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Summary and contributions

This work concerns the problem of learning control policies for unknown
linear dynamical systems so as to optimize a quadratic reward.

We present a method to optimize the expected value of the reward over
the posterior distribution of the unknown system parameters, given data.

• we build convex upper bounds on the expected cost.

• algorithm proceeds via sequential convex programing.

• strong performance and robustness properties are observed during nu-
merical simulations and stabilization of a real-world inverted pendu-
lum.

Background

Given (i) a cost function to minimize and (ii) data from an unknown
dynamical system there are a number of ways to design a control policy.

• certainty equivalence: fit a nominal model to the data, and solve the
problem as if the true system behaved exactly as the model.

• robust control: design a controller to stabilize a set of models; optimize
performance for nominal or worst-case model.

• probabilistic robust control: optimize for expected performance given
a posterior belief over models.

Problem setup

Dynamics and cost

We consider linear time-invariant dynamics:

xt+1 = Axt + But + wt, wt ∼ N (0, Π).

Let θ := {A, B, Π}.

The parameters θ are unknown.

We seek a static state-feedback policy ut = Kxt that minimizes the cost
function limT →∞

1
T

∑T
t=0 E [x′

tQxt + u′
tRut] for given Q and R.

Observed data

We assume access to observed trajectories from the true system:

D := {xr
0:T , ur

0:T }N
r=1

Each of the N independent experiments is referred to as a rollout.

Parameter posterior

Given data D and a prior
over parameters p(θ), the
posterior distribution can be
expressed by Bayes’ rule:

π(θ) := p(θ|D) = 1
p(D)

p(D|θ)p(θ)

∝ p(θ)
∏N

r=1

∏T

t=1
p(xr

t |xr
t−1, ur

t−1, θ)

Sampling from posterior

Known Π and non-informative or Gaussian prior → posterior p(θ|D) is also Gaussian.

Unknown Π → posterior lacks a ‘convenient’ closed form.

We can generate samples from p(θ|D) using
Markov Chain Monte Carlo (MCMC) meth-
ods, such as Gibbs sampling, which alternates
between:

{Ak, Bk} ∼ p(A, B|Πk−1, D),
Πk ∼ p(Π|Ak, Bk, D)

The distribution p(A, B|Πk−1, D) is Gaussian → sampling is straightforward.

p(Π|A, B, D) is an inverse Wishart distribution → sampling is straightforward.

Optimization objective

We seek to minimize the expected cost w.r.t. the posterior distribution,

lim
T →∞

1
T

T∑
t=0

E [x′
tQxt + u′

tRut | xt+1 = Axt + But + wt, wt ∼ N (0, Π) , {A, B, Π} ∼ π(θ)] .

For convenience: denote the infinite horizon LQR cost, for given system parameters θ, by

J(K|θ) := lim
t→∞

E [x′
t(Q + K ′RK)xt | xt+1 = (A + BK)xt + wt, w ∼ N (0, Π)]

=

{
tr XΠ with X = (A + BK)′X(A + BK) + Q + K ′RK, A + BK stable

∞, otherwise,

More appropriate: integrate over some c % confidence region Θc of the posterior:

Jc(K) :=
∫

Θc

J(K|θ)π(θ)dθ.

We approximate this integral with Monte Carlo:

Jc
M (K) := 1

M

∑M

i=1
J(K|θi), {θi}M

i=1 ∼ Θc,

Common Lyapunov relaxation

By the Schur complement, J(K|θi) can be expressed as:

J(K|θi) = min
Xi∈Snx

ϵ

tr XiΠi

s.t.


X−1

i X−1
i (Ai + BiK)′ X−1

i Q1/2 X−1
i K ′

(Ai + BiK)X−1
i X−1

i 0
Q1/2X−1

i 0 I 0
KX−1

i 0 0 R−1

 ⪰ 0.

For M = 1 (one system) the usual trick is a change of variables Yi = X−1
i and Li = KX−1

i .

When M > 1 this not effective as we lose uniqueness of the controller K in Li = KX−1
i .

Convex upper bound

The cost for a single model θi is also given by:

J(K|θi) = min
Xi∈Snx

ϵ

tr XiΠi

s.t.

 Xi − Q (Ai + BiK)′ K ′

Ai + BiK X−1
i 0

K 0 R−1

 ⪰ 0.

Substituting T (Xi, X̄i) into J(K|θi) gives Ĵ(K, K̄|θi).

Theorem: Ĵ(K, K̄|θi) is a convex upper bound on J(K|θi), tight at K = K̄.

Iterative algorithm

Simulation studies

Control of inverted pendulum


