UPPSALA
UNIVERSITET

Probabilistic Programming
Presentation at the Machine Learning Journal Club

Lawrence Murray, Jan Kudlicka

Department of Information Technology
Uppsala University

March 29, 2017

MODELS AS GRAPHS

(a) Directed (b) Undirected

Lawrence Murray, Jan Kudlicka: Probabilistic Programming

MODELS AS GRAPHS

State-Space Model (SSM)

Lawrence Murray, Jan Kudlicka: Probabilistic Programming

MODELS AS GRAPHS

Ising Model

Lawrence Murray, Jan Kudlicka: Probabilistic Programming

MODELS AS GRAPHS

Bayesian Logistic Regression Model

Lawrence Murray, Jan Kudlicka: Probabilistic

MODELS AS GRAPHS

Latent Dirichlet Allocation (LDA) Model

Lawrence Murray, Jan Kudlicka: Probabilistic Programming

MODELS AS GRAPHS

Gaussian Mixture Model
Mo

Bo) Wy
;l ;l
N——=4

1223

Lawrence Murray, Jan Kudlicka: Probabilistic Programming

MODELS AS GRAPHS

» Not all models can be represented as graphical models, and the
graphical language does not necessarily capture all attributes of
a model.

Lawrence Murray, Jan Kudlicka: Probabilistic Programming

MODELS AS GRAPHS

» Not all models can be represented as graphical models, and the
graphical language does not necessarily capture all attributes of
a model.

» Inference methods are often tailored for specific models, e.g. the
Kalman filter for a linear-Gaussian SSM, collapsed Gibbs
samplers for LDA, Polya-Gamma samplers for Bayesian logistic
regression.

Lawrence Murray, Jan Kudlicka: Probabilistic Programming

MODELS AS GRAPHS

» Not all models can be represented as graphical models, and the

graphical language does not necessarily capture all attributes of
a model.

» Inference methods are often tailored for specific models, e.g. the
Kalman filter for a linear-Gaussian SSM, collapsed Gibbs
samplers for LDA, Polya-Gamma samplers for Bayesian logistic
regression.

» Implementations are often bespoke: of a specific inference
method for a specific model.

Lawrence Murray, Jan Kudlicka: Probabilistic Programming

MODELS AS PROGRAMS?

» Write a program that simulates from the joint distribution. Let
this define the model.

Lawrence Murray, Jan Kudlicka: Probabilistic Programming

MODELS AS PROGRAMS?
» Write a program that simulates from the joint distribution. Let
this define the model.

» The program is stochastic, so that each time it runs, it may
produce different output.

Lawrence Murray, Jan Kudlicka: Probabilistic Programming

MODELS AS PROGRAMS?
» Write a program that simulates from the joint distribution. Let
this define the model.

» The program is stochastic, so that each time it runs, it may
produce different output.

» Consider constraining the output of the program, or constraining
its execution.

Lawrence Murray, Jan Kudlicka: Probabilistic Programming

MODELS AS PROGRAMS?
» Write a program that simulates from the joint distribution. Let
this define the model.

» The program is stochastic, so that each time it runs, it may
produce different output.

» Consider constraining the output of the program, or constraining
its execution. This is inference.

Lawrence Murray, Jan Kudlicka: Probabilistic Programming

MODELS AS PROGRAMS?
» Write a program that simulates from the joint distribution. Let
this define the model.

» The program is stochastic, so that each time it runs, it may
produce different output.

» Consider constraining the output of the program, or constraining
its execution. This is inference.

» Programs are more expressive than graphs, because a program
can do stochastic branching.

Lawrence Murray, Jan Kudlicka: Probabilistic Programming

MODELS AS PROGRAMS?
» Write a program that simulates from the joint distribution. Let
this define the model.

» The program is stochastic, so that each time it runs, it may
produce different output.

» Consider constraining the output of the program, or constraining
its execution. This is inference.

» Programs are more expressive than graphs, because a program
can do stochastic branching. This makes inference difficult.

Lawrence Murray, Jan Kudlicka: Probabilistic Programming

MODELS AS PROGRAMS?
» Write a program that simulates from the joint distribution. Let
this define the model.

» The program is stochastic, so that each time it runs, it may
produce different output.

» Consider constraining the output of the program, or constraining
its execution. This is inference.

» Programs are more expressive than graphs, because a program
can do stochastic branching. This makes inference difficult.

» Ideally the implementation of models is decoupled from the
implementation of inference methods.

Lawrence Murray, Jan Kudlicka: Probabilistic Programming

PROBABILISTIC PROGRAMMING

» Probabilistic programming is a programming paradigm, in the
same way that object-oriented, functional and logic
programming are programming paradigms.

Lawrence Murray, Jan Kudlicka: Probabilistic Programming

PROBABILISTIC PROGRAMMING

» Probabilistic programming is a programming paradigm, in the
same way that object-oriented, functional and logic
programming are programming paradigms.

» Probabilistic programming languages (PPLs) have ergonomic
support for random variables, probability distributions and
inference.

Lawrence Murray, Jan Kudlicka: Probabilistic Programming

PROBABILISTIC PROGRAMMING

» Probabilistic programming is a programming paradigm, in the
same way that object-oriented, functional and logic
programming are programming paradigms.

» Probabilistic programming languages (PPLs) have ergonomic
support for random variables, probability distributions and
inference.

» The hard bit is getting a correct result.

Lawrence Murray, Jan Kudlicka: Probabilistic Programming

PROBABILISTIC PROGRAMMING

» Probabilistic programming is a programming paradigm, in the
same way that object-oriented, functional and logic
programming are programming paradigms.

» Probabilistic programming languages (PPLs) have ergonomic
support for random variables, probability distributions and
inference.

» The hard bit is getting a correct result.

» The really hard bit is getting the best result.

Lawrence Murray, Jan Kudlicka: Probabilistic Programming

EXAMPLE: TWO DICE

diel ~ duniform(1, 6)
die2 ~ duniform(1, 6)
sum = diel + die2

observe sum <= 4
infer diel

EXAMPLE: LINEAR GAUSSIAN STATE SPACE (LGSS) MODEL

X1 = 0.7Xc + W
Y = 0.5% + Vv
Xo ~ N(0,0.1)
w ~ N(0,0.1))
v~ N(0,0.7) . | | | I

0 20 40 60 80 100

y = read_from_file('measurements.txt', separator='\n')
x[0] ~ normal(e, 0.1)
for t in range(100)
observe y[t] ~ normal(0.5+x[t], 0.1)
x[t+1] ~ normal(0.7*x[t], 0.1)
end
infer E(x[100])

Lawrence Murray, Jan Kudlicka: Probabilistic Programming

PROBABILISTIC PROGRAMS

Probabilistic constructs in PPL:

» Assume - declaring and defining a random variable by
specifying its probability distribution.

» Observe - conditioning based on a observation.

» Infer - calculating / estimating

» distribution of a random variable given by an expression, or
» its expected value, or
> its mode(s).

Lawrence Murray, Jan Kudlicka: Probabilistic Programming

COMPARISON OF PPL WITH STD. PROGRAMMING AND ML

“Standard” Machine Probabilistic
programming Learning programming
[Parameters 0 Parameters J
] i) i)
Program p(X|6) Program
i) i) d
Output X Observations

Based on a figure by Frank Wood.

Lawrence Murray, Jan Kudlicka: Probabilistic Programming

ADVANTAGES

» Clear separation between model and inference.

» Programs might be easier and/or quicker to “write down” than
mathematical models.

» Less need for experts to find out how to do the inference and to
implement it.

» Huge scope of applications (comparing to e. g. Probabilistic
Graphical Models).

Lawrence Murray, Jan Kudlicka: Probabilistic Programming

INFERENCE

The inference is, in general, a difficult task.

» Exact inference

» Closed-form posterior distribution cases (e. g. Kalman filtering)
» Enumeration - discrete models of limited dimension

» Approximate inference

» Monte Carlo inference
» Variational inference

Lawrence Murray, Jan Kudlicka: Probabilistic Pr

USING MONTE CARLO FOR ESTIMATING EXPECTED VALUE

Monte Carlo can be used to estimate the expected value of a function
of random variable:

— B[] = [h(p(x)dx

Sample L points {x‘};_, from p(x).
1
E[h(x) ZZ

The law of large numbers: lim;_.o |, = I with probability .

The central limit theorem: v/L(I, — 1) = N(0, o?) in distribution,
where o = var h(x).

Lawrence Murray, Jan Kudlicka: Probabilistic Programming

IMPORTANCE SAMPLING

What if we cannot sample from p(x)?

Assume that

» we can evaluate
p(x) = Zp(x)
for all x, where Z is a (possibly unknown) constant, and
» there is another distribution g(x) from which we can sample and
q(x) =0=p(x) =0.

We can use samples from the proposal distribution g(x) to calculate
the expected value w. 1. t. p(x).

Lawrence Murray, Jan Kudlicka: Probabilistic Programming

IMPORTANCE SAMPLING, CONT'D

)] = [ek = [000 20 aaa
N

w(x)

Since p(x) is a probability distribution:
« p(x)
/= x)dx = / —=qg(x)dx.
[ptax= [2 aw
~—~—
w(x)

Both integrals can be estimated using Monte Carlo.

Lawrence Murray, Jan Kudlicka: Probabilistic Programming

GRAPHICAL MODEL OF THE EXECUTION

Nomenclature:

» N - number of observations,

v

¥y — value of the n-th observation,

» X, - the memory state at the n-th observation,

gn(Vn|Xn) - PDF of seeing the n-th observation y, given the
memory state X,

fn(Xn|Xn—1) — PDF of the memory state x, given the memory state
Xn_1 at the previous observation.

v

v

Lawrence Murray, Jan Kudlicka: Probabilistic Programming

GRAPHICAL MODEL OF THE EXECUTION

Nomenclature:

» N - number of observations,
¥y — value of the n-th observation,
» X, - the memory state at the n-th observation,

gn(Vn|Xn) - PDF of seeing the n-th observation y, given the
memory state Xy,

v

v

v

fn(Xn|Xn—1) — PDF of the memory state x, given the memory state
Xn_1 at the previous observation.

We will also use the following notation:

XN = {X17X27"'7XN}
)/1:N - {YMYZw--,yN}

Lawrence Murray, Jan Kudlicka: Probabilistic Programming

GRAPHICAL MODEL OF THE EXECUTION

n

@ fi(x1|2) /)ﬁ\fz(xzpﬁ) @f3(x3|xz) ...fn(xn|xn—1)/—\fn+1(xﬂ+1|).<”.).

gi(yalx1) 92(y21%2) 9n(Vnlxn)

N
p(Xin, Vin) = an(xn|Xn—1)gn(Yr7 Xn),

n=1
P(X1:N, y1:N)

X XN, V1N),
(v p(Xa:n, Ya:n)

p(Xa:nlyan) =

where Xg = @.

Our interest is the posterior probability p(Xy.n|y1:n).

Lawrence Murray, Jan Kudlicka: Probabilistic Programming

IMPORTANCE SAMPLING REVISITED

The target distribution multiplied by an (unknown) constant:
N
ﬁ(X1:N|)/1:N) = p(Xn, Yan) = an(Xn’Xn—ﬂgn(Yn‘Xn)-
n=1
Let's use the following proposal distribution:

X1N an Xn|Xn 1)

The importance weight:

D Xn|X Xn)
W:Z:Hn 1fn(n|Xn=1)9n(Vn|Xn) Hgn (Vo¥a)

Hn 1fn(Xn‘Xn+1

Lawrence Murray, Jan Kudlicka: Probabilistic Programming

SAMPLING FROM THE PROPOSAL DISTRIBUTION

How to sample from the proposal distribution?

q(xan) an(Xn|Xn 1

n=1

Lawrence Murray, Jan Kudlicka: Probabilistic Programming

SAMPLING FROM THE PROPOSAL DISTRIBUTION

How to sample from the proposal distribution?
q(xa:n) an Xn|Xn—1)

Execute the program as if it was a standard program and

» at an assume - sample a value from the given probability
distribution

» at an observe - update the weight

Lawrence Murray, Jan Kudlicka: Probabilistic Programming

IMPORTANCE SAMPLING REVISITED, CONT'D

Algorithm:

1. Sample L points {x{,}5_, from the proposal distribution g(x).

Lawrence Murray, Jan Kudlicka: Probabilistic Programming

IMPORTANCE SAMPLING REVISITED, CONT'D

Algorithm:

1. Sample L points {x{,}5_, from the proposal distribution g(x).
2. Calculate the importance weights

N
wh = H gn(¥n ’Xﬁ)
n=1

fore =1,...,L

Lawrence Murray, Jan Kudlicka: Probabilistic Programming

IMPORTANCE SAMPLING REVISITED, CONT'D

Algorithm:

1. Sample L points {x{,}5_, from the proposal distribution g(x).
2. Calculate the importance weights

N
W = H 9n(ValX5)
n=1

fore =1,...,L
3. Estimate the expected value:

L

Efh(xa)] ~ Eff S whh(d).

/=1 w /=1

Lawrence Murray, Jan Kudlicka: Probabilistic Programming

SEQUENTIAL IMPORTANCE SAMPLING (SIS)

Algorithm:
for/e=1,...,L
wl =1
start the program
forn=1,...,N

continue running the program until observe y,
W = W' % go(yn X))
end
continue running the program until the end
h* = value of the inference expression
end
w=w/y,w
E[h] = >, wf « h

Lawrence Murray, Jan Kudlicka: Probabilistic Programming

WEIGHT DEGENERACY

Showstopper:

Weight degeneracy - in real applications, almost all weights w’ are
zero and the value of interest must be calculated using only a few
samples.

0.3} ©
0.2 *

0.1} . N

0
Weigths for the example from slide 12, L = 1000

Lawrence Murray, Jan Kudlicka: Probabilistic Programming

BOOTSTRAP PARTICLE FILTER

The most basic particle filter / Sequential Monte Carlo (SMC)
algorithm.

Lawrence Murray, Jan Kudlicka: Probabilistic Programming

BOOTSTRAP PARTICLE FILTER

The most basic particle filter / Sequential Monte Carlo (SMC)
algorithm.

Run L copies of the program (called particles) in parallel. At each
observe we will resample the particles:

1. Wait until all particles have reached the observe.

Lawrence Murray, Jan Kudlicka: Probabilistic Programming

BOOTSTRAP PARTICLE FILTER

The most basic particle filter / Sequential Monte Carlo (SMC)
algorithm.

Run L copies of the program (called particles) in parallel. At each
observe we will resample the particles:

1. Wait until all particles have reached the observe.
2. Calculate w® = gn(yq|x) for each particle.

Lawrence Murray, Jan Kudlicka: Probabilistic Programming

BOOTSTRAP PARTICLE FILTER

The most basic particle filter / Sequential Monte Carlo (SMC)
algorithm.

Run L copies of the program (called particles) in parallel. At each
observe we will resample the particles:

1. Wait until all particles have reached the observe.

2. Calculate w® = gn(yq|x) for each particle.

3. Sample the offspring counts {o*};_, from the multinomial
distribution with the number of trials L and the event
probabilities {w’/ > wf}_,.

» If of = 0, kill the particle process.
» If of =1, continue the process.
» If of > 1, fork the process o — 1times and continue.

Lawrence Murray, Jan Kudlicka: Probabilistic Programming

BOOTSTRAP PARTICLE FILTER, CONT'D

Algorithm:

Start L copies of the program

forn=1,...,N
continue running all copies until observe y,
wait until all copies calculate w® = g (yn|x5)

ifn<nN
sample {o’}t_, as described above
for¢=1,...,L
ifof=0

kill the process
else if of > 1
fork the process of — 1times
end
end
end
end
continue running all copies until the end
wait until all copies calculate h® = value of the inference expression

Efh] = 35, wh bt/ 55, wh

Lawrence Murray, Jan Kudlicka: Probabilistic Pr

BOOTSTRAP PARTICLE FILTER, CONT'D

0\
) d‘\b ¢’
N N >
& S Nl
& N & N v
& & & « ¥
Q\& Q) N X &
& ® N [S
&
—_—0 <« —_—0

[%p]
[¢B)
[95]

e e
[¢B)
()
(@]
~—
o

- — —
[%2]
<
(]
S — @ S

—
©
o

Lawrence Murray, Jan Kudlicka: Probabilistic Programming

OTHER ALGORITHMS

» Metropolis-Hastings algorithm
» Hamiltonian Monte Carlo
» Gibbs sampling

Lawrence Murray, Jan Kudlicka: Probabilistic Programming

EXISTING PROGRAMMING LANGUAGES

Birch

Other probabilistic programming languages:
Anglican, Church, Stan, Infer.NET, WebPPL, Venture, Turing,jl, Edward

Lawrence Murray, Jan Kudlicka: Probabilistic Programming

http://www.robots.ox.ac.uk/~fwood/anglican/
http://projects.csail.mit.edu/church/wiki/Church
http://mc-stan.org/
http://infernet.azurewebsites.net/
http://webppl.org/
http://probcomp.csail.mit.edu/venture/
https://github.com/yebai/Turing.jl
http://edwardlib.org/

MORE INFORMATION

probabilistic-programming.org

Lawrence Murray, Jan Kudlicka: Probabilistic Programming

http://probabilistic-programming.org/

Questions?

rence Murray, Jan Kudlicka: Probabilisti

