Why SpecInt95 Should Not Be Used to Benchmark Embedded Systems Tools

Jakob Engblom
Industrial PhD Student
Uppsala U / IT / Dept. of Computer Systems & IAR Systems AB
jakob@iarc.uu.se

Background
- The MARE Project:
 - Measurements of Actual Real-Time and Embedded Systems
- SpecInt95 used to benchmark everything
 - Including embedded tools
- Not appropriate for embedded systems
- This talk: demonstrate the difference!

Background (2)
- Basic Question: How do embedded programmers code?

Methodology
- Modified IAR C compiler
- Replace code generator
- Mimic other compilers:
 - Size of int
 - Keywords
 - Intrinsics
- Measuring optimized intermediate code

Studied Programs
- Embedded programs:
 - 13 applications, 337 kloc
 - Various industrial applications:
 - Telecomm, Vehicles, Consumer Products, ...
 - Medium-capacity 8- and 16-bit CPUs:
 - Z80, 68HC11, C166, M7000, H8, ...
 - Medium-to-large European companies

Studied Programs (2)
- SpecInt95:
 - 7 programs, 97 kloc
 - Integer programs only
 - All but gcc
 - Assume generic 32-bit CPU
Methodology (2)

And then I use Excel to handle the data and draw graphs and conclusions.

Summary of Differences

- Differences:
 - Variables: sign, size, scope
 - Operations: logic vs arithmetic, sign
 - Functions: parameters, return types, style
 - Libraries: no dynamic memory, no OS
 - Complexity: loop depths, functions
 - Hardware interfacing

Variables: Types

<table>
<thead>
<tr>
<th>Code Pointer</th>
<th>Pointer</th>
<th>Array</th>
<th>Struct/Union</th>
<th>Flow</th>
<th>Integer</th>
</tr>
</thead>
<tbody>
<tr>
<td>52%</td>
<td>12%</td>
<td>10%</td>
<td>8%</td>
<td>8%</td>
<td>6%</td>
</tr>
<tr>
<td>10%</td>
<td>10%</td>
<td>10%</td>
<td>10%</td>
<td>10%</td>
<td>10%</td>
</tr>
<tr>
<td>8%</td>
<td>8%</td>
<td>8%</td>
<td>8%</td>
<td>8%</td>
<td>8%</td>
</tr>
<tr>
<td>6%</td>
<td>6%</td>
<td>6%</td>
<td>6%</td>
<td>6%</td>
<td>6%</td>
</tr>
<tr>
<td>4%</td>
<td>4%</td>
<td>4%</td>
<td>4%</td>
<td>4%</td>
<td>4%</td>
</tr>
<tr>
<td>2%</td>
<td>2%</td>
<td>2%</td>
<td>2%</td>
<td>2%</td>
<td>2%</td>
</tr>
<tr>
<td>0%</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
</tr>
</tbody>
</table>

Variables: Across Scopes

- By count
- By bytes

Variables: Integers

- SpecInt95 integers
- Embedded integers

Operations: Categories

- Categories:
 - Pointer
 - Compares
 - Arithmetic
 - Logic
- Ignored:
 - Jumps
 - Loads/stores

Graph
Operations: Categories (2)

<table>
<thead>
<tr>
<th>Category</th>
<th>SpecInt95</th>
<th>Embedded</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arithmetic</td>
<td>46%</td>
<td>27%</td>
</tr>
<tr>
<td>Logic</td>
<td>9%</td>
<td>24%</td>
</tr>
<tr>
<td>Compares</td>
<td>45%</td>
<td>49%</td>
</tr>
</tbody>
</table>

Operations: Signs

- **Spec:**
 - Arithmetic
 - Signed
 - Many decisions
- **Embedded:**
 - Logic
 - Unsigned
 - Many decisions

Other Observations

- **About Embedded Programs**
 - 0/13 use malloc & free
 - 5/13 use OS dynamic memory allocation
 - 9/13 use function pointers
 - 11/13 use intrinsic functions
 - 13/13 use the standard library
 - Some recursion (!)

Functions: Return Types

- **void**
 - 79.72%
 - 69.94%
- **char**
 - 0%
 - 0%
- **uchar**
 - 10%
 - 10%
- **short**
 - 20%
 - 30%
- **ushort**
 - 30%
 - 40%
- **long**
 - 40%
 - 50%
- **ulong**
 - 0%
 - 0%
- **ptr**
 - 10%
 - 10%
- **void**
 - 0%
 - 0%

Functions: Parameter Count

- **0%**
 - SpecInt95
 - Embedded
- **10%**
 - SpecInt95
 - Embedded
- **20%**
 - SpecInt95
 - Embedded
- **30%**
 - SpecInt95
 - Embedded
- **40%**
 - SpecInt95
 - Embedded
- **50%**
 - SpecInt95
 - Embedded
- **60%**
 - SpecInt95
 - Embedded
- **70%**
 - SpecInt95
 - Embedded

Functions: void-void???

- **void-void**
 - 4%
 - 35%
 - 35%
 - return value
 - 4%
 - 15%
 - parameters
 - 28%
 - 25%
 - return value
 - 35%
 - void-void
 - 4%
 - 15%
Functions: Complexity

- Trivial: single BB
- Non-loop: decisions
- Complex: loops
 - SpecInt95 deeper than embedded
 - No embedded loop deeper than 4

Conclusions

- Embedded and SpecInt95 programs are very different

Need special benchmarks for embedded systems and tools

Future Work

- Examine more programs
- Examine candidates:
 - EEMBC (EDN Embedded Microprocessor Benchmark Consortium)
 - CPU Performance comparisons
 - If we can get funding to get the code
 - Any other benchmarks?

More Information

- Tech Report on MARE
- Paper accepted for RTAS ’99
 - See you in Vancouver!
- My homepage:
 - www.docs.uu.se/~jakob
 - Will have those slides online!