An Applicable Family of Data Flow Testing Criteria

PHYLLIS G. FRANKL AND ELAINE J. WEYUKER

Abstract— A test data adequacy criterion is a predicate which is used to determine whether a program has been tested "enough." An adequacy criterion is applicable if for every program there exists a set of test data for the program which satisfies the criterion. Most test data adequacy criteria based on path selection fail to satisfy the applicability property because, for some programs with unexecutable paths, no adequate set of test data exists.

In this paper, we extend the definitions of the previously introduced family of data flow testing criteria to apply to programs written in a large subset of Pascal. We then define a new family of adequacy criteria called feasible data flow testing criteria, which are derived from the data flow testing criteria. The feasible data flow testing criteria circumvent the problem of nonapplicability of the data flow testing criteria by requiring the test data to exercise only those definition-use associations which are executable. We show that there are significant differences between the relationships among the data flow testing criteria and the relationships among the feasible data flow testing criteria.

We also discuss a generalized notion of the executability of a path through a program unit. A script of a testing session using our data flow testing tool, ASSET, is included in the Appendix.

Index Terms— Data flow analysis, software testing, software validation.

I. INTRODUCTION

An important problem in software testing is deciding when to stop. An adequacy criterion is a predicate which is used to determine whether a program has been tested "enough." Several software test data adequacy criteria are based on the idea that one cannot consider a program to be adequately tested if certain sequences of statements have never been executed by any test data. These methods generally associate a test set \(T \), which is a subset of the input domain of the specification of a program \(P \), with the set \(\Pi \) of paths through \(P \)'s flow graph, which are executed when the program is run with inputs from \(T \). The test set \(T \), or equivalently the set of paths \(\Pi \), is said to satisfy criterion \(C \) for programs \(P \) ("\(T \) is \(C \)-adequate for \(P \)) if and only if each of the sequences required by \(C \) is a subpath of one of the paths in \(\Pi \).

The most well known of these criteria are statement testing, branch testing, and path testing, which require that the test data cause every node, branch, or path, respectively, in the program's flow graph to be executed [11], [12]. Unfortunately, statement and branch testing can fail to expose many common errors, and path testing is usually infeasible since programs with loops have infinitely many paths [7], [10]. Several criteria which are based on analysis of the program's control flow and which are stronger than branch testing but weaker than path testing have been proposed [11], [15], [23].

Recently, a number of test data adequacy criteria which are based on data flow (DF) analysis, some of which "bridge the gap" between branch testing and path testing, have been proposed and studied [1], [9], [14], [16], [18], [19]. Tools based on some of them have been implemented [2], [3], [6], [13]. These criteria are based on the intuition that one should not feel confident that a variable has been assigned the correct value at some point in the program if no test data cause the execution of a path from the assignment to a point where the variable's value is subsequently used.

All of these criteria suffer from the weakness that for programs with unexecutable paths it may be impossible for any test set to satisfy the given adequacy criterion. For example, consider a program containing the statement "for \(i := 1 \) to 5 do \(S \)." For each \(n \geq 0 \), there is at least one path through the program's flow graph which traverses the loop \(n \) times. However, those paths corresponding to \(n \neq 5 \) can never be executed. Such a program could not be adequately tested using the path testing criterion, even if it were possible to do exhaustive testing. Experience using our tool, ASSET, has shown that, for many programs, unexecutable paths make it impossible for any test to satisfy a given DF testing criterion [2], [3]. This is clearly an undesirable situation.

An adequacy criterion \(C \) satisfies the applicability property if and only if for every program \(P \) there exists some test set which is \(C \)-adequate for \(P \) [22]. One would expect a "good" adequacy criterion \(C \) to satisfy the applicability property. However, the statement testing, branch testing, path testing, and DF testing criteria all fail to satisfy the applicability property. Furthermore, for each of them it is undecidable whether a test set exists which adequately tests a given program.

One way to enforce the applicability of a criterion \(C \) is to restrict the class of programs considered to \(A_C \), the set of programs for which there exists a \(C \)-adequate test set. Unfortunately, for each DF testing criterion \(C \) (as well as the other criteria mentioned above), \(A_C \) excludes many "typical" programs. Furthermore, it is undecidable whether a given program belongs to \(A_C \). These drawbacks lead us to reject this approach. Instead, we define a new...
family of adequacy criteria by modifying the old criteria so as to ensure applicability.

In this paper, we define a new family of adequacy criteria, which are derived from the DF testing criteria proposed in [18], [19] and which satisfy the applicability property. Roughly speaking, for each of these new criteria, a test is adequate if and only if it comes "as close as possible" to satisfying the corresponding DF testing criterion. These criteria will be defined precisely, and the relationships between them will be explored in Section III. In Section II, we summarize the theory of DF testing, extending it to apply to programs written in Pascal. In Section IV, we define and discuss a generalization of the new family of criteria which takes into account information about the context in which the subprogram being tested is called.

II. Definitions of the DF Testing Criteria

A family of test data adequacy criteria, based on analysis of the DF characteristics of the program being tested, was defined in [18]. These criteria, which we call data flow testing criteria, or DF testing for short, were originally defined for a very simple universal programming language consisting of assignment statements, conditional and unconditional transfer statements, and I/O statements. They require that the test data exercise certain paths from a point in a program where a variable is defined to points where the variable is subsequently used. A tool, ASSET, which performs DF testing on programs written in such a language, is described in [2].

In order to make DF testing more practical, we have extended it to apply to a large subset of Pascal and have enhanced ASSET accordingly. The basic ideas behind DF testing apply to testing programs written in other imperative languages, but for precision it is necessary to specify a particular syntax. We now summarize the extended theory of DF testing.

We apply DF testing to an individual subprogram, i.e., a main program, a procedure, or a function. To execute a procedure or function P, we must call it from a driver program. Thus, to test a procedure or function P, we need a test-set/driver-program pair (T, D) where D is the program which might call P and T is a subset of the input domain of the specification for D. Obviously, the path (or paths) through P which is executed when a particular test case is input to D will depend on D, as well as on the test case. We will often omit reference to the driver program when it is obvious which driver program is calling the subprogram. Similarly, we may omit reference to the driver program if it simply reads in the arguments to the subprogram in order and then calls the subprogram once.

As a technical convenience, we assume that the subprogram being tested has no goto statements, no with statements, no variant records, no functions having var parameters, no procedural or functional parameters, and no conformant arrays. It would not be difficult to relax these assumptions. We also assume that in every conditional statement the Boolean expression which determines the flow of control has at least one occurrence of a variable or a call to the function eof or to the function eoln.

A subprogram can be uniquely decomposed into a set of disjoint blocks of statements. A block is a maximal sequence of simple statements having the properties that it can only be entered through the first statement and that, whenever the first statement is executed, the remaining statements are executed in the given order. The subprogram to be tested is represented by a flow graph in which the nodes correspond to the blocks of the subprogram and edges indicate possible flow of control between blocks. As a technical convenience, some nodes which correspond to empty sequences of statements may also be added to the flow graph. Fig. 1 shows the subgraphs corresponding to statements in the language. The subprogram's flow graph is obtained by merging the exit node of each statement with the entry node of the following statement. An entry node preceding the first statement of the procedure and an exit node succeeding the last statement are added.

DF analysis was originally used for compiler optimization [8], [20]. It generally classifies each variable occurrence as being a definition, in which a value is stored in a memory location, a use, in which a value is fetched from a memory location, or an undefined, in which the value and the location become unbound. For our purposes, we will also distinguish between two different types of use. The first type directly affects the computation being performed or outputs the result of some earlier definition. We call such a use a computation use, or a c-use. Of course, a c-use may indirectly affect the flow of control through the subprogram. In contrast, the second type of use directly affects the flow of control through the subprogram, and thereby may indirectly affect the computations performed. We call such a use a predicate use or p-use.

We will associate a sequence of definitions and c-uses with each node in the flow graph and will associate a set of p-uses with each edge in the flow graph. Fig. 1 shows the classification of variable occurrences in the language's statements. In addition, the entry node is considered to have a definition of each parameter, each nonlocal variable which occurs in the subprogram, and the input buffer input, which may implicitly occur in calls to the standard procedures/functions read, readln, eoln, and eof. The exit node has an undefined of each local variable, a c-use of each variable parameter, a c-use of each nonlocal variable, and a c-use of the input buffer input.

We now discuss how DF analysis is handled for structured variables. Since it is not possible, in general, to determine the particular array element which is being defined or used in an occurrence of an array variable, any definition of the variable $a[e]$ will consist of a c-use of each variable occurring in the expression e, followed by a definition of a. Any use of $a[e]$ will consist of uses of all of the variables occurring in e, followed by a use of a.

Similarly, we will treat pointers purely syntactically, making no attempt to perform DF analysis on dereferenced pointers. If p is a pointer variable, a definition of
SIMPLE STATEMENTS

Assignment statement: \(v := expr; \)

- Node \(i \) has \(c \)-uses of each variable in \(expr \) followed by a definition of \(v \).

Input/Output statements:

- \(\text{read}(v_1, \ldots, v_n); \)

- Node \(i \) has definitions of \(v_1, \ldots, v_n \).
 - If the file variable \(f \) is present then node \(i \) also has a \(c \)-use followed by a definition of \(f \).

- \(\text{write}(v_1, \ldots, v_n); \)
- \(\text{write}(v_1, \ldots, v_n); \)
- \(\text{write}(v_1, \ldots, v_n); \)

- Node \(i \) has \(c \)-uses of each variable occurring in \(e_1, \ldots, e_n \).
 - If the file variable \(f \) is present then node \(i \) also has a \(c \)-use followed by a definition of \(f \).

Procedure call: \(F(p_1, \ldots, p_n); \)

- Node \(j \) has \(c \)-uses of each variable occurring in the expressions \(e_1, \ldots, e_n \).
 - These are followed by definitions of each actual parameter which corresponds to an \(a \)-use formal parameter.

- Nodes \(i \) and \(k \) are included to ensure that the procedure call has its own node.

REPETITIVE STATEMENTS

While statement while \(B \) do \(S \):

- Let \(h \) be the entry node to subgraph \(S \).
 - Edges \((h, i)\) and \((i, j)\) have \(p \)-uses of each variable in the boolean expression \(B \).

For statement for \(v := e_1 \) to \(e_2 \) do \(S \):

- Let \(t \) be a new variable.
 - Let \(f \) and \(g \) be the entry and exit nodes, respectively, of \(S \).
 - Edges \((t, f)\) and \((i, j)\) have \(p \)-uses of each variable in the boolean expression \(B \).

Repeat statement repeat \(S_1 ; \ldots ; S_n \) until \(B \):

- Let \(j \) be the entry node of \(S_1 \), and let \(k \) be the exit node of \(S_n \).
 - Edges \((j, k)\) and \((k, j)\) have \(p \)-uses of each variable in the boolean expression \(B \).

CONDITIONAL STATEMENTS

If-then-else statement if \(B \) then \(S_1 \); if \(\neg B \) then \(S_2 \);

- Let \(k \) and \(j \) be the entry nodes of \(S_1 \) and \(S_2 \), respectively.
 - Edges \((i, j)\) and \((j, k)\) have \(p \)-uses of each variable in the boolean expression \(B \).

- If there is no "else" part then subgraph \(S_2 \) has a single node corresponding to an empty block.

Case statement case \(e \) of

- label \(l_1 \) : \(S_1 \);...
 - label-else : \(S_n \); end;

- Let \(j_1, \ldots, j_m \) be the entry nodes of \(S_1, \ldots, S_n \), respectively.
 - Edges \((i, j_1), \ldots, (j_m, y)\) have \(p \)-uses of each variable in the expression \(e \).

Fig. 1. Control flow and DF for statement in the language. Si ○ denotes the subgraph corresponding to statement \(Si \).

\(p^+ \) consists of a \(c \)-use of \(p \) followed by a definition of \(p^+ \), and a \(u \)-use of \(p^+ \) consists of a \(u \)-use of \(p \) followed by a \(u \)-use of \(p^+ \). Since it is not possible to determine statically the memory location to which a pointer points, we will ignore the definitions and uses of \(p^+ \).

Each field of a record is treated as an individual variable. Any unqualified occurrence of a record is treated as an occurrence of each field of the record. Occurrences of file variables in I/O statements are handled by considering the effect of the statement on the file buffer.

Note that our model of data flow may not reflect the actual DF in the subprogram being tested completely accurately. For example, we have made no attempt to perform any interprocedural data flow analysis, have ignored dereferenced pointers, have made no attempt to disambiguate array references, and have ignored potential aliasing and side effects. In an optimizing compiler, it is imperative that conservative assumptions be made about the flow of data, lest a code transformation which changes the semantics of the program be performed. In the context of DF testing, however, such caution is not strictly necessary. On the other hand, it seems reasonable to expect
that more accurate DF analysis will force the selection of better test data. In [3], we compare the test data needed
to test programs adequately when each array is treated as
a single entity to the test data required to test transformed
programs adequately in which array references are dis-
ambiguated and each element of the array is treated as an
individual entity. More exploration of the tradeoff be-
tween the difficulty of performing accurate DF analysis
and the quality of the resulting test data is needed.

We are interested in tracing the flow of data between
nodes, and thus define a c-use of a variable x in node i
to be a global c-use if the value of x has been assigned
in some block other than block i. Let x be a variable occur-
ing in a subprogram. A path \((i, n_1, \cdots, n_m, j) \), \(m \geq 0 \),
containing no definitions or undefinitions of x in nodes
\(n_1, \cdots, n_m \) is called a definition clear path with respect
to x (def-clear path wrt x) from node i to node j and from
node i to edge \((n_m, j) \). A node i has a global definition
of a variable x if it has a definition of x and there is a def-
clear path wrt x from node i to some node containing a
global c-use or edge containing a p-use of x. Since every
p-use is associated with a potential transfer of control from
one node to another, there is no need to distinguish be-
tween p-uses and global p-uses.

We restrict the class of subprograms to which DF test-
ing applies to those subprograms \(P \) satisfying the follow-
ing two properties.

1) No-Syntactic-Undefined-P-use Property (NSUP):
For every p-use of a variable x on an edge \((i, j) \) in \(P \),
there is some path from the start node to edge \((i, j) \) which
contains a global definition of x.

2) Non-Straight-Line Property (NSL): \(P \) has at least
one conditional or repetitive statement.

Note that the NSL property guarantees that at least one
node in \(P \)'s flow graph has more than one successor
and that at least one variable has a p-use in \(P \).

The subprogram's def-use graph is obtained from the
flow graph by associating with each node i the sets
c-use (i) = \{ variables which have global c-uses in block i \} and def (i) = \{ variables which have global definitions
in block i \} and associating with each edge \((i, j) \) the set
p-use (i, j) = \{ variables which have p-uses on edge \((i, j) \) \}.
We also define sets of nodes dcu (x, i) = \{ nodes j
such that x is c-use \((j) \) and there is a def-clear path with
respect to x from i to j \} and p (x, i) = \{ edges \((j, k) \)
such that x is p-use \((j, k) \) and there is a def-clear path with
respect to x from i to \((j, k) \) \}. These definitions are sum-
marized in Fig. 2.

Thus, if \(x \in \text{def}(i) \) and \(j \in \text{dcu}(x, i) \), then \(x \)
has a global definition in node \(i \) and a c-use in node \(j \), and
there is a definition clear path with respect to x from node i
to node j. Therefore, it may be possible for control to reach
node \(j \) with the variable \(x \) having the value which
was assigned to it in node \(i \).

A definition-c-use association is a triple \((i, j, x) \) where
\(i \) is a node containing a global definition of \(x \) and \(j \in
\text{dcu}(x, i) \). A definition-p-use association is a triple \((i, j, k, x) \) where i is a node containing a global definition
of \(x \) and \((j, k) \in \text{p}(x, i) \). A simple path is one in which
all nodes, except possibly the first and last, are distinct.
A loop-free path is one in which all nodes are distinct.
A path \((n_1, \cdots, n_j, n_k) \) is a du-path with respect to a
variable x if \(n_j \) has a global definition of x and either

1) \(n_j \) has a global c-use of x and \((n_1, \cdots, n_j, n_k) \) is a
def-clear simple path with respect to x, or
2) \((n_j, n_k) \) has a p-use of x and \((n_1, \cdots, n_j, n_k) \) is a def-
clear loop-free path with respect to x.

An association is a definition-c-use association, a defi-
nition-p-use association, or a du-path.

A complete path is a path from the entry node to the
exit node of the flow graph. A complete path \(\pi \) covers a
definition-c-use association \((i, j, x) \) (respectively, a
definition-p-use association \((i, j, k, x) \)) if it has a defi-
nition clear subpath with respect to x from i to j (respec-
tively, from i to \((j, k) \)). \(\pi \) covers a du-path \(\pi' \) if \(\pi' \) is a
subpath of \(\pi \). A set \(\Pi \) of paths covers an association if
some element of the set does. A test-set/driver-program
pair \((D, T) \) covers an association if, when input to D,
the elements of T cause the execution of the set of paths \(\Pi \),
and \(\Pi \) covers the association.

Roughly speaking, the family of DF testing criteria is
based on requiring that the test data execute definition
clear paths from each node containing a global definition
of a variable to specified nodes containing global c-uses
and edges containing p-uses of that variable. For each
variable definition, we can demand that \(\begin{bmatrix}
\text{all} \\
\text{somes}
\end{bmatrix} \) definition clear paths with respect to that variable from
the node containing the definition to \(\begin{bmatrix}
\text{all} \\
\text{somes}
\end{bmatrix} \) of the \(\begin{bmatrix}
\text{uses} \\
\text{c-uses} \\
\text{p-uses}
\end{bmatrix} \) reachable by some such paths be executed. The criteria
are defined precisely in Fig. 3.

If variable x has a global definition in node i, the all-
defs criterion requires the test data to exercise some path
which goes from node i to some node or edge at which
the value assigned to x in node i is used. The all-uses
criterion requires the test data to exercise at least one path
to each such node and to each such edge. The all-du-paths
criterion requires that all of the du-paths from i to each
such node and each such edge be exercised. The criteria
all-p-uses, all-c-uses, all-p-uses/some-c-uses, and all-
c-uses/some-p-uses place emphasis on either c-uses or
p-uses. Note that any subprogram has only finitely many
definition-use associations, so none of the DF criteria
requires an infinite amount of test data. Upper bounds on
THE DATA FLOW TESTING CRITERIA

A test-set/driver-program pair (T,D) satisfies criterion C for subprogram P if and only if for each node i in T's flow graph and each x e def(i) the set Π of paths executed by T covers the following associations:

<table>
<thead>
<tr>
<th>CRITERION</th>
<th>ASSOCIATIONS REQUIRED</th>
</tr>
</thead>
<tbody>
<tr>
<td>All-defs</td>
<td>Some (i,j,x) s.t. j e dceu(i) or some (i,j,k,x) s.t. (i,k) e dceu(k)</td>
</tr>
<tr>
<td>All-c-uses</td>
<td>All (i,j,k,x) s.t. j e dceu(i)</td>
</tr>
<tr>
<td>All-p-uses</td>
<td>All (i,j,k,x) s.t. (i,k) e dceu(i)</td>
</tr>
<tr>
<td>All-p-uses/some-c-uses</td>
<td>All (i,j,k,x) s.t. (i,k) e dceu(i) and some (i,j,x) s.t. (i,k) e dceu(i)</td>
</tr>
<tr>
<td>All-c-uses/some-p-uses</td>
<td>All (i,j,k,x) s.t. (i,k) e dceu(i) and in addition, if dceu(i) #= then some (i,j,x) s.t. (i,k) e dceu(i)</td>
</tr>
<tr>
<td>All-c-uses/some-p-uses</td>
<td>All (i,j,k,x) s.t. (i,k) e dceu(i) and in addition, if dceu(i) #= then some (i,j,k,x) s.t. (i,k) e dceu(i)</td>
</tr>
<tr>
<td>All-defs</td>
<td>All (i,j,k,x) s.t. (i,k) e dceu(i) and all (i,j,k,x) s.t. (i,k) e dceu(i)</td>
</tr>
</tbody>
</table>

For comparison we also define the criteria all-nodes (all-edges, all-paths, respectively) which require that Π cover every node (every edge, every path, respectively) in the flow graph.

Fig. 3. Definitions of the DF testing criteria.

investigate some of its properties. We assume that all aliasing and side effects are known. We also assume that no element of the test set causes the program to crash; thus, if a test case causes the execution of the entry node of some subprogram, it will cause the execution of a path from the entry to the exit of that subprogram.

Recall that a complete path is a path from the entry node to the exit node of a subprogram's flow graph. We say that a complete path is executable or feasible if there exists some assignment of values to input variables, non-local variables, and parameters which causes the path to be executed. We say that a path is executable if it is a subpath of an executable complete path. Similarly, a node or edge is executable if it lies on some executable complete path. According to this definition, the question of whether or not a given path through a subprogram is executable is independent of the context in which that subprogram is called. However, it may depend on the effects of any procedures or functions which are called along the path. In Section IV, we will discuss the consequences of modifying this notion of executability to take into account information about the context in which the subprogram is called. Note that whether or not a particular path is executable depends on the actual subprogram, not just on its def-use graph.

We say that an association is executable if there is some executable complete path which covers it; otherwise, it is unexecutable. We define subsets fdcu(x,i) ⊆ dcu(x,i) and fdpu(x,i) ⊆ dpu(x,i), whose elements correspond to those associations which are executable as follows:
fdcu(x,i) = { nodes j such that x e c-use(j) and there is an executable definition clear path with respect to x from i to j }; fdpu(x,i) = { edges (j,k) such that x e p-use(j,k) and there is an executable definition clear path with respect to x from i to (j,k) }. Equivalently, fdcu(x,i) = { j e dcu(x,i) | the association (i,j,x) is executable } and fdpu(x,i) = { (j,k) e dpu(x,i) | the association (i,j,k) is executable }. For each DF criterion C, we define a new criterion C* by selecting the required associations from fdcu(x,i) and fdpu(x,i) instead of from dcu(x,i) and dpu(x,i). Precise definitions of these
THE FEASIBLE DATA FLOW TESTING CRITERIA

\(\text{fid}(x_1) = (\text{je} \text{dout}(x_1) \text{the association } (i,j) \text{ is executable}) \)

\(\text{fip}(x_1) = (\{l \text{ je} \text{dup}(x_1) \text{the association } (i,j,k) \text{ is executable}) \)

A test-set-driven-program pair \((T,D)\) satisfies criterion \(C\) for subprogram \(P\) if and only if for each node \(i\) in \(P\)'s flow graph and each \(x \in \text{def}(i)\) the set \(\Pi\) of paths executed by \(T\) covers the following associations:

<table>
<thead>
<tr>
<th>CRITERION</th>
<th>REQUIRED ASSOCIATIONS</th>
</tr>
</thead>
<tbody>
<tr>
<td>(all-defs)*</td>
<td>if (\text{fid}(x_1)), (\text{fip}(x_1)) (\neq \phi) then some ((i,j)) s.t. (\text{je} \text{dout}(x_1)) or some ((i,j,k)) s.t. (\text{je} \text{dup}(x_1))</td>
</tr>
<tr>
<td>(all-c-uses)*</td>
<td>all ((i,j,k)) s.t. (\text{je} \text{dout}(x_1))</td>
</tr>
<tr>
<td>(all-p-uses)*</td>
<td>all ((i,j,k)) s.t. (\text{je} \text{dup}(x_1))</td>
</tr>
<tr>
<td>(all-p-uses/some-c-uses)*</td>
<td>all ((i,j,k)) s.t. (\text{je} \text{dup}(x_1)) and (\text{fid}(x_1)) s.t. (\text{je} \text{dout}(x_1))</td>
</tr>
<tr>
<td>(all-c-uses/some-p-uses)*</td>
<td>all ((i,j,k)) s.t. (\text{je} \text{dout}(x_1)) and (\text{fip}(x_1)) s.t. (\text{je} \text{dup}(x_1))</td>
</tr>
<tr>
<td>(all-defs)*</td>
<td>all ((i,j,k)) s.t. (\text{je} \text{dout}(x_1)) and (\text{fip}(x_1)) s.t. (\text{je} \text{dup}(x_1))</td>
</tr>
</tbody>
</table>

For comparison we also define the criteria \((\text{all-nodes})*, (\text{all-edges})*, (\text{all-paths})*, respectively) which require that \(\Pi\) cover each executable node (each executable edge, each executable path, respectively).

Fig. 6. Definitions of the feasible DF testing criteria.

Criteria are given in Fig. 5. We refer to the criteria \{(all-du paths)*, (all-uses)*, (all-p-uses/some-c-uses)*, (all-c-uses/some-p-uses)*, (all-p-uses)*, (all-c-uses)*, and (all-defs)*\} as feasible DF testing criteria, or FDF criteria for short.

The FDF criteria satisfy the applicability property: for any subprogram \(P\) and any FDF criterion \(C^*\), there is some test set \(T\) which satisfies \(C^*\). However, the question of whether a particular \(T\) satisfies \(C^*\) for subprogram \(P\) is undecidable. In going from the family DF to the family FDF, we have traded the undecidability of the existence question "Is there any test set which is \(C\)-adequate for \(P\)?" for the undecidability of the recognition problem "Is a given test set \(C^*\)-adequate for \(P\)?".

Observe that for any DF criterion \(C, C = C^*\). We now investigate the inclusion relations among the FDF criteria.

Theorem 1: The family of FDF criteria is partially ordered by strict inclusion, as shown in Fig. 6. Furthermore, FDF criterion \(C^*\) includes FDF criterion \(C^\dagger\) if and only if the inclusion is explicitly shown in the figure or follows from the transitivity of the relations. **Proof:**

A) **Strictness of the Inclusions:** We first observe that if subprogram \(P\) has no unexecutable paths, then a test set is \(C\)-adequate for \(P\) if and only if it is \(C^\dagger\)-adequate for \(P\). This observation, along with the proofs of strictness of the inclusions in Theorem 1 of [19], none of which involves subprograms with unexecutable paths, shows that all of the inclusions in Fig. 6 are strict. It thus suffices to show that the inclusions in Fig. 6 hold.

B1) (all-paths)* \(\supset\) (all-uses)*: Suppose that this does not hold. Then there are a subprogram \(P\) and a set \(T\) of test data which are (all-paths)*-adequate for \(P\), but not (all-uses)*-adequate. Let \(\Pi\) be the set of paths through \(P\) which \(T\) executes. There exist a node \(i\) in \(P\) with a global definition of some variable \(x\), a node \(j\) with a global c-use of \(x\) or edge \((i,j,k)\) with a p-use of \(x\), and an executable definition clear path with respect to \(x\) from \(i\) to \(j\) [respectively, from \(i\) to \((j,k)\)] which is not covered by \(\Pi\). This contradicts the fact that \(\Pi\) covers every executable path.

B2) (all-paths)* \(\Rightarrow\) (all-du-paths)*: Suppose that this does not hold. Then there are a subprogram \(P\) and a set \(T\) of test data which are (all-paths)*-adequate for \(P\), but not (all-du-paths)*-adequate. Let \(\Pi\) be the set of paths through \(P\) which \(T\) executes. There exists an executable du-path which is not covered by \(\Pi\). This contradicts the fact that \(\Pi\) covers every executable path.

B3) (all-paths)* \(\Rightarrow\) (all-edges)*: Suppose that this does not hold. Then there are a subprogram \(P\) and a set \(T\) of test data which are (all-paths)*-adequate for \(P\), but not (all-edges)*-adequate. Let \(\Pi\) be the set of paths through \(P\) which \(T\) executes. There exists an executable edge \((i,j)\) which is not covered by \(\Pi\). This contradicts the fact that \(\Pi\) covers every executable path.

B4) (all-edges)* \(\Rightarrow\) (all-nodes)*: Let \(T\) be a test set which satisfies (all-edges)* for subprogram \(P\), and let \(\Pi\) be the set of paths executed by \(T\). Let \(n\) be any executable node in \(P\). If \(n\) is the entry node, then \(n\) has a unique successor \(m\), and \((n,m)\) is executable. So \(\Pi\) covers \((n,m)\) and hence covers \(n\). If \(n\) is not the entry node, then since \(n\) is executable, some branch \((i,n)\) is executable. So \(\Pi\) covers \((i,n)\) and hence covers \(n\).

B5) (all-uses)* \(\Rightarrow\) (all-p-uses/some-c-uses)*, (all-p-uses/some-c-uses)* \(\Rightarrow\) (all-p-uses)*, (all-p-uses/some-c-uses)* \(\Rightarrow\) (all-defs)*, (all-uses)* \(\Rightarrow\) (all-p-uses/some-c-uses)*, (all-uses)* \(\Rightarrow\) (all-defs)*: These inclusions follow immediately from the definitions of the criteria given in Fig. 5. For example, any set \(\Pi\) of paths which covers all of the associations required by (all-uses)* will a fortiori cover all of the associations required by (all-p-uses/some-c-uses)*.

We next show that those relations not in the transitive closure of the diagram in Fig. 6 do not hold.

C1) (all-du-paths)* \(\perp\) (all-du-paths)*: Suppose that this does not hold. Then there are subprogram \(P\) and a set \(T\) of test data which are (all-du-paths)*-adequate for \(P\), but not (all-du-paths)*-adequate. Let \(\Pi\) be the set of paths through \(P\) which \(T\) executes. There exist a node \(i\) in \(P\) with a global definition of some variable \(x\), a node \(j\) with a global c-use of \(x\) or edge \((i,j)\) with a p-use of \(x\), and an executable definition clear path with respect to \(x\) from \(i\) to \(j\) [respectively, from \(i\) to \((j,k)\)] which is not covered by \(\Pi\). This contradicts the fact that \(\Pi\) covers every executable path.
(all-du-paths) \(\supseteq (all-c-uses)\), (all-du-paths) \(\supseteq (all-c-uses/some-p-uses)\), (all-du-paths) \(\supseteq (all-defs)\), (all-du-paths) \(\supseteq (all-edges)\), (all-du-paths) \(\supseteq (all-nodes)\): It suffices to show that (all-du-paths) \(\not\supseteq (all-p-uses)\), (all-du-paths) \(\not\supseteq (all-c-uses)\), (all-du-paths) \(\not\supseteq (all-defs)\), and (all-du-paths) \(\not\supseteq (all-nodes)\). The rest follows from the transitivity of \(\supseteq\). Consider the subprogram shown in Fig. 7(a). Its du-paths are shown in Fig. 7(b). Of these, only \((1, 2), (2, 3, 4), (4, 3, 4), \) and \((4, 3, 5)\) are executable. Let \(T = \{(X, Y)\}\) where \(X\) is any integer and \(Y < 0\). Since \(T\) executes \(T = \{(1, 2, 3, 4, 3, 4, 3, 5, 6, 7, 9, 10)\}\), \(T\) satisfies (all-du-paths). However, \(T\) does not cover the associations \((2, 6, 8, y)\), \((2, 8, x)\), or node 8, all of which are covered by the executable path \((1, 3, 4, 3, 4, 3, 5, 6, 8, 9, 10)\), so \(T\) does not satisfy (all-p-uses), (all-c-uses), (all-defs), or (all-nodes).

Intuitively, (all-du-paths) \(\not\supseteq\) includes these criteria because it is possible for a subprogram to have certain definition-use associations which can be executed only by paths which traverse some loop one or more times.

\(C2\): (all-p-uses) \(\not\supseteq\) (all-edges), (all-p-uses/some-c-uses) \(\not\supseteq\) (all-edges), (all-uses) \(\not\supseteq\) (all-edges), (all-nodes), (all-uses) \(\not\supseteq\) (all-nodes)}: Consider the subprogram in Fig. 8, where \(y\) is a local variable (and hence does not have a definition in the entry node). Notice that since node 3 is unexecutable, \(y\) is always uninitialized when control reaches node 5. In the absence of any information about which edge leaving node 5 will be executed when the program is run on actual test data, we make the worst case assumption that edges (5, 6) and (5, 7) are both executable. This would be the case, for example, in an environment in which uninitialized variables receive arbitrary values. Since node 3 is unexecutable, the only executable definition-use associations are \((1, 2, input1), (2, 2, 4), (x)\), and \((2, 9, input1)\). Let \(T\) be a test which executes \(T = \{(1, 2, 4, 5, 6, 8, 9)\}\) or \(T = \{(1, 2, 4, 5, 7, 8, 9)\}\). Then \(T\) satisfies (all-p-uses), (all-p-uses/some-c-uses), and (all-uses), but does not satisfy (all-edges) or (all-nodes).

The rest of the noninclusions follow immediately from the incomparability and strictness proofs for the DF criteria, given in [19] and [5].

It seems discouraging that (all-p-uses) \(\not\supseteq\) includes (all-edges). DF testing was developed in part in order to "bridge the gap" between branch testing and path testing. Since many "real-life" subprograms cannot be adequately tested using the unstared versions of the DF criteria, one would hope that the FDF criteria would "bridge the gap" between (all-edges) and (all-p-uses). We have seen that this is not the case. We next show that, for a certain class of "well-behaved" subprograms, any test which satisfies (all-p-uses) satisfies (all-edges).

Definition: We will say that a subprogram \(P\) satisfies the No-Feasible-Undefined-P-uses property (NFUP) if and only if, for every executable edge \((i, j)\) in \(P\) having a p-use of a variable \(x\), there is some executable path from the start node to edge \((i, j)\) which contains a global definition of \(x\).

We note that it is quite reasonable to expect subprograms to have property NFUP. If \((i, j)\) is an edge which causes NFUP to fail, then any input which causes \((i, j)\) to be executed will involve referencing an uninitialized variable.

Theorem 2: For the class of subprograms which satisfy NFUP, (all-p-uses) \(\supseteq\) (all-edges).

Proof: Let \(P\) be a subprogram satisfying NFUP, let \(T\) be a test set which satisfies (all-p-uses) for \(P\), let \(\Pi\) be the set of paths executed by \(T\), and let \((i, j)\) be an executable edge in \(P\). Suppose \((i, j)\) has a p-use of a variable \(x\). By hypothesis, there is an executable path \(\pi\) from the start node to \((i, j)\) which includes a global definition of \(x\).
Let n be the last node in π having a global definition of x. Then $(n, (i, j), x)$ is an executable definition-use association, so it is covered by Π. Hence, (i, j) is covered by Π.

If (i, j) has no p-uses, then the result follows by a straightforward modification of the corresponding part of the proof of (all-p-uses) \Rightarrow (all-edges) [5].

In [19], the class of subprograms to which DF testing applies was restricted to those subprograms satisfying the NSUP property, defined in Section II above. This restriction was necessary in order to ensure that all-p-uses \Rightarrow all-edges. NFUP is a strengthening of NSUP. It takes into account the fact that even in subprograms satisfying NSUP, it may be the case that no executable path π from the entry node to some p-use of x has a definition of x.

It is tempting to restrict the class of programs to which the FDF criteria apply to those satisfying NFUP. It is our feeling, however, that while one can live with the undecidability of the adequate test recognition problem and perhaps (albeit very uncomfortably) with the undecidability of the adequate test existence problem, one should at least be able to decide algorithmically whether a given testing strategy applies to a given subprogram. Since it is undecidable whether a given subprogram satisfies NFUP, we refrain from requiring that this property hold for subprograms to be tested.

Another possible way to force (all-p-uses)* to include (all-edges)* would be to require subprograms to satisfy the No-Anomalies property (NA), as which is as follows. Every path from the start node to a use of a variable x must contain a definition of x. Osterweil and Fosdick [17] consider any subprogram not satisfying this property to have a DF anomaly indicative of possible subprogram error. Since NA is a purely syntactic property and NA implies NFUP, we could restrict FDF testing to subprograms satisfying this property. We feel that this is overly restrictive since many perfectly good subprograms fail to satisfy NA.

One way to force NA to be satisfied is to give the entry node a definition of each variable. This would potentially increase the number of def-use associations and thus make the criteria more demanding. However, it would also make the model of the subprogram’s DF reflect the actual DF less accurately.

Another approach is to perform FDF testing in conjunction with a check for DF anomalies. For any subprogram which satisfies NA and any test set T which satisfies (all-p-uses)*, the tester will be assured that T satisfies (all-edges)*. In case NA does not hold, the tester should explicitly check whether (all-edges)* is satisfied and, if necessary, add more test data or inspect the subprogram for references of uninitialized variables.

IV. A Generalized Notion of Executability

The definition of executability given in Section III fails to take into account any information about the context in which a subprogram is called. It may be the case that there are no input data to the program as a whole which cause the execution of a particular executable path through a subprogram. In order to test such a subprogram adequately with respect to a given FDF criterion, it may be necessary to write a driver program which assigns particular values to global variables and parameters and then calls the subprogram. Whether this extra effort is “worthwhile” depends on whether it is likely that the subprogram will ever be called in a context other than the one in which it currently appears in the program. In this section, we define a more general notion of executability which takes into account information about the context in which a subprogram is called. We then explore the effects of this generalization on the FDF criteria.

Consider the program

```plaintext
program main(input, output);
type CharString = array[1..10] of char;
var string1: CharString;
   length: integer;
procedure WriteString(str: CharString; n: integer);
   {Writes the first n characters of str to standard output.}
   var i: integer;
begin
   for i := 1 to n do write(str[i])
end;

begin {statement part of main program}
   if length > 0 then WriteString(string1, length)
   else ...
end. {main}
```

Suppose that at every point in the program at which `WriteString` is called, the value of n is guaranteed to be strictly greater than zero. Then no input to the program can cause the execution of the path through the procedure which traverses the loop zero times.

In order to test `WriteString` adequately with respect to the criterion (all-uses)*, it is necessary to include test data which cause the for loop to be traversed zero times. To do this, one must write a driver program which calls `WriteString` with the second parameter having a value less than or equal to zero. If we think that we might actually want to use the procedure `WriteString` in a less restricted context (for example, because of modifications of the calling program or reusing the procedure in a different program), then this is a reasonable thing to do. On the other hand, if we are fairly certain that the procedure will never be called in a context where n is less than or equal to zero, then writing a driver program could be construed as being a wasted effort. What is needed is a notion of test data adequacy which takes into account information about the context in which the subprogram being tested can be called.

We can achieve this by relativizing the definition of executability as follows. We associate with the subprogram to be tested a predicate $IC(V_1, \cdots, V_k)$ called the input constraint where V_1, \cdots, V_k represent the subprogram's
parameters and nonlocal variables. A path through the
subprogram is then executable relative to IC if there exists
some assignment of values to input variables, parameters,
and nonlocal variables which satisfies IC and which causes
the path to executed. A path is executable as defined in
Section III if and only if it is executable relative to the
input constraint IC = TRUE. The notion of executability
of an association and the definitions of the FDF criteria
can be relativized in a straightforward manner.

The relationship among the relativized FDF criteria is
essentially the same as that among the nonrelativized
criteria. The definitions must be modified to reflect the fact
that the objects being tested now consist of pairs (P, IC)
where P is a subprogram and IC is an input constraint.
We say that the relativized criteria C, includes the relativized
criterion C, if for every subprogram/input-constraint pair (P, IC)
every test which satisfies C, for that pair also
satisfies C, C, strictly includes C, if C, includes C, and
for some pair (P, IC) there is a test which satisfies C but
does not satisfy C, It is easy to show that the relationship
among the relativized criteria is as shown in Fig. 6.

One reasonable choice for the input constraint is the
predicate ICpec obtained by taking the constraints on
the input to the program as a whole (from the program’s
specification), conjoining them, and “pushing them through”
the program to all points at which the sub-
program being tested is called. In practice, one might want
to use a weaker predicate than ICpec, which can be built
up during the testing process as follows. At some point in
the testing process, the tester notices that a particular exec-
utable association has not been exercised. Upon
examining the program to see what values of input data,
nonlocal variables, and parameters would cause the exec-
ution of that association, the tester sees that the needed
values of nonlocal variables and parameters cannot arise
in the context of the program as a whole. One can then
formulate a constraint which reflects this fact and can con-
join it to the previous constraint.

If the calling program is modified some time after the
subprogram has been tested to be adequately tested, the
predicate IC will provide useful documentation which will
help in selecting additional test data for the subprogram.
If IC is still satisfied whenever the subprogram is called,
then no further testing of the subprogram will be needed.
If IC no longer holds at the points of call, however, it will
be necessary to update IC, determine which def-use as-
bociations become executable relative to the new con-
straint, and add test data to exercise those associations.

V. CONCLUSIONS

We have introduced a new family of path selection cri-
teria derived from the DF testing criteria and explored the
relationships among them. These criteria, the feasible data
flow (FDF) testing criteria, are obtained from the corre-
sponding DF testing criteria by eliminating unexecutable
associations from consideration.

For a large class of “well-behaved programs, the FDF
criteria (all-p-uses)*, (all-p-uses/some-c-uses)*, and (all-
uses)* “bridge the gap” between (all-edges)* and (all-
paths)* in the same way that the corresponding DF
criteria do. For certain programs with anomalies, however,
there are tests which satisfy (all-p-uses)* without satisfy-
ing (all-edges)*. Furthermore, although (all-du-paths)
= (all-uses), (all-du-paths)* does not even include (all-
nodes)*.

The advantage of the FDF criteria over the DF criteria
is that they satisfy the applicability property: for every
subprogram P and every FDF criterion C, there is some
set of paths which is C-adequate for P. The DF criteria
do not satisfy this property. The disadvantage of the FDF
criteria is that it is undecidable whether a particular set of
paths is C-adequate for P. Thus, in deciding whether to
use the DF criteria or the FDF criteria, one is faced with
a tradeoff between applicability and automatibility.

Although it is in general undecidable whether a given
association is executable, it is often easy for a person
looking at a subprogram to determine whether or not a
particular association is executable. Sometimes this re-
quires very little semantic information. For example, any
program with a for loop in which the upper bound is al-
gways greater than or equal to the lower bound has an
unexecutable definition-use association. In other cases,
determining whether a given association is executable
seems to require a “high-level” understanding of how the
program and other subprograms which it calls operate.

We have developed a heuristic method which uses a
combination of symbolic evaluation and DF analysis to
attempt to identify unexecutable definition-use associa-
tions [5]. When the heuristic cannot determine whether or
not a particular association is executable, the person using
the tool will have to intervene. We hope that this approach
will prove to be a practical way to preserve the applica-
bility property enjoyed by the FDF criteria, while sacri-
ficing automatibility to only a small extent.

APPENDIX

EXAMPLE OF AN ASSET SESSION

In this Appendix, we present an annotated example of
an ASSET session. To distinguish between text written
by the system and that written by the user, we display text
typed by the user in boldface type. Comments are written
in italics. For further information, see the ASSET
USER MANUAL [4].

Example 1: This example shows an ASSET session in
which a brute-force string matching procedure is ana-
lyzed. The program reads a string and a pattern. It is sup-
posed to print the position in the string at which the pat-
tern first appears and print 0 if the pattern never appears
in the string. The current working directory has a subdi-
rectory called “StrMch.” The file “StrMch/subject.p”
contains the following program:

```
program TestStringMatch (input, output);
   const MAX = 80;
   LENGTH = 10;
```
Welcome to ASSET. For help type “help.”

Enter relative pathname of initial default director.

>>: StrMtx

>>>: begin

Enter name of subject procedure file.

>>>: subject.p

Separate Compilation? (Y/N) [N]
The “‘N’” in square brackets indicates that the default answer is “‘no.’”

>>>: n

Enter the name of the procedure to be instrumented.
If you would like to be prompted with the names of
the procedures in the subject program, just hit carriage
return.

====> Should TestStringMatch
be instrumented for testing? (Y/N)

>>>: y

====> Should StringMatch
be instrumented for testing? (Y/N)

>>>: y

>>>: select

SELECT A CRITERION

A. All-defs
B. All-c-uses
C. All-p-uses
D. All-c-uses/some-p-uses
E. All-p-uses/some-c-uses
F. All-uses
G. All-du-paths

Enter letter representing the selected criterion

>>>: a

Criterion is All-defs.

>>>: find

We next check whether the criterion has been satisfied
with no test data. This is not necessary, but by doing this,
we get a list of all of the def-c-use and def-p-use
associations in the program.

>>>: check

ALL-DEFs:

Still must exercise at least two of the following def-clear paths:

with respect to from to
Pattern 1 (3,5) Pattern 1 (3,4)

AND
Still must exercise at least one of the following def-clear paths:
with respect to from to
SorText 1 (3, 5)
SorText 1 (3, 4)

AND

Still must exercise at least one of the following def-clear paths:
with respect to from to
PatLen 1 8
PatLen 1 (6, 3)
PatLen 1 (6, 7)
PatLen 1 (7, 9)
PatLen 1 (7, 8)

AND

Still must exercise at least one of the following def-clear paths:
with respect to from to
PatPos 2 4
PatPos 4 5
PatPos 4 (3, 5)
PatPos 4 (3, 4)
PatPos 4 (6, 3)
PatPos 4 (6, 7)
PatPos 4 (7, 9)
PatPos 4 (7, 8)

AND

Still must exercise at least one of the following def-clear paths:
with respect to from to
SorPos 4 4
SorPos 4 5
SorPos 4 8
SorPos 4 (3, 5)
SorPos 4 (3, 4)
SorPos 4 (6, 3)
SorPos 4 (6, 7)

AND

Still must exercise at least one of the following def-clear paths:
with respect to from to
PatPos 5 4
PatPos 5 5
PatPos 5 (3, 5)
PatPos 5 (3, 4)
PatPos 5 (6, 3)
PatPos 5 (6, 7)
PatPos 5 (7, 9)
PatPos 5 (7, 8)

AND

Still must exercise at least one of the following def-clear paths:
with respect to from to
SorPos 5 4
SorPos 5 5
SorPos 5 8
SorPos 5 (3, 5)
SorPos 5 (3, 4)
SorPos 5 (6, 3)
SorPos 5 (6, 7)

To look at these again use the command `view results'.

Next we will compile the program and start running it on some test data. As the initial test data set, we select one element in which the pattern appears in the string and one element in which the pattern does not appear in the string.

>>> : compile

Compilation begins ...
Done, and successful.

>>> : run
File 'traversed' already exists.
Do you want to append to it? (Y/N) [Y]

>>> : n

Do you want to save old 'traversed'? (Y/N) [N]

>>> : n

Command line arguments? (Y/N) [Y]

>>> : n

Executing modified subject program ...
ENTER THE TEXT

The quick brown fox

ENTER THE PATTERN

quick

The pattern first appears at position 5 in the text.
Do you want to run the subject program on some additional test data? (Y/N) [N]

>>> : y

Command line arguments? (Y/N) [Y]

>>> : n

Executing modified subject program ...
ENTER THE TEXT

The quick brown fox

ENTER THE PATTERN

quack

The pattern first appears at position 0 in the text.
Do you want to run the subject program on some additional test data? (Y/N) [N]

>>> : n

>>> : check

ALL-DEFS:

CRITERION SATISFIED

To look at these again use the command 'view results'.

The test set satisfies the all-defs criterion. We next check whether the same test set satisfies a stronger criterion, all-uses.

>>> : select

SELECT A CRITERION

A. All-defs
B. All-c-uses
C. All-p-uses
D. All-c-uses/some-p-uses
E. All-p-uses/some-c-uses
F. All-uses
G. All-du-paths

Enter letter representing the selected criterion

>>> : f

Criterion is All-uses.

>>> : check

ALL-USES

Still need to exercise all of the following def-clear paths:

with respect to from to
PatPos 2 4
SorPos 2 4
SorPos 5 8
PatPos 2 (3, 4)
SorPos 2 (3, 4)
PatPos 4 (7, 9)
PatPos 5 (5, 8)

To look at these again use the command 'view results'.

To aid in the selection of the test data which cover the remaining def-use associations, the user can draw the flow graph (see Fig. 9) and use "copy,p" to aid in labeling each node with the corresponding code. Notice that for each i, block i begins with the statement "write(traversed,i;FW)":"
Fig. 9. Screen dump of an ASSET session.
program TestStringMatch(traversed, input, output);

var
 traversed: text;

const
 MAX = 80;
 LENGTH = 10;

type
 Source = array [1..MAX] of char;
 String = array [1..LENGTH] of char;

var
 Pat: String;
 Txt: Source;
 i, result, TxtLen: integer;

function StringMatch(Pattern: String; SortText: Source;
 PatLen, SorLen: integer): inter;

label
 10;

const
 FW = 4;

var
 PatPos, SorPos: integer;

begin
 writeln('ENTER THE TEXT');
 i := 1;
 while not eoln and (i <= MAX) do begin
 read(Txt[i]);
 i := i + 1
 end
 TXTLen := i - 1;
 writeln('ENTER THE PATTERN');
 i := 1;
 while not eoln and (i <= LENGTH) do begin
 read(Pat[i]);
 i := i + 1
 end;
end;

begin
 writeln('ENTER THE TEXT');
 i := 1;
 while not eoln and (i <= MAX) do begin
 read(Txt[i]);
 i := i + 1
 end;
end;

begin
 writeln('ENTER THE PATTERN');
 i := 1;
 while not eoln and (i <= LENGTH) do begin
 read(Pat[i]);
 i := i + 1
 end;
end;

begin
 writeln('ENTER THE TEXT');
 i := 1;
 while not eoln and (i <= MAX) do begin
 read(Txt[i]);
 i := i + 1
 end;
end;

begin
 writeln('ENTER THE PATTERN');
 i := 1;
 while not eoln and (i <= LENGTH) do begin
 read(Pat[i]);
 i := i + 1
 end;
end;

begin
 writeln('ENTER THE TEXT');
 i := 1;
 while not eoln and (i <= MAX) do begin
 read(Txt[i]);
 i := i + 1
 end;
end;

begin
 writeln('ENTER THE PATTERN');
 i := 1;
 while not eoln and (i <= LENGTH) do begin
 read(Pat[i]);
 i := i + 1
 end;
end;

begin
 writeln('ENTER THE TEXT');
 i := 1;
 while not eoln and (i <= MAX) do begin
 read(Txt[i]);
 i := i + 1
 end;
end;

begin
 writeln('ENTER THE PATTERN');
 i := 1;
 while not eoln and (i <= LENGTH) do begin
 read(Pat[i]);
 i := i + 1
 end;
end;

begin
 writeln('ENTER THE TEXT');
 i := 1;
 while not eoln and (i <= MAX) do begin
 read(Txt[i]);
 i := i + 1
 end;
end;

begin
 writeln('ENTER THE PATTERN');
 i := 1;
 while not eoln and (i <= LENGTH) do begin
 read(Pat[i]);
 i := i + 1
 end;
end;

begin
 writeln('ENTER THE TEXT');
 i := 1;
 while not eoln and (i <= MAX) do begin
 read(Txt[i]);
 i := i + 1
 end;
end;

begin
 writeln('ENTER THE PATTERN');
 i := 1;
 while not eoln and (i <= LENGTH) do begin
 read(Pat[i]);
 i := i + 1
 end;
end;

begin
 writeln('ENTER THE TEXT');
 i := 1;
 while not eoln and (i <= MAX) do begin
 read(Txt[i]);
 i := i + 1
 end;
end;

begin
 writeln('ENTER THE PATTERN');
 i := 1;
 while not eoln and (i <= LENGTH) do begin
 read(Pat[i]);
 i := i + 1
 end;
end;

begin
 writeln('ENTER THE TEXT');
 i := 1;
 while not eoln and (i <= MAX) do begin
 read(Txt[i]);
 i := i + 1
 end;
end;

begin
 writeln('ENTER THE PATTERN');
 i := 1;
 while not eoln and (i <= LENGTH) do begin
 read(Pat[i]);
 i := i + 1
 end;
end;

begin
 writeln('ENTER THE TEXT');
 i := 1;
 while not eoln and (i <= MAX) do begin
 read(Txt[i]);
 i := i + 1
 end;
end;

begin
 writeln('ENTER THE PATTERN');
 i := 1;
 while not eoln and (i <= LENGTH) do begin
 read(Pat[i]);
 i := i + 1
 end;
end;

begin
 writeln('ENTER THE TEXT');
 i := 1;
 while not eoln and (i <= MAX) do begin
 read(Txt[i]);
 i := i + 1
 end;
end;

begin
 writeln('ENTER THE PATTERN');
 i := 1;
 while not eoln and (i <= LENGTH) do begin
 read(Pat[i]);
 i := i + 1
 end;
end;

begin
 writeln('ENTER THE TEXT');
 i := 1;
 while not eoln and (i <= MAX) do begin
 read(Txt[i]);
 i := i + 1
 end;
end;

begin
 writeln('ENTER THE PATTERN');
 i := 1;
 while not eoln and (i <= LENGTH) do begin
 read(Pat[i]);
 i := i + 1
 end;
end;

begin
 writeln('ENTER THE TEXT');
 i := 1;
 while not eoln and (i <= MAX) do begin
 read(Txt[i]);
 i := i + 1
 end;
end;

begin
 writeln('ENTER THE PATTERN');
 i := 1;
 while not eoln and (i <= LENGTH) do begin
 read(Pat[i]);
 i := i + 1
 end;
end;

begin
 writeln('ENTER THE TEXT');
 i := 1;
 while not eoln and (i <= MAX) do begin
 read(Txt[i]);
 i := i + 1
 end;
end;

begin
 writeln('ENTER THE PATTERN');
 i := 1;
 while not eoln and (i <= LENGTH) do begin
 read(Pat[i]);
 i := i + 1
 end;
end;

begin
 writeln('ENTER THE TEXT');
 i := 1;
 while not eoln and (i <= MAX) do begin
 read(Txt[i]);
 i := i + 1
 end;
end;

begin
 writeln('ENTER THE PATTERN');
 i := 1;
 while not eoln and (i <= LENGTH) do begin
 read(Pat[i]);
 i := i + 1
 end;
end;
Do you want to append to it? (Y/N) [Y]
>>> : y

Command line arguments? (Y/N) [Y]
>>> : n

Executing modified subject program ...

ENTER THE TEXT

The quick brown fox

ENTER THE PATTERN

The

The pattern first appears at position 1 in the text.
Do you want to run the subject program on some additional test data? (Y/N) [N]
>>> : n

>>> : check

Still need to exercise all of the following of def-clear paths:

with respect to from to
SorPos 5 8
PatPos 4 (7, 9)
PatPos 5 (7, 8)

To look at these again use the command 'view results'.

Examine the annotated flow graph, we see that in order to execute a path from 5 to 8 which is definition clear with respect to SorPos, a test case in which the pattern is the null string is needed. We run the program on such a test case, adding its trace to those produced by the test cases run previously.

>>> : run

File 'traversed' already exists.

References

Phyllis G. Frankl received the B.A. degree in mathematics and physics from Brandeis University, Waltham, MA, in 1979, the M.A. degree in mathematics from Columbia University, New York, NY, in 1981, and the M.S. and Ph.D. degrees in computer science from New York University, New York, in 1985 and 1987, respectively.

She is currently an Assistant Professor of Computer Science at Polytechnic University, Brooklyn, NY. Her interests include software testing and theoretical computer science.

Dr. Frankl is a member of the IEEE Computer Society.

Elaine J. Weyuker received the Ph.D. degree in computer science from Rutgers University, New Brunswick, NJ, in 1977.

She has been on the faculty of the Courant Institute of Mathematical Sciences, New York University (NYU), New York, since 1977 and is currently an Associate Professor of Computer Science. Before coming to NYU, she was a Systems Engineer for IBM and was on the faculty of the City University of New York, New York, from 1969 to 1975. Her research interests are in software engineering, particularly software testing and reliability and software complexity measures, and in the theory of computation.

Dr. Weyuker is the author of a book (with Martin Davis), Computability, Complexity, and Languages, (Academic). She has been an ACM National Lecturer and was formerly a member of the Executive Committee of the IEEE Computer Society Technical Committee on Software Engineering. She is a member of the IEEE Computer Society and the Association for Computing Machinery.