Robin Strand, Docent

**Centre for Image Analysis** 

**Division of Visual Information** and Interaction

and

**Section of Radiology** 

**Uppsala University** 



NordConsNet17

### **Research at Centre for Image Analysis**

Theory

- Digital geometry, mathematical morphology, graph methods
- Object detection and segmentation
- Digital and fuzzy shape & feature measurements
- Visualization of volumetric data
- Haptic interaction & interactive system design
- Biomedicine and forestry

Applications

• 2D, 3D, multimodal/multispectral and time-lapse



# My research



# Image processing and analysis



+ image visualization and image data management

#### Example applications

- Image segmentation
  - Interactive
  - Automatic
- Image registration
- Computer vision
  - Stereo
  - Motion
  - Multicamera scene reconstruction
- Image restoration
  - Filtering
- Image inpainting and

F. Malmberg, ..., R. Strand, ..., SmartPaint — A Tool for Interactive
Segmentation of Medical Volume Images Computer Methods in
Biomechanics and Biomedical Engineering: Imaging & Visualization, 2017

...and work in progress





- Pixel adjacency graphs
- Graph cuts



- Graph  $G = (\mathcal{V}, \mathcal{E})$ , where  $\mathcal{V}$  is a set of vertices and  $\mathcal{E}$  is a set of edges.
- Labeling problem  $f: \mathcal{V} \to \mathcal{L}$ , where  $\mathcal{L}$  is a set of labels.
- A class of simple energy functions (only unary terms):

$$\mathbf{E}(f) = \sum_{v \in \mathcal{V}} D_v(f_v),$$

where  $D_v(f_v)$  is the cost of assigning label  $f_v$  to vertex v.

# Discrete optimization in image processing Segmentation $E(f) = \sum_{v \in V} D_v(f_v).$ Data term Similarity in intensity



#### Segmentation result (4 labels)



# Discrete optimization in image processing Segmentation

Spatial regularization by adding a binary



where  $\mathcal{N}$  is a neighborhood system of vertices and  $V_{v,w}$  gives the cost of assigning labels  $f_v, f_w$  to v, w.

## Discrete optimization in image processing Segmentation

$$\mathbf{E}(f) = \sum_{v \in \mathcal{V}} D_v(f_v) + \sum_{v,w \in \mathcal{N}} V_{v,w}(f_v, f_w).$$



#### Segmentation result (4 labels)



Discrete optimization in image processing Segmentation

$$\mathbf{E}(f) = \sum_{v \in \mathcal{V}} D_v(f_v) + \sum_{v,w \in \mathcal{N}} V_{v,w}(f_v, f_w).$$

- *V<sub>v,w</sub>* should impose smoothness *and* be *edge*-*preserving* 
  - Typically non-convex
- Efficient optimization in binary labeling if  $V_{v,w}$  is submodular, i.e. if

 $V_{v,w}(0,0) + V_{v,w}(1,1) \le V_{v,w}(0,1) + V_{v,w}(1,0)$ 

- Multiple labels by for example the *expansion move algorithm* 

#### Example applications

- Image segmentation
  - Interactive
  - Automatic

#### Image registration

- Computer vision
  - Stereo
  - Motion
  - Multicamera scene reconstruction
- Image restoration
  - Filtering
- Image inpainting and synthesis

# Discrete optimization in image processing Image Registration

- Problem: Find the optimal deformation field
- $f: \mathcal{V} \rightarrow \mathcal{L}$ : Which vectors should be updated (binary)
- $D_v(f_v)$ : Similarity in intensity
- $V_{v,w}(f_v, f_w)$ : Spatial smoothness
- Iterative algorithm



Def. field magnitude



S Ekström, F Malmberg, ..., R Strand, Deformable Registration of Whole-Body Fat-Water Magnetic Resonance Images Using Discrete Optimization, manuscript 2017

#### Example applications

- Image segmentation
  - Interactive
  - Automatic
- Image registration
- Computer vision
  - Stereo
  - Motion
  - Multicamera scene reconstruction
- Image restoration
  - Filtering
- Image inpainting and synthesis

- Problem: Compute the depth for each pixel (vertex), given two views of the same scene
- $f: \mathcal{V} \rightarrow \mathcal{L}: Depth$
- $D_v(f_v)$ : Similarity in intensity
- $V_{v,w}(f_v, f_w)$ : Spatial smoothness





V. Kolmogorov et al. Multi-Camera Scene Reconstruction via Graph Cuts, ECCV 2002

### Example applications

- Image segmentation
  - Interactive
  - Automatic
- Image registration
- Computer vision
  - Stereo
  - Motion
  - Multicamera scene reconstruction
- Image restoration
  - Filtering
- Image inpainting and synthesis



T. Sjöholm , ..., F Malmberg , R Strand et al., Intensity inhomogeneity correction of whole body fat-water images using fat and water fraction information on a 3T PET/MR scanner, ISMRM 2017

### Example applications

- Image segmentation
  - Interactive
  - Automatic
- Image registration
- Computer vision
  - Stereo
  - Motion
  - Multicamera scene reconstruction
- Image restoration
  - Filtering
- Image inpainting and synthesis





V. Kwatra et al, "GraphcutTextures: Image and Video Synthesis Using Graph Cuts," SIGGRAPH 2003

### Imiomics

**Definition**: Imiomics (imaging –omics) is an image analysis concept, including <u>image</u> registration, that enables statistical and <u>holistic</u> analysis of whole-body image data.

Holistic for three reasons: 1) The whole body is studied, 2) All image data is used, 3) all non-imaging data can be integrated.



### Image registration



#### Whole Body Imaging Atlas & Anomaly detection Fat content



# Summary

• Discrete optimization is a powerful and often used approach in image processing.

Thanks for inviting me!