distribution:

$$Z = \int \tilde{p}(x) dx = \int \underbrace{\frac{\tilde{p}(x)}{q(x)}}_{w(x)} q(x) dx.$$

Both integrals can be estimated using Monte Carlo.

GRAPHICAL MODEL OF THE EXECUTION

Nomenclature:

- ▶ N number of observations,
- ▶ *y_n* value of the *n*-th observation,
- > x_n the memory state at the *n*-th observation,
- ► g_n(y_n|x_n) PDF of seeing the n-th observation y_n given the memory state x_n,
- ► $f_n(x_n|x_{n-1})$ PDF of the memory state x_n given the memory state x_{n-1} at the previous observation.

GRAPHICAL MODEL OF THE EXECUTION

Nomenclature:

- ▶ N number of observations,
- ▶ *y_n* value of the *n*-th observation,
- ▶ *x_n* the memory state at the *n*-th observation,
- ► g_n(y_n|x_n) PDF of seeing the n-th observation y_n given the memory state x_n,
- ► $f_n(x_n|x_{n-1})$ PDF of the memory state x_n given the memory state x_{n-1} at the previous observation.

We will also use the following notation:

$$x_{1:N} = \{x_1, x_2, \dots, x_N\}$$

$$y_{1:N} = \{y_1, y_2, \dots, y_N\}$$

GRAPHICAL MODEL OF THE EXECUTION

where $x_0 = \emptyset$.

Our interest is the posterior probability $p(x_{1:N}|y_{1:N})$.

IMPORTANCE SAMPLING REVISITED

The target distribution multiplied by an (unknown) constant:

$$\tilde{p}(x_{1:N}|y_{1:N}) = p(x_{1:N}, y_{1:N}) = \prod_{n=1}^{N} f_n(x_n|x_{n-1})g_n(y_n|x_n).$$

Let's use the following proposal distribution:

$$q(\mathbf{x}_{1:N}) = \prod_{n=1}^{N} f_n(\mathbf{x}_n | \mathbf{x}_{n-1}).$$

The importance weight:

$$w = \frac{\tilde{p}}{q} = \frac{\prod_{n=1}^{N} f_n(x_n | x_{n-1}) g_n(y_n | x_n)}{\prod_{n=1}^{N} f_n(x_n | x_{n+1})} = \prod_{n=1}^{N} g_n(y_n | x_n).$$

SAMPLING FROM THE PROPOSAL DISTRIBUTION

How to sample from the proposal distribution?

$$q(x_{1:N}) = \prod_{n=1}^{N} f_n(x_n | x_{n-1})$$

SAMPLING FROM THE PROPOSAL DISTRIBUTION

How to sample from the proposal distribution?

$$q(x_{1:N}) = \prod_{n=1}^{N} f_n(x_n | x_{n-1})$$

Execute the program as if it was a standard program and

- at an assume sample a value from the given probability distribution
- at an observe update the weight

IMPORTANCE SAMPLING REVISITED, CONT'D

Algorithm:

1. Sample *L* points $\{x_{1:N}^{\ell}\}_{\ell=1}^{L}$ from the proposal distribution q(x).

IMPORTANCE SAMPLING REVISITED, CONT'D

Algorithm:

- 1. Sample *L* points $\{x_{1:N}^{\ell}\}_{\ell=1}^{L}$ from the proposal distribution q(x).
- 2. Calculate the importance weights

$$w^{\ell} = \prod_{n=1}^{N} g_n(y_n | x_n^{\ell})$$

for
$$\ell = 1, \ldots, L$$
.

IMPORTANCE SAMPLING REVISITED, CONT'D

Algorithm:

- 1. Sample *L* points $\{x_{1:N}^{\ell}\}_{\ell=1}^{L}$ from the proposal distribution q(x).
- 2. Calculate the importance weights

$$w^{\ell} = \prod_{n=1}^{N} g_n(y_n | x_n^{\ell})$$

for
$$\ell = 1, \ldots, L$$
.

3. Estimate the expected value:

$$\mathbb{E}[h(x_{1:N})] \approx \frac{1}{\sum_{\ell=1}^{L} w^{\ell}} \sum_{\ell=1}^{L} w^{\ell} h(x_{1:N}^{\ell})$$

SEQUENTIAL IMPORTANCE SAMPLING (SIS)

Algorithm: for $\ell = 1, \ldots, L$ $W^{\ell} = 1$ start the program for n = 1, ..., Ncontinue running the program until **observe** y_n $W^{\ell} = W^{\ell} * q_n(y_n | x_n^{\ell})$ end continue running the program until the end h^{ℓ} = value of the inference expression end $w = w / \sum_{\ell} w^{\ell}$ $\mathbb{E}[h] = \sum_{\ell} w^{\ell} * h^{\ell}$

WEIGHT DEGENERACY

Showstopper:

Weight degeneracy – in real applications, almost all weights w^{ℓ} are zero and the value of interest must be calculated using only a few samples.

Weigths for the example from slide 12, L = 1000

BOOTSTRAP PARTICLE FILTER

The most basic particle filter / *Sequential Monte Carlo* (SMC) algorithm.

The most basic particle filter / *Sequential Monte Carlo* (SMC) algorithm.

Run *L* copies of the program (called *particles*) in parallel. At each **observe** we will resample the particles:

1. Wait until all particles have reached the observe.

The most basic particle filter / *Sequential Monte Carlo* (SMC) algorithm.

Run *L* copies of the program (called *particles*) in parallel. At each **observe** we will resample the particles:

- 1. Wait until all particles have reached the **observe**.
- 2. Calculate $w^{\ell} = g_n(y_n | x_n^{\ell})$ for each particle.

The most basic particle filter / *Sequential Monte Carlo* (SMC) algorithm.

Run *L* copies of the program (called *particles*) in parallel. At each **observe** we will resample the particles:

- 1. Wait until all particles have reached the observe.
- 2. Calculate $w^{\ell} = g_n(y_n | x_n^{\ell})$ for each particle.
- 3. Sample the offspring counts $\{o^{\ell}\}_{\ell=1}^{L}$ from the multinomial distribution with the number of trials *L* and the event probabilities $\{w^{\ell}/\sum w^{\ell}\}_{\ell=1}^{L}$.
 - If $o^{\ell} = 0$, kill the particle process.
 - If $o^{\ell} = 1$, continue the process.
 - If $o^{\ell} > 1$, fork the process $o^{\ell} 1$ times and continue.

BOOTSTRAP PARTICLE FILTER, CONT'D

```
Algorithm:
Start L copies of the program
for n = 1, ..., N
  continue running all copies until observe y_n
  wait until all copies calculate w^{\ell} = q_n(y_n | x_n^{\ell})
  if n < N
      sample \{o^{\ell}\}_{l=1}^{L} as described above
      for \ell = 1, \ldots, L
        if o^{\ell} = 0
            kill the process
         else if o^{\ell} > 1
            fork the process o^{\ell} - 1 times
         end
      end
   end
end
continue running all copies until the end
wait until all copies calculate h^{\ell} = value of the inference expression
\mathbb{E}[h] = \sum_{\ell} w^{\ell} * h^{\ell} / \sum_{\ell} w^{\ell}
```

BOOTSTRAP PARTICLE FILTER, CONT'D

OTHER ALGORITHMS

- Metropolis-Hastings algorithm
- Hamiltonian Monte Carlo
- Gibbs sampling

Birch

Other probabilistic programming languages: Anglican, Church, Stan, Infer.NET, WebPPL, Venture, Turing.jl, Edward

probabilistic-programming.org

Questions?