Probabilistic Programming

Presentation at the Machine Learning Journal Club

Lawrence Murray, Jan Kudlicka

Department of Information Technology
Uppsala University

March 29, 2017
MODELS AS GRAPHS

(a) Directed

(b) Undirected
State-Space Model (SSM)
Ising Model
Bayesian Logistic Regression Model

\[\beta \]

\[\omega_i \rightarrow Y_i \]

\[i = 1, \ldots, n \]
Latent Dirichlet Allocation (LDA) Model
Gaussian Mixture Model

\[\mu_0 \quad \beta_0 \quad \nu_0 \quad W_0 \]

\[[D] \quad [D] \quad [D,D] \quad [D,D] \]

\[\mu_k \quad \Lambda_k \]

\[\alpha_0 \quad \pi \quad z_i \quad x_i \]

\[K \quad N \]
Not all models can be represented as graphical models, and the graphical language does not necessarily capture all attributes of a model.
Not all models can be represented as graphical models, and the graphical language does not necessarily capture all attributes of a model.

Inference methods are often tailored for specific models, e.g. the Kalman filter for a linear-Gaussian SSM, collapsed Gibbs samplers for LDA, Polya–Gamma samplers for Bayesian logistic regression.
Not all models can be represented as graphical models, and the graphical language does not necessarily capture all attributes of a model.

Inference methods are often tailored for specific models, e.g. the Kalman filter for a linear-Gaussian SSM, collapsed Gibbs samplers for LDA, Polya–Gamma samplers for Bayesian logistic regression.

Implementations are often bespoke: of a specific inference method for a specific model.
Write a program that simulates from the joint distribution. Let this define the model.
MODELS AS PROGRAMS?

▶ Write a program that simulates from the joint distribution. Let this define the model.

▶ The program is stochastic, so that each time it runs, it may produce different output.
Write a program that simulates from the joint distribution. Let this define the model.

The program is stochastic, so that each time it runs, it may produce different output.

Consider constraining the output of the program, or constraining its execution.
MODELS AS PROGRAMS?

- Write a program that simulates from the joint distribution. Let this define the model.

- The program is stochastic, so that each time it runs, it may produce different output.

- Consider constraining the output of the program, or constraining its execution. **This is inference.**
Write a program that simulates from the joint distribution. Let this define the model.

The program is stochastic, so that each time it runs, it may produce different output.

Consider constraining the output of the program, or constraining its execution. This is inference.

Programs are more expressive than graphs, because a program can do stochastic branching.
Write a program that simulates from the joint distribution. Let this define the model.

The program is stochastic, so that each time it runs, it may produce different output.

Consider constraining the output of the program, or constraining its execution. This is inference.

Programs are more expressive than graphs, because a program can do stochastic branching. This makes inference difficult.
MODELS AS PROGRAMS?

- Write a program that simulates from the joint distribution. Let this define the model.

- The program is stochastic, so that each time it runs, it may produce different output.

- Consider constraining the output of the program, or constraining its execution. **This is inference.**

- Programs are more expressive than graphs, because a program can do stochastic branching. **This makes inference difficult.**

- Ideally the implementation of models is decoupled from the implementation of inference methods.
Probabilistic programming is a programming paradigm, in the same way that object-oriented, functional and logic programming are programming paradigms.
Probabilistic programming is a programming paradigm, in the same way that object-oriented, functional and logic programming are programming paradigms.

Probabilistic programming languages (PPLs) have ergonomic support for random variables, probability distributions and inference.
Probabilistic programming is a programming paradigm, in the same way that object-oriented, functional and logic programming are programming paradigms.

Probabilistic programming languages (PPLs) have ergonomic support for random variables, probability distributions and inference.

The hard bit is getting a correct result.
Probabilistic programming is a programming paradigm, in the same way that object-oriented, functional and logic programming are programming paradigms.

Probabilistic programming languages (PPLs) have ergonomic support for random variables, probability distributions and inference.

The hard bit is getting a correct result.

The really hard bit is getting the best result.
EXAMPLE: TWO DICE

die1 ~ duniform(1, 6)
die2 ~ duniform(1, 6)
sum = die1 + die2
observe sum <= 4
infer die1

Figure generated at webppl.org.
\[
\begin{align*}
 x_{t+1} &= 0.7x_t + w \\
y_t &= 0.5x_t + \nu \\
x_0 &\sim \mathcal{N}(0, 0.1) \\
w &\sim \mathcal{N}(0, 0.1) \\
\nu &\sim \mathcal{N}(0, 0.1)
\end{align*}
\]

```python
import numpy as np

y = read_from_file('measurements.txt', separator='
')
x[0] ~ normal(0, 0.1)
for t in range(100)
    observe y[t] ~ normal(0.5*x[t], 0.1)
    x[t+1] ~ normal(0.7*x[t], 0.1)
end
infer E(x[100])
```
Probabilistic constructs in PPL:

- **Assume** – declaring and defining a random variable by specifying its probability distribution.
- **Observe** – conditioning based on an observation.
- **Infer** – calculating / estimating
 - distribution of a random variable given by an expression, or
 - its expected value, or
 - its mode(s).
COMPARISON OF PPL WITH STD. PROGRAMMING AND ML

“Standard” programming

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Program</th>
<th>Output</th>
</tr>
</thead>
</table>

Machine Learning

| θ | $p(X|\theta)$ | X |
|----------|---------------|-----|

Probabilistic programming

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Program</th>
<th>Observations</th>
</tr>
</thead>
</table>

Based on a figure by Frank Wood.
ADVANTAGES

▶ Clear separation between model and inference.
▶ Programs might be easier and/or quicker to “write down” than mathematical models.
▶ Less need for experts to find out how to do the inference and to implement it.
▶ Huge scope of applications (comparing to e. g. Probabilistic Graphical Models).
The inference is, in general, a difficult task.

- **Exact inference**
 - Closed-form posterior distribution cases (e.g. Kalman filtering)
 - Enumeration – discrete models of limited dimension

- **Approximate inference**
 - Monte Carlo inference
 - Variational inference
Monte Carlo can be used to estimate the expected value of a function of random variable:

\[I = \mathbb{E}[h(x)] = \int h(x)p(x)dx. \]

Sample \(L \) points \(\{x^\ell\}_{\ell=1}^L \) from \(p(x) \).

\[\mathbb{E}[h(x)] \approx \hat{i}_L = \frac{1}{L} \sum_{\ell=1}^L h(x^\ell). \]

The law of large numbers: \(\lim_{L \to \infty} \hat{i}_L = I \) with probability 1.

The central limit theorem: \(\sqrt{L}(\hat{i}_L - I) \to \mathcal{N}(0, \sigma^2) \) in distribution, where \(\sigma^2 = \text{var} h(x) \).
What if we cannot sample from $p(x)$?

Assume that

- we can evaluate

 \[\tilde{p}(x) = Zp(x) \]

 for all x, where Z is a (possibly unknown) constant, and

- there is another distribution $q(x)$ from which we can sample and

 \[q(x) = 0 \Rightarrow p(x) = 0. \]

We can use samples from the proposal distribution $q(x)$ to calculate the expected value w. r. t. $p(x)$.
\[\mathbb{E}[h(x)] = \int h(x)p(x)dx = \frac{1}{Z} \int \frac{\tilde{p}(x)}{q(x)} q(x)dx. \]

Since \(p(x) \) is a probability distribution:

\[Z = \int \tilde{p}(x)dx = \int \frac{\tilde{p}(x)}{q(x)} q(x)dx. \]

Both integrals can be estimated using Monte Carlo.
Nomenclature:

- \(N \) – number of observations,
- \(y_n \) – value of the \(n \)-th observation,
- \(x_n \) – the memory state at the \(n \)-th observation,
- \(g_n(y_n|x_n) \) – PDF of seeing the \(n \)-th observation \(y_n \) given the memory state \(x_n \),
- \(f_n(x_n|x_{n-1}) \) – PDF of the memory state \(x_n \) given the memory state \(x_{n-1} \) at the previous observation.
Nomenclature:

- N – number of observations,
- y_n – value of the n-th observation,
- x_n – the memory state at the n-th observation,
- $g_n(y_n|x_n)$ – PDF of seeing the n-th observation y_n given the memory state x_n,
- $f_n(x_n|x_{n-1})$ – PDF of the memory state x_n given the memory state x_{n-1} at the previous observation.

We will also use the following notation:

$$x_{1:N} = \{x_1, x_2, \ldots, x_N\}$$
$$y_{1:N} = \{y_1, y_2, \ldots, y_N\}$$
Graphical Model of the Execution

\[\emptyset \xrightarrow{f_1(x_1|\emptyset)} X_1 \xrightarrow{f_2(x_2|x_1)} X_2 \xrightarrow{\ldots} X_n \xrightarrow{f_{n+1}(x_{n+1}|x_n)} \ldots \]

\[g_1(y_1|x_1) \xrightarrow{g_2(y_2|x_2)} \ldots \xrightarrow{g_n(y_n|x_n)} \]

\[p(x_{1:N}, y_{1:N}) = \prod_{n=1}^{N} f_n(x_n|x_{n-1}) g_n(y_n|x_n), \]

\[p(x_{1:N}|y_{1:N}) = \frac{p(x_{1:N}, y_{1:N})}{p(y_{1:N})} \propto p(x_{1:N}, y_{1:N}), \]

where \(x_0 = \emptyset \).

Our interest is the posterior probability \(p(x_{1:N}|y_{1:N}) \).
IMPORTANCE SAMPLING REVISITED

The target distribution multiplied by an (unknown) constant:

$$\tilde{p}(x_{1:N}|y_{1:N}) = p(x_{1:N}, y_{1:N}) = \prod_{n=1}^{N} f_n(x_n|x_{n-1}) g_n(y_n|x_n).$$

Let’s use the following proposal distribution:

$$q(x_{1:N}) = \prod_{n=1}^{N} f_n(x_n|x_{n-1}).$$

The importance weight:

$$w = \frac{\tilde{p}}{q} = \frac{\prod_{n=1}^{N} f_n(x_n|x_{n-1}) g_n(y_n|x_n)}{\prod_{n=1}^{N} f_n(x_n|x_{n+1})} = \prod_{n=1}^{N} g_n(y_n|x_n).$$
How to sample from the proposal distribution?

\[q(x_{1:N}) = \prod_{n=1}^{N} f_n(x_n | x_{n-1}) \]
How to sample from the proposal distribution?

\[
q(x_{1:N}) = \prod_{n=1}^{N} f_n(x_n|x_{n-1})
\]

Execute the program as if it was a standard program and

- at an *assume* – sample a value from the given probability distribution
- at an *observe* – update the weight
Algorithm:

1. Sample L points $\{x_{1:N}^\ell\}_{\ell=1}^L$ from the proposal distribution $q(x)$.
Algorithm:

1. Sample L points $\{x_{1:N}^\ell \}_{\ell=1}^L$ from the proposal distribution $q(x)$.
2. Calculate the importance weights

$$w^\ell = \prod_{n=1}^N g_n(y_n|x_n^\ell)$$

for $\ell = 1, \ldots, L$.
Algorithm:

1. Sample \(L \) points \(\{x_{1:N}^{\ell}\}_{\ell=1}^L \) from the proposal distribution \(q(x) \).
2. Calculate the importance weights

\[
w^{\ell} = \prod_{n=1}^{N} g_n(y_n|x_{n}^{\ell})
\]

for \(\ell = 1, \ldots, L \).
3. Estimate the expected value:

\[
\mathbb{E}[h(x_{1:N})] \approx \frac{1}{\sum_{\ell=1}^{L} w^{\ell}} \sum_{\ell=1}^{L} w^{\ell} h(x_{1:N}^{\ell}).
\]
SEQUENTIAL IMPORTANCE SAMPLING (SIS)

Algorithm:

\[
\textbf{for } \ell = 1, \ldots, L \\
\quad w^\ell = 1 \\
\quad \text{start the program} \\
\textbf{for } n = 1, \ldots, N \\
\quad \quad \text{continue running the program until observe } y_n \\
\quad \quad w^\ell = w^\ell \times g_n(y_n|x_n^\ell) \\
\quad \text{end} \\
\quad \text{continue running the program until the end} \\
\quad h^\ell = \text{value of the inference expression} \\
\textbf{end} \\
\]

\[
w = \frac{w}{\sum_\ell w^\ell} \\
\mathbb{E}[h] = \sum_\ell w^\ell \times h^\ell
\]
Showstopper:
Weight degeneracy – in real applications, almost all weights w^ℓ are zero and the value of interest must be calculated using only a few samples.

![Weights for an example from slide 12, $L = 1000$](image-url)
The most basic particle filter / *Sequential Monte Carlo (SMC)* algorithm.
BOOTSTRAP PARTICLE FILTER

The most basic particle filter / Sequential Monte Carlo (SMC) algorithm.

Run L copies of the program (called particles) in parallel. At each observe we will resample the particles:

1. Wait until all particles have reached the observe.
The most basic particle filter / *Sequential Monte Carlo* (SMC) algorithm.

Run L copies of the program (called *particles*) in parallel. At each *observe* we will resample the particles:

1. Wait until all particles have reached the *observe*.
2. Calculate $w^\ell = g_n(y_n|x^\ell_n)$ for each particle.
The most basic particle filter / *Sequential Monte Carlo* (SMC) algorithm.

Run L copies of the program (called *particles*) in parallel. At each *observe* we will resample the particles:

1. Wait until all particles have reached the *observe*.
2. Calculate $w^\ell = g_n(y_n|x_n^\ell)$ for each particle.
3. Sample the offspring counts $\{o^\ell\}_\ell=1^L$ from the multinomial distribution with the number of trials L and the event probabilities $\{w^\ell / \sum w^\ell\}_\ell=1^L$.
 - If $o^\ell = 0$, kill the particle process.
 - If $o^\ell = 1$, continue the process.
 - If $o^\ell > 1$, fork the process $o^\ell - 1$ times and continue.
Algorithm:

Start L copies of the program

for $n = 1, \ldots, N$
 continue running all copies until observe y_n
 wait until all copies calculate $w^\ell = g_n(y_n|x_n^\ell)$
 if $n < N$
 sample $\{o^\ell\}_{\ell=1}^L$ as described above
 for $\ell = 1, \ldots, L$
 if $o^\ell = 0$
 kill the process
 else if $o^\ell > 1$
 fork the process $o^\ell - 1$ times
 end
 end
end

continue running all copies until the end
wait until all copies calculate $h^\ell = \text{value of the inference expression}$

$\mathbb{E}[h] = \sum_\ell w^\ell * h^\ell / \sum_\ell w^\ell$
Bootstrap Particle Filter, Cont’d

1. Run until observe y_1
2. Observe y_1
3. Resampling (exit or fork)
4. Cont. until observe y_2
5. Observe y_2
OTHER ALGORITHMS

- Metropolis-Hastings algorithm
- Hamiltonian Monte Carlo
- Gibbs sampling
EXISTING PROGRAMMING LANGUAGES

Birch

Other probabilistic programming languages:
Anglican, Church, Stan, Infer.NET, WebPPL, Venture, Turing.jl, Edward
probabilistic-programming.org
Questions?