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MODELS AS GRAPHS

State-Space Model (SSM)
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MODELS AS GRAPHS

Ising Model
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MODELS AS GRAPHS

Bayesian Logistic Regression Model
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MODELS AS GRAPHS

Latent Dirichlet Allocation (LDA) Model

α

β

z w N

M

θ

Lawrence Murray, Jan Kudlicka: Probabilistic Programming 6



MODELS AS GRAPHS

Gaussian Mixture Model
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MODELS AS GRAPHS

▶ Not all models can be represented as graphical models, and the
graphical language does not necessarily capture all attributes of
a model.

▶ Inference methods are often tailored for specific models, e.g. the
Kalman filter for a linear-Gaussian SSM, collapsed Gibbs
samplers for LDA, Polya–Gamma samplers for Bayesian logistic
regression.

▶ Implementations are often bespoke: of a specific inference
method for a specific model.
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MODELS AS PROGRAMS?

▶ Write a program that simulates from the joint distribution. Let
this define the model.

▶ The program is stochastic, so that each time it runs, it may
produce different output.

▶ Consider constraining the output of the program, or constraining
its execution. This is inference.

▶ Programs are more expressive than graphs, because a program
can do stochastic branching. This makes inference difficult.

▶ Ideally the implementation of models is decoupled from the
implementation of inference methods.
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PROBABILISTIC PROGRAMMING

▶ Probabilistic programming is a programming paradigm, in the
same way that object-oriented, functional and logic
programming are programming paradigms.

▶ Probabilistic programming languages (PPLs) have ergonomic
support for random variables, probability distributions and
inference.

▶ The hard bit is getting a correct result.

▶ The really hard bit is getting the best result.
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EXAMPLE: TWO DICE

die1 ~ duniform(1, 6)
die2 ~ duniform(1, 6)
sum = die1 + die2
observe sum <= 4
infer die1

Figure generated at webppl.org.
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EXAMPLE: LINEAR GAUSSIAN STATE SPACE (LGSS) MODEL

xt+1 = 0.7xt + w
yt = 0.5xt + v
x0 ∼ N (0, 0.1)
w ∼ N (0, 0.1)
v ∼ N (0, 0.1)
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y = read_from_file('measurements.txt', separator='\n')
x[0] ~ normal(0, 0.1)
for t in range(100)

observe y[t] ~ normal(0.5*x[t], 0.1)
x[t+1] ~ normal(0.7*x[t], 0.1)

end
infer E(x[100])
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PROBABILISTIC PROGRAMS

Probabilistic constructs in PPL:

▶ Assume – declaring and defining a random variable by
specifying its probability distribution.

▶ Observe – conditioning based on a observation.
▶ Infer – calculating / estimating

▶ distribution of a random variable given by an expression, or
▶ its expected value, or
▶ its mode(s).
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COMPARISON OF PPL WITH STD. PROGRAMMING AND ML

“Standard”
programming

Machine
Learning

Probabilistic
programming

Parameters θ Parameters

Program p(X|θ) Program

Output X Observations

Based on a figure by Frank Wood.
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ADVANTAGES

▶ Clear separation between model and inference.
▶ Programs might be easier and/or quicker to “write down” than
mathematical models.

▶ Less need for experts to find out how to do the inference and to
implement it.

▶ Huge scope of applications (comparing to e. g. Probabilistic
Graphical Models).
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INFERENCE

The inference is, in general, a difficult task.

▶ Exact inference
▶ Closed-form posterior distribution cases (e. g. Kalman filtering)
▶ Enumeration – discrete models of limited dimension

▶ Approximate inference
▶ Monte Carlo inference
▶ Variational inference

Lawrence Murray, Jan Kudlicka: Probabilistic Programming 16



USING MONTE CARLO FOR ESTIMATING EXPECTED VALUE

Monte Carlo can be used to estimate the expected value of a function
of random variable:

I = E[h(x)] =
∫
h(x)p(x)dx.

Sample L points {xℓ}Lℓ=1 from p(x).

E[h(x)] ≈ ÎL =
1
L

L∑
ℓ=1

h(xℓ).

The law of large numbers: limL→∞ ÎL = I with probability 1.
The central limit theorem:

√
L(̂IL − I) → N (0, σ2) in distribution,

where σ2 = var h(x).
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IMPORTANCE SAMPLING

What if we cannot sample from p(x)?
Assume that

▶ we can evaluate
p̃(x) = Zp(x)

for all x, where Z is a (possibly unknown) constant, and
▶ there is another distribution q(x) from which we can sample and
q(x) = 0⇒ p(x) = 0.

We can use samples from the proposal distribution q(x) to calculate
the expected value w. r. t. p(x).
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IMPORTANCE SAMPLING, CONT’D

E[h(x)] =
∫
h(x)p(x)dx = 1

Z

∫
h(x) p̃(x)q(x)︸︷︷︸

w(x)

q(x)dx.

Since p(x) is a probability distribution:

Z =
∫
p̃(x)dx =

∫ p̃(x)
q(x)︸︷︷︸
w(x)

q(x)dx.

Both integrals can be estimated using Monte Carlo.
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GRAPHICAL MODEL OF THE EXECUTION

Nomenclature:

▶ N – number of observations,
▶ yn – value of the n-th observation,
▶ xn – the memory state at the n-th observation,
▶ gn(yn|xn) – PDF of seeing the n-th observation yn given the
memory state xn,

▶ fn(xn|xn−1) – PDF of the memory state xn given the memory state
xn−1 at the previous observation.

We will also use the following notation:

x1:N = {x1, x2, . . . , xN}
y1:N = {y1, y2, . . . , yN}

Lawrence Murray, Jan Kudlicka: Probabilistic Programming 20



GRAPHICAL MODEL OF THE EXECUTION

Nomenclature:

▶ N – number of observations,
▶ yn – value of the n-th observation,
▶ xn – the memory state at the n-th observation,
▶ gn(yn|xn) – PDF of seeing the n-th observation yn given the
memory state xn,

▶ fn(xn|xn−1) – PDF of the memory state xn given the memory state
xn−1 at the previous observation.

We will also use the following notation:

x1:N = {x1, x2, . . . , xN}
y1:N = {y1, y2, . . . , yN}

Lawrence Murray, Jan Kudlicka: Probabilistic Programming 20



GRAPHICAL MODEL OF THE EXECUTION

∅ x1 x2 · · · xn · · ·

y1 y2 yn

f1(x1|∅) f2(x2|x1) f3(x3|x2) fn(xn|xn−1) fn+1(xn+1|xn)

g1(y1|x1) g2(y2|x2) gn(yn|xn)

p(x1:N, y1:N) =
N∏
n=1

fn(xn|xn−1)gn(yn|xn),

p(x1:N|y1:N) =
p(x1:N, y1:N)
p(y1:N)

∝ p(x1:N, y1:N),

where x0 = ∅.
Our interest is the posterior probability p(x1:N|y1:N).
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IMPORTANCE SAMPLING REVISITED

The target distribution multiplied by an (unknown) constant:

p̃(x1:N|y1:N) = p(x1:N, y1:N) =
N∏
n=1

fn(xn|xn−1)gn(yn|xn).

Let’s use the following proposal distribution:

q(x1:N) =
N∏
n=1

fn(xn|xn−1).

The importance weight:

w =
p̃
q =

∏N
n=1 fn(xn|xn−1)gn(yn|xn)∏N

n=1 fn(xn|xn+1)
=

N∏
n=1

gn(yn|xn).
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SAMPLING FROM THE PROPOSAL DISTRIBUTION

How to sample from the proposal distribution?

q(x1:N) =
N∏
n=1

fn(xn|xn−1)

Execute the program as if it was a standard program and

▶ at an assume – sample a value from the given probability
distribution

▶ at an observe – update the weight
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IMPORTANCE SAMPLING REVISITED, CONT’D

Algorithm:

1. Sample L points {xℓ1:N}Lℓ=1 from the proposal distribution q(x).

2. Calculate the importance weights

wℓ =
N∏
n=1

gn(yn|xℓn)

for ℓ = 1, . . . , L.
3. Estimate the expected value:

E[h(x1:N)] ≈
1∑L

ℓ=1 wℓ

L∑
ℓ=1

wℓh(xℓ1:N).
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SEQUENTIAL IMPORTANCE SAMPLING (SIS)

Algorithm:
for ℓ = 1, . . . , L
wℓ = 1
start the program
for n = 1, . . . ,N
continue running the program until observe yn
wℓ = wℓ ∗ gn(yn|xℓn)

end
continue running the program until the end
hℓ = value of the inference expression

end
w = w/

∑
ℓ wℓ

E[h] =
∑

ℓ wℓ ∗ hℓ
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WEIGHT DEGENERACY

Showstopper:
Weight degeneracy – in real applications, almost all weights wℓ are
zero and the value of interest must be calculated using only a few
samples.

0

0.1

0.2

0.3

Weigths for the example from slide 12, L = 1000
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BOOTSTRAP PARTICLE FILTER

The most basic particle filter / Sequential Monte Carlo (SMC)
algorithm.

Run L copies of the program (called particles) in parallel. At each
observe we will resample the particles:

1. Wait until all particles have reached the observe.
2. Calculate wℓ = gn(yn|xℓn) for each particle.
3. Sample the offspring counts {oℓ}Lℓ=1 from the multinomial
distribution with the number of trials L and the event
probabilities {wℓ/

∑
wℓ}Lℓ=1.

▶ If oℓ = 0, kill the particle process.
▶ If oℓ = 1, continue the process.
▶ If oℓ > 1, fork the process oℓ − 1 times and continue.
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BOOTSTRAP PARTICLE FILTER, CONT’D

Algorithm:
Start L copies of the program
for n = 1, . . . ,N
continue running all copies until observe yn
wait until all copies calculate wℓ = gn(yn|xℓn)
if n < N
sample {oℓ}Ll=1 as described above
for ℓ = 1, . . . , L
if oℓ = 0
kill the process

else if oℓ > 1
fork the process oℓ − 1 times

end
end

end
end
continue running all copies until the end
wait until all copies calculate hℓ = value of the inference expression
E[h] =

∑
ℓ wℓ ∗ hℓ/

∑
ℓ wℓ
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BOOTSTRAP PARTICLE FILTER, CONT’D
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OTHER ALGORITHMS

▶ Metropolis-Hastings algorithm
▶ Hamiltonian Monte Carlo
▶ Gibbs sampling
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EXISTING PROGRAMMING LANGUAGES

Birch

Other probabilistic programming languages:
Anglican, Church, Stan, Infer.NET, WebPPL, Venture, Turing.jl, Edward

Lawrence Murray, Jan Kudlicka: Probabilistic Programming 31

http://www.robots.ox.ac.uk/~fwood/anglican/
http://projects.csail.mit.edu/church/wiki/Church
http://mc-stan.org/
http://infernet.azurewebsites.net/
http://webppl.org/
http://probcomp.csail.mit.edu/venture/
https://github.com/yebai/Turing.jl
http://edwardlib.org/


MORE INFORMATION

probabilistic-programming.org
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http://probabilistic-programming.org/


Questions?
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