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Bayesian Logistic Regression Model
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Latent Dirichlet Allocation (LDA) Model
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a model.
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MODELS AS GRAPHS

» Not all models can be represented as graphical models, and the

graphical language does not necessarily capture all attributes of
a model.

» Inference methods are often tailored for specific models, e.g. the
Kalman filter for a linear-Gaussian SSM, collapsed Gibbs
samplers for LDA, Polya-Gamma samplers for Bayesian logistic
regression.

» Implementations are often bespoke: of a specific inference
method for a specific model.
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MODELS AS PROGRAMS?
» Write a program that simulates from the joint distribution. Let
this define the model.

» The program is stochastic, so that each time it runs, it may
produce different output.

» Consider constraining the output of the program, or constraining
its execution. This is inference.

» Programs are more expressive than graphs, because a program
can do stochastic branching. This makes inference difficult.

» Ideally the implementation of models is decoupled from the
implementation of inference methods.
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PROBABILISTIC PROGRAMMING

» Probabilistic programming is a programming paradigm, in the
same way that object-oriented, functional and logic
programming are programming paradigms.

» Probabilistic programming languages (PPLs) have ergonomic
support for random variables, probability distributions and
inference.

» The hard bit is getting a correct result.

» The really hard bit is getting the best result.
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EXAMPLE: TWO DICE

diel ~ duniform(1, 6)
die2 ~ duniform(1, 6)
sum = diel + die2

observe sum <= 4
infer diel




EXAMPLE: LINEAR GAUSSIAN STATE SPACE (LGSS) MODEL

X1 = 0.7Xc + W
Y = 0.5% + Vv
Xo ~ N(0,0.1)
w ~ N(0,0.1) )
v~ N(0,0.7) . | | | I

0 20 40 60 80 100

y = read_from_file('measurements.txt', separator='\n')
x[0] ~ normal(e, 0.1)
for t in range(100)
observe y[t] ~ normal(0.5+x[t], 0.1)
x[t+1] ~ normal(0.7*x[t], 0.1)
end
infer E(x[100])
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PROBABILISTIC PROGRAMS

Probabilistic constructs in PPL:

» Assume - declaring and defining a random variable by
specifying its probability distribution.

» Observe - conditioning based on a observation.

» Infer - calculating / estimating

» distribution of a random variable given by an expression, or
» its expected value, or
> its mode(s).
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COMPARISON OF PPL WITH STD. PROGRAMMING AND ML

“Standard” Machine Probabilistic
programming Learning programming
[ Parameters 0 Parameters J
] i) i)
Program p(X|6) Program
i) i) d
Output X Observations

Based on a figure by Frank Wood.
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ADVANTAGES

» Clear separation between model and inference.

» Programs might be easier and/or quicker to “write down” than
mathematical models.

» Less need for experts to find out how to do the inference and to
implement it.

» Huge scope of applications (comparing to e. g. Probabilistic
Graphical Models).
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INFERENCE

The inference is, in general, a difficult task.

» Exact inference

» Closed-form posterior distribution cases (e. g. Kalman filtering)
» Enumeration - discrete models of limited dimension

» Approximate inference

» Monte Carlo inference
» Variational inference
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USING MONTE CARLO FOR ESTIMATING EXPECTED VALUE

Monte Carlo can be used to estimate the expected value of a function
of random variable:

— B[] = [ h(p(x)dx

Sample L points {x‘};_, from p(x).
1
E[h(x) ZZ

The law of large numbers: lim;_.o |, = I with probability .

The central limit theorem: v/L(I, — 1) = N(0, o?) in distribution,
where o = var h(x).
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IMPORTANCE SAMPLING

What if we cannot sample from p(x)?

Assume that

» we can evaluate
p(x) = Zp(x)
for all x, where Z is a (possibly unknown) constant, and
» there is another distribution g(x) from which we can sample and
q(x) =0=p(x) =0.

We can use samples from the proposal distribution g(x) to calculate
the expected value w. 1. t. p(x).
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IMPORTANCE SAMPLING, CONT'D

)] = [ ek = [ 000 20 aaa
N

w(x)

Since p(x) is a probability distribution:
« p(x)
/= x)dx = / —=qg(x)dx.
[ ptax= [ 2 aw
~—~—
w(x)

Both integrals can be estimated using Monte Carlo.
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GRAPHICAL MODEL OF THE EXECUTION

Nomenclature:

» N - number of observations,

v

¥y — value of the n-th observation,

» X, - the memory state at the n-th observation,

gn(Vn|Xn) - PDF of seeing the n-th observation y, given the
memory state X,

fn(Xn|Xn—1) — PDF of the memory state x, given the memory state
Xn_1 at the previous observation.

v

v
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GRAPHICAL MODEL OF THE EXECUTION

Nomenclature:

» N - number of observations,
¥y — value of the n-th observation,
» X, - the memory state at the n-th observation,

gn(Vn|Xn) - PDF of seeing the n-th observation y, given the
memory state Xy,

v

v

v

fn(Xn|Xn—1) — PDF of the memory state x, given the memory state
Xn_1 at the previous observation.

We will also use the following notation:

XN = {X17X27"'7XN}
)/1:N - {YMYZw--,yN}
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GRAPHICAL MODEL OF THE EXECUTION

n

@ fi(x1|2) /)ﬁ\fz(xzpﬁ) @f3(x3|xz) ...fn(xn|xn—1)/—\fn+1(xﬂ+1|).<”.).

gi(yalx1) 92(y21%2) 9n(Vnlxn)

N
p(Xin, Vin) = an(xn|Xn—1)gn(Yr7 Xn),

n=1
P(X1:N, y1:N)

X XN, V1N ),
(v p(Xa:n, Ya:n)

p(Xa:nlyan) =

where Xg = @.

Our interest is the posterior probability p(Xy.n|y1:n).
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IMPORTANCE SAMPLING REVISITED

The target distribution multiplied by an (unknown) constant:
N
ﬁ(X1:N|)/1:N) = p(Xn, Yan) = an(Xn’Xn—ﬂgn(Yn‘Xn)-
n=1
Let's use the following proposal distribution:

X1N an Xn|Xn 1)

The importance weight:

D Xn|X Xn)
W:Z:Hn 1fn( n|Xn=1)9n(Vn|Xn) Hgn (Vo¥a)

Hn 1fn(Xn‘Xn+1
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SAMPLING FROM THE PROPOSAL DISTRIBUTION

How to sample from the proposal distribution?

q(xan) an(Xn|Xn 1

n=1

Lawrence Murray, Jan Kudlicka: Probabilistic Programming



SAMPLING FROM THE PROPOSAL DISTRIBUTION

How to sample from the proposal distribution?
q(xa:n) an Xn|Xn—1)

Execute the program as if it was a standard program and

» at an assume - sample a value from the given probability
distribution

» at an observe - update the weight
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IMPORTANCE SAMPLING REVISITED, CONT'D

Algorithm:

1. Sample L points {x{,}5_, from the proposal distribution g(x).
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IMPORTANCE SAMPLING REVISITED, CONT'D

Algorithm:

1. Sample L points {x{,}5_, from the proposal distribution g(x).
2. Calculate the importance weights

N
wh = H gn(¥n ’Xﬁ)
n=1

fore =1,...,L
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IMPORTANCE SAMPLING REVISITED, CONT'D

Algorithm:

1. Sample L points {x{,}5_, from the proposal distribution g(x).
2. Calculate the importance weights

N
W = H 9n(ValX5)
n=1

fore =1,...,L
3. Estimate the expected value:

L

Efh(xa)] ~ Eff S whh(d).

/=1 w /=1
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SEQUENTIAL IMPORTANCE SAMPLING (SIS)

Algorithm:
for/e=1,...,L
wl =1
start the program
forn=1,...,N

continue running the program until observe y,
W = W' % go(yn X))
end
continue running the program until the end
h* = value of the inference expression
end
w=w/y,w
E[h] = >, wf « h
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WEIGHT DEGENERACY

Showstopper:

Weight degeneracy - in real applications, almost all weights w’ are
zero and the value of interest must be calculated using only a few
samples.

0.3} ©
0.2 *

0.1} . N

0
Weigths for the example from slide 12, L = 1000
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BOOTSTRAP PARTICLE FILTER

The most basic particle filter / Sequential Monte Carlo (SMC)
algorithm.
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BOOTSTRAP PARTICLE FILTER

The most basic particle filter / Sequential Monte Carlo (SMC)
algorithm.

Run L copies of the program (called particles) in parallel. At each
observe we will resample the particles:

1. Wait until all particles have reached the observe.
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BOOTSTRAP PARTICLE FILTER

The most basic particle filter / Sequential Monte Carlo (SMC)
algorithm.

Run L copies of the program (called particles) in parallel. At each
observe we will resample the particles:

1. Wait until all particles have reached the observe.

2. Calculate w® = gn(yq|x) for each particle.

3. Sample the offspring counts {o*};_, from the multinomial
distribution with the number of trials L and the event
probabilities {w’/ > wf}_,.

» If of = 0, kill the particle process.
» If of =1, continue the process.
» If of > 1, fork the process o — 1times and continue.
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BOOTSTRAP PARTICLE FILTER, CONT'D

Algorithm:

Start L copies of the program

forn=1,...,N
continue running all copies until observe y,
wait until all copies calculate w® = g (yn|x5)

ifn<nN
sample {o’}t_, as described above
for¢=1,...,L
ifof=0

kill the process
else if of > 1
fork the process of — 1times
end
end
end
end
continue running all copies until the end
wait until all copies calculate h® = value of the inference expression

Efh] = 35, wh bt/ 55, wh
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BOOTSTRAP PARTICLE FILTER, CONT'D
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OTHER ALGORITHMS

» Metropolis-Hastings algorithm
» Hamiltonian Monte Carlo
» Gibbs sampling
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EXISTING PROGRAMMING LANGUAGES

Birch

Other probabilistic programming languages:
Anglican, Church, Stan, Infer.NET, WebPPL, Venture, Turing,jl, Edward
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http://www.robots.ox.ac.uk/~fwood/anglican/
http://projects.csail.mit.edu/church/wiki/Church
http://mc-stan.org/
http://infernet.azurewebsites.net/
http://webppl.org/
http://probcomp.csail.mit.edu/venture/
https://github.com/yebai/Turing.jl
http://edwardlib.org/

MORE INFORMATION

probabilistic-programming.org
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http://probabilistic-programming.org/

Questions?

rence Murray, Jan Kudlicka: Probabilisti



