Learning convex bounds for linear quadratic control policy synthesis

Jack Umenberger and Thomas B. Schön

Summary and contributions

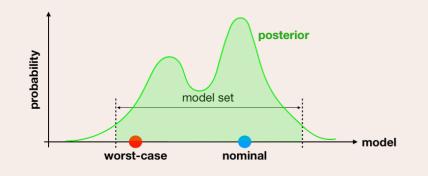
This work concerns the problem of learning control policies for unknown linear dynamical systems so as to optimize a quadratic reward.

We present a method to optimize the **expected value** of the reward over the **posterior** distribution of the unknown system parameters, given data.

- we build **convex upper bounds** on the expected cost.
- algorithm proceeds via sequential convex programing.
- strong performance and robustness properties are observed during numerical simulations and stabilization of a real-world inverted pendulum.

Background

Given (i) a cost function to minimize and (ii) data from an unknown dynamical system there are a number of ways to design a control policy.



- certainty equivalence: fit a nominal model to the data, and solve the problem as if the true system behaved exactly as the model.
- robust control: design a controller to stabilize a set of models; optimize performance for nominal or worst-case model.
- probabilistic robust control: optimize for expected performance given a posterior belief over models.

Problem setup

Dynamics and cost

We consider linear time-invariant dynamics:

$$x_{t+1} = Ax_t + Bu_t + w_t, \qquad w_t \sim \mathcal{N}(0, \Pi)$$

Let $\theta := \{A, B, \Pi\}.$

The parameters θ are **unknown**.

We seek a static state-feedback policy $u_t = Kx_t$ that minimizes the cost function $\lim_{T\to\infty} \frac{1}{T} \sum_{t=0}^{T} \mathbb{E} [x_t' Q x_t + u_t' R u_t]$ for given Q and R.

Observed data

We assume access to observed trajectories from the true system:

$$\mathcal{D} := \{x_{0:T}^r, u_{0:T}^r\}_{r=1}^N$$

Each of the N independent experiments is referred to as a **rollout**.

UPPSALA UNIVERSITET

 $\pi(\boldsymbol{\theta}) := p(\boldsymbol{\theta}|\mathcal{D}) = \frac{1}{p(\mathcal{D})} p(\mathcal{D}|\boldsymbol{\theta}) p(\boldsymbol{\theta})$

SWEDISH FOUNDATION for STRATEGIC RESEARCH

 $\propto p(\boldsymbol{\theta}) \prod_{r=1}^{N} \prod_{t=1}^{T} p(x_t^r | x_{t-1}^r, u_{t-1}^r, \boldsymbol{\theta})$

 $\{A_k, B_k\} \sim p(A, B|\Pi_{k-1}, \mathcal{D}),$

 $\Pi_k \sim p(\Pi | A_k, B_k, \mathcal{D})$

Parameter posterior

Given data \mathcal{D} and a prior over parameters $p(\theta)$, the posterior distribution can be expressed by Bayes' rule:

Sampling from posterior

Known Π and non-informative or Gaussian prior \rightarrow posterior $p(\theta|\mathcal{D})$ is also Gaussian.

Unknown $\Pi \rightarrow$ posterior lacks a 'convenient' closed form.

We can generate samples from $p(\theta | D)$ using Markov Chain Monte Carlo (MCMC) methods, such as Gibbs sampling, which alternates between:

The distribution $p(A, B|\Pi_{k-1}, \mathcal{D})$ is Gaussian \rightarrow sampling is straightforward.

 $p(\Pi|A, B, \mathcal{D})$ is an inverse Wishart distribution \rightarrow sampling is straightforward.

Optimization objective

We seek to minimize the expected cost w.r.t. the posterior distribution,

$$\lim_{T \to \infty} \frac{1}{T} \sum_{t=0}^{I} \mathbb{E} \left[x_t' Q x_t + u_t' R u_t \mid x_{t+1} = A x_t + B u_t + w_t, \ w_t \sim \mathcal{N} \left(0, \Pi \right), \ \{A, B, \Pi\} \sim \pi(\theta) \right].$$

For convenience: denote the infinite horizon LQR cost, for given system parameters θ , by

$$J(K|\theta) := \lim_{t \to \infty} \mathbb{E} \left[x_t'(Q + K'RK)x_t \mid x_{t+1} = (A + BK)x_t + w_t, \ w \sim \mathcal{N}(0, \Pi) \right]$$
$$= \begin{cases} \operatorname{tr} X \Pi \text{ with } X = (A + BK)'X(A + BK) + Q + K'RK, & A + BK \text{ stable} \\ \infty, & \text{otherwise,} \end{cases}$$

More appropriate: integrate over some c % confidence region Θ^c of the posterior:

$$(K) := \int_{\Theta^c} J(K|\boldsymbol{\theta}) \pi(\boldsymbol{\theta}) d\boldsymbol{\theta}.$$

We approximate this integral with Monte Carlo:

$$J^c_M(K) := \frac{1}{M} {\sum}_{i=1}^M J(K|\boldsymbol{\theta}_i), \qquad \{\boldsymbol{\theta}_i\}_{i=1}^M \sim \Theta^c,$$

Common Lyapunov relaxation

By the Schur complement, $J(K|\theta_i)$ can be expressed as:

$$\begin{split} J(K|\theta_i) &= \min_{X_i \in \mathbb{S}_{\epsilon^x}^n} \operatorname{tr} X_i \Pi_i \\ \text{s.t.} \left[\begin{array}{ccc} X_i^{-1} & X_i^{-1} (A_i + B_i K)' & X_i^{-1} Q^{1/2} & X_i^{-1} K' \\ (A_i + B_i K) X_i^{-1} & X_i^{-1} & 0 \\ Q^{1/2} X_i^{-1} & 0 & I & 0 \\ K X_i^{-1} & 0 & 0 & R^{-1} \end{array} \right] \succeq 0. \end{split}$$

For M = 1 (one system) the usual trick is a change of variables $Y_i = X_i^{-1}$ and $L_i = KX_i^{-1}$. When M > 1 this not effective as we lose uniqueness of the controller K in $L_i = KX_i^{-1}$.

s.t.

