Constraint Programming in a Nutshell

Pierre Flener

ASTRA Research Group on Combinatorial Optimisation Department of Information Technology Uppsala University Sweden www.it.uu.se/research/group/astra

> NordConsNet 2017 2017-05-22

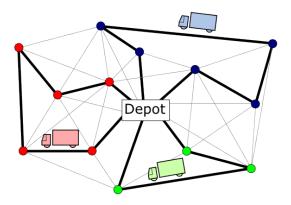
Optimisation

Constraint Problems

CP Technology

Modelling

Solving


Systematic Search

History of CP

Success Stories of CP

When CP?

Bibliography

Optimisation is a science of service: to scientists, to engineers, to artists, and to society.

Applications in Air Traffic Management

Constraint Problems

CP Technology

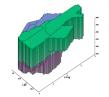
Modelling

Solving

Propagation Systematic Searc

History of CP

Success Stories of CP


When CP?

Bibliography

Demand vs capacity

Airspace sectorisation

Contingency planning

Flow	Time Span	Hourly Rate
From: Arlanda	00:00 - 09:00	3
To: west, south	09:00 - 18:00	5
	18:00 – 24:00	2
From: Arlanda	00:00 - 12:00	4
To: east, north	12:00 – 24:00	3

Workload balancing

2017-05-22 - 8 -

Applications in Biology and Medicine

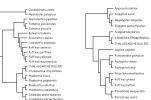
Constraint

Problems

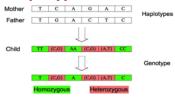
Technology

Modelling

Solvina


History of CP

Success Stories of CP


When CP?

Bibliography

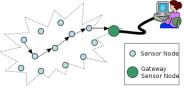
Phylogenetic supertree

Haplotype inference

Medical image analysis

Doctor rostering

- 10 -2017-05-22



Applications in Programming and Testing

Robotic task sequencing

Sensor net configuration

Technology

Constraint Problems

Modelling

. . .

Solving Propagation

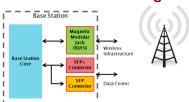
Local Search

History of CP

Success Stories of CP

When CP?

Bibliography


Compiler design

COMPILERS
FOR INSTRUCTION SCHEDULING

C Compiler C++ Compiler

Base station testing

2017-05-22 - 11 -

Constraint **Problems** Technology Modelling Solving

History of CP Success

Stories of CP When CP? **Bibliography**

Other Application Areas

School timetabling

	Munday	Tuesday	Wednesday	Thursday	Triday
9.00	NIT202 Oxinay Offerental Equations FTM		LABCS2072 Computer Graphics (G) Dual	NIT2282 Numerical Analysis F Distances, CO3	
	XMT2292 Osinary Differential Equations M315 / Rescott, 2.3		LABC 52072 Computer Desphila (2) Dual	XMT2022 Ordinary Coffeential Equations Sense Engineering, Basevest Theatre 2A XMT2082 Numerical Analysis II (029	XMT2292 District Differential Equations 19315
15.00	C82912 Algorithms and Dafa Structures 1.1		XM12212 Futher Linear Argebra 1.5		Ordinary Differential Equations Stopford, Theater 1
13.00	HIT2212 Futher Linear Algebra Roscoe, Theatre A	NF2282 Numerical Analysis F SHilliamson, G02	CS2972 Conjuster Graphics 1.5		Futter Linear Algebra Stepford, Theatre 1
			PASS Feer Assisted Study 1657 / LP15 / LP17 / 1606		XMT2242 Further Linear Algebra Sienen Engineering, Basement Theatre AA
2.00	C92972 Computer Graphics 1.5			XM72212 Futher Linear Algebra 19017	
3.00		CSTUT Tutorial			
+**		C92912 Algorithms and Date Structures			

Sports tournament design

www.shutterstock.com · 139768249

Security: SQL injection?

Container packing

2017-05-22 - 12 -

Constraint programming (CP) offers methods & tools for:

what: Modelling constraint problems in a high-level language.

Constraint Problems

CP Technology

Modelling

Solving Propagation

Local Search

History of CP

Success Stories of CP

When CP?

Bibliography

Constraint programming (CP) offers methods & tools for:

what: Modelling constraint problems in a high-level language.

and

how: **Solving** constraint problems intelligently by:

Constraint Problems

CP Technology

Modelling

Solvina

Propagation
Systematic Search

History of CP

Success Stories of CP

When CP?

Bibliography

Constraint programming (CP) offers methods & tools for:

what: Modelling constraint problems in a high-level language.

and

how: **Solving** constraint problems intelligently by:

either default search upon pushing a button

Constraint Problems

CP Technology

Modelling Solving

Propagation Systematic Search

History of CP

Success Stories of CP

When CP?

Bibliography

Constraint programming (CP) offers methods & tools for:

what: Modelling constraint problems in a high-level language.

and

how: Solving constraint problems intelligently by:

either default search upon pushing a button

or systematic search guided by user-given heuristics

Problems CP **Technology**

Constraint

Modelling

Solving

History of CP

Success Stories of CP

When CP?

Bibliography

- 20 -2017-05-22

Constraint programming (CP) offers methods & tools for:

what: Modelling constraint problems in a high-level language.

and

Technology Modelling

Constraint Problems

Solving
Propagation
Systematic Search

History of CP

Success Stories of CP

When CP?

Bibliography

how: Solving constraint problems intelligently by:

- either default search upon pushing a button
- or systematic search guided by user-given heuristics plus inference, called propagation, but little relaxation.

Constraint programming (CP) offers methods & tools for:

what: Modelling constraint problems in a high-level language.

and

how: Solving constraint problems intelligently by:

- either default search upon pushing a button
- or systematic search guided by user-given heuristics

plus inference, called propagation, but little relaxation.

A solver is a software that takes a model as input and tries to solve the modelled problem.

Constraint Problems

Technology

CP

Modelling

Solving
Propagation
Systematic Search

History of CP

Success Stories of CP

When CP?

Bibliography

Constraint programming (CP) offers methods & tools for:

what: Modelling constraint problems in a high-level language.

and

Technology Modelling

Constraint Problems

Solving Propagation

Systematic Search

History of CP

Success Stories of CP

When CP?

Bibliography

how: Solving constraint problems intelligently by:

- either default search upon pushing a button
- or systematic search guided by user-given heuristics

plus inference, called propagation, but little relaxation.

A solver is a software that takes a model as input and tries to solve the modelled problem.

Slogan of CP:

Constraint Program = Model [+ Search]

Constraint Problems

CP Technology

Modelling

Solvina

Propagation Systematic Sear

History of CP

Success Stories of CP

When CP?

Wileii Oi :

Bibliography

Example (Doctor rostering)

	Mon	Tue	Wed	Thu	Fri	Sat	Sun
Doctor A							
Doctor B							
Doctor C							
Doctor D							
Doctor E							

Constraints to be satisfied:

- \blacksquare #doctors-on-call / day = 1
- 2 #operations / workday ≤ 2
- \blacksquare #operations / week ≥ 7
- 4 #appointments / week ≥ 4
- 5 day off after operation day
- 6 ...

Objective function to be minimised:

Cost: . . .

Constraint Problems

CP Technology

Modelling

Solvina

Propagation
Systematic Search

History of CP

Success Stories of CP

When CP?

Bibliography

Example (Doctor rostering)

	Mon	Tue	Wed	Thu	Fri	Sat	Sun
Doctor A	call	_	oper	_	oper	_	_
Doctor B	арр	call	_	oper	_	_	call
Doctor C	oper	_	call	арр	арр	call	_
Doctor D	арр	oper	_	call	oper	_	_
Doctor E	oper	_	oper	_	call	_	_

Constraints to be satisfied:

- 1 #doctors-on-call / day = 1
- 2 #operations / workday ≤ 2
- \blacksquare #operations / week ≥ 7
- 4 #appointments / week ≥ 4
- 5 day off after operation day
- 6 ...

Objective function to be minimised:

Cost: ...

CP

Example (Doctor rostering)

```
1 set of int: Days = 1...7;
         2 set of int: Mon2Fri = 1...5;
         3 set of int: Doctors = 1..5;
Constraint
         4 enum: ShiftTypes = {app, call, oper, none};
Problems
         5
Technology
         6 array[Doctors, Days] of var ShiftTypes: Roster;
Modelling
         7
Solvina
         8 solve minimize ...; % objective function
        10 constraint forall(d in Days)
           (count (Roster[..,d],call) = 1);
History of CP_11
        12 constraint forall(w in Mon2Fri)
Success
Stories of CP 13
           (count (Roster[..,w],oper) <= 2);</pre>
When CP?
        14 constraint count (Roster, oper) >= 7;
Bibliography 15 constraint count (Roster, app) >= 4;
        16 constraint forall(d in Doctors)
        17 (regular(Roster[d,..], (oper none|app|call|none)*);
        18 ... % other constraints
```

- 29 -2017-05-22

Constraint Problems

CP Technology

Modelling

Solving
Propagation
Systematic Search

History of CP

Success Stories of CP

When CP?

Bibliography

Stand-alone languages:

- ALICE by Jean-Louis Laurière, France, 1976
- CHIP at ECRC, Germany, 1987 1990, then marketed by Cosytec, France
- OPL, by P. Van Hentenryck, USA, and ILOG, France: front-end to both ILOG CP Optimizer and ILOG CPLEX
- Comet, by P. Van Hentenryck and L. Michel, USA
- MiniZinc, at U. of Melbourne and Monash U., Australia

. . . .

2017-05-22 - 56 -

Constraint Problems

CP Technology

Modelling

Solving
Propagation
Systematic Search

History of CP

Success Stories of CP

When CP?

Bibliography

Stand-alone languages:

- ALICE by Jean-Louis Laurière, France, 1976
- CHIP at ECRC, Germany, 1987 1990, then marketed by Cosytec, France
- OPL, by P. Van Hentenryck, USA, and ILOG, France: front-end to both ILOG CP Optimizer and ILOG CPLEX
- Comet, by P. Van Hentenryck and L. Michel, USA
- MiniZinc, at U. of Melbourne and Monash U., Australia
 - **.**..

Libraries (the ones listed before ";" are open-source):

- Prolog: ECLiPSe, ...; SICStus Prolog, ...
- C++: Gecode, OR-Tools; IBM CP Optimizer, CHIP, ...
- Java: Choco, Google OR-Tools, JaCoP, ...;
- Scala: OscaR; ...
- ...

2017-05-22 - 56 -

Constraint

Problems

Technology Modelling

History of CP

Stories of CP
When CP?

Bibliography

Success

Solvina

CP

CP Users and Contributors:

cādence

. . .

Success stories: CP = **technology of choice** in scheduling, configuration, personnel rostering, timetabling, . . .

2017-05-22 - 58 -

Scope of Constraint Programming

CP has a wide scope, as it addresses:

- satisfaction problems and optimisation problems
- discrete variables and continuous variables
- linear constraints and non-linear constraints

in principle in any combinations thereof, by:

- systematic search, if optimality more crucial than speed
- local search, if speed is more crucial than optimality

Constraint Problems

Technology

CP

Modelling

Solving
Propagation
Systematic Search

History of CP

Success Stories of CP

When CP?

Bibliography

2017-05-22

Opportunities for CP

Constraint Problems

CP Technology

Modelling

Solvina

Propagation Systematic Search

History of CP

Success Stories of CP

When CP?

Bibliography

Rapid prototyping, with high solving performance, when:

- Constraints are, still or again, subject to experiments
- Partition into hard & soft constraints yet undetermined

Combinatorial structure is impure, due to side constraints.

It is time to consider all or more problem constraints.

Domain knowledge exploitable for problem-specific search.

It is a configuration problem.

It is a personnel rostering problem.

It is a scheduling problem.

It is a time-tabling problem.

Constraint Problems

CP Technology

Modelling

Solving
Propagation
Systematic Search

History of CP

Success Stories of CP

When CP?

Bibliography

- C. Allignol, N. Barnier, P. Flener, and J. Pearson. Section 2 of Constraint programming [...]. Knowledge Engineering Review, 27(3):361–392, 2012.
- K. R. Apt. Principles of Constraint Programming. Cambridge University Press, 2003.
- Ph. Baptiste, C. Le Pape, and W. Nuijten. Constraint-Based Scheduling. Kluwer Academic Publishers, 2001.
- P. Flener, M. Carlsson, and Ch. Schulte. Constraint programming in Sweden. IEEE Intelligent Systems, 24(2):87–89, 2009.

2017-05-22 - 65 -

E. C. Freuder and M. Wallace.
Constraint technology and the commercial world.

IEEE Intelligent Systems, 15(1):20–23, 2000.

M. Milano, P. Van Hentenryck, et al. The Future of Constraint Programming. Constraints, special issue, 19(2), 2014.

F. Rossi, P. van Beek, and T. Walsh (editors). Handbook of Constraint Programming. Elsevier, 2006.

P. Van Hentenryck and L. Michel. Constraint-Based Local Search. The MIT Press, 2005.

M. Wallace. Constraint programming – The paradigm to watch. Constraint Programming Letters, 1:7–13, 2007.

Constraint Problems

CP Technology

Modelling

Solving
Propagation
Systematic Search
Local Search

History of CP

Success Stories of CP

When CP?

Bibliography

2017-05-22