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This paper introduces a novel keyword search paradigm in relational databases, where the
result of a search is an Object Summary (OS). An OS summarizes all data held about a particular
Data Subject (DS) in a database. More precisely, it is a tree with a tuple containing the
keyword(s) as a root and neighboring tuples as children. In contrast to traditional relational
keyword search, an OS comprises a more complete and therefore semantically meaningful set
of information about the enquired DS.
The proposed paradigm introduces the concept of Affinity in order to automatically generate
OSs. More precisely, it investigates and quantifies the Affinity of relations (i.e. Affinity) and
their attributes (i.e. Attribute Affinity) in order to decide which tuples and attributes to include
in the OS. Experimental evaluation on the TPC-H and Northwind databases verifies the
searching quality of the proposed paradigm on both large and small databases; precision, recall,
f-score, CPU and space measures are presented.
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1. Introduction

Keyword search is the leading search paradigm on the Web (W-KwS). For example, searching for information about a
particular Data Subject (DS) (e.g. Janet Peacock), a W-KwS engine (e.g. Google, Yahoo!, etc.), as a result, will return a set of web
pages containing the keyword(s). The users can read through these web pages and find enough information about the particular
DS they are interested in; sometimes they can even find a complete answer to their enquiry in a single web page (for instance, in
the DS's personal web page). A DS usually represents an individual who is a subject of personal data; in this paper however, a DS
has a broader meaning and represents any object (e.g. a product, order, etc.) that is a subject of data.

The keyword search paradigm has also recently been successfully used in relational databases (R-KwS). Such paradigms have
significant usability advantages as they liberate users from technical details such as database schemata and query languages. For
instance, Full-Text techniques will return tuples (e.g. from Customers or Employees relations) containing the “Janet Peacock”
keywords. However, such a tuple(s) (unlike W-KwS results) does not comprise a complete result since additional information is
required to comprise a meaningful result for the DS; namely her Nation, Orders, etc. Other R-KwS techniques facilitate users to do
advanced search using a set of keywords [1–3]; e.g. “Peacock Leverling” which will return trees of nodes containing information
associating the two keywords such as Orders of Customer Leverling prepared by Employee Peacock. As a rule, such R-KwS results
are comprised of either individual tuples (when only one keyword is given) or trees of tuples (when two or more keywords are
given). Yet, unlike W-KwS results (namely a web page), R-KwS results fail to provide a comprehensive and therefore meaningful
summary of information about a particular DS.

In this paper, a novel keyword search paradigm is proposed that produces results which are comprised of a more complete set
of information about the particular DS; namely an Object Summary (OS). For instance, when searching information about “Janet
Peacock” the proposed paradigm will produce an OS that summarizes all information about Janet Peacock (Fig. 1). More precisely
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Fig. 1. The OS for “Janet Peacock”.
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in the Northwind database context (schema and sample dataset are shown in Figs. 2 and 3 respectively) [4], an OS will be
composed of an Employee tuple (with FirstName=“Janet” and LastName=“Peacock”) as a root and child nodes including
additional information about her Nation, Regions, Orders she served, etc. In order to produce an OS, the proposed paradigm
traverses the data-graph as follows: it starts from a tuple containing the keyword(s) (denoted as tDS) and continues traversing
neighboring tuples as long as the data traversed is relevant to tDS.

The proposed paradigm, similarly to R-KwS, liberates users from query language and schema technical details. On the other
hand, its semantics differentiate fundamentally from traditional R-KwS's semantics. The proposed paradigm facilitates the
extraction of information and hence the generation of an OS about the particular DS even with a single keyword (e.g. solely
“Peacock”); whereas R-KwS generates a set of joining tuples that collectively contain a set of query keywords.

1.1. Challenges

The proposed search paradigm faces several challenges. The primary challenge is the classification of neighboring data as
relevant or irrelevant to tDS. For this reason, the semantic of Affinity of surrounding relations to the relation (denoted as RDS) of tDS

is investigated and quantified so as to select which relations to traverse. These Affinity scores in combination with a threshold (e.g.
0.70) either proposed by the system or provided by the DBA (or users) will facilitate the decision on which relations to retrieve in
the context of an OS and therefore liberate the user from the schema details.

A secondary challenge is the classification of attributes in each relation as relevant or irrelevant to RDS. For example, consider
the generation of an OS for Customer “Leverling”, details such as BirthDate, HomePhone, etc. concerning the Employee Peacock
CustomerCustomerDemoOrders

Employees

Customers

Order Details Products

Categories

Suppliers

EmployeeTerritories

CustomerDemographics

Shippers
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Fig. 2. The Northwind database schema.
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who has served the particular Customer are certainly not relevant to Leverling. For this reason, the following novel approach is
proposed: the attributes of each relation are firstly clustered to attribute clusters and then each attributes' cluster is assigned an
Attribute Affinity score. Hence, the semantic of Attribute Affinity to RDS also needs to be investigated and quantified. For attribute
clustering, a technique that combines linguistic and attributes' data types matching is employed.

The selection of effective thresholds that satisfy users' needs is another challenging problem. Since, this may be a difficult and
unfriendly task for users as they cannot easily predict how comprehensive or abstract an OS may be with a particular threshold.
We propose a technique that facilitates the quick selection of thresholds by estimating the sizes of OSs.

Finally, the ranking of OSs is also challenging since existing ranking semantics of traditional R-KwS are completely
inappropriate for OS ranking. As in R-KwS, a result of a small size has generally a higher ranking semantic than another result of a
larger size [1–3]. In contrast, an OS containingmanywell connected tuples should have certainly greater importance. In this paper,
a ranking paradigm is proposed that ranks OSs descending their Importance scores, (denoted as Im(OS)) that combines (1) each
comprising tuple's local Importance score (denoted as Im(OS, ti)) and (2) the size of the OS (denoted as |OS|); where Im(OS, ti) is a
function of (1) tuple's global Importance score (denoted as Im(ti)) and (2) tuple's Affinity score (denoted as Af(ti)).

1.2. Novel contributions

The novel contributions of this paper are the following:

• The formal definition of the novel keyword search paradigm which automatically produces an Object Summary from relational
databases about a particular DS. The novelty of this paradigm is that it requires minimum contribution from the user (i.e. only a
keyword) and does not require any prior database registration, prior knowledge of the database schema or prior knowledge of
any query language.

• The formal definition of Relations Affinity to RDS and the proposition of the Affinity formula in relational databases. Good Affinity
calculation is the building block of the paradigm and this is achieved through a thorough analysis of the semantics of relational
databases. The Affinity formula considers (1) the schema design, (2) data distributions and also (3) the impact of “hub” relations.
The impact of the latter metric (3) although is very significant on Affinity, has not been considered before in this context. The
excellent precision, recall, f-score (P/R/F) and Affinity Ranking Correctness results of OSs validate the quality of the proposed
Affinity formula.

• The formal definition and calculation of Attribute Affinity to RDS. Attribute Affinity facilitates the filtering of irrelevant attributes
to RDS and therefore the generation of more meaningful OSs. Furthermore, such an attributes' filtering also reduces the size of
OSs. The automated filtering of attributes is another feature that has not been attempted yet in keyword search. P/R/F results
together with space savings are presented.

• The proposition of a technique that facilitates the quick and user friendlier selection of thresholds by estimating the sizes of OSs.
• The proposition of a novel ranking paradigm of OSs. We propose a combining function that considers comprising tuples' local
Importance and the size of the OS in order to estimate the Importance of each OS.

1.3. Paper organization

The rest of the paper is structured as follows: Section 2 discusses related work. Section 3 presents the proposed searching
paradigm by utilizing examples whilst Section 4 describes the system architecture. Sections 5 and 6 discuss Relations and Attribute
Affinity semantics in relational databases and present the respective Affinity formulas whereas Section 7 introduces a technique
that facilitates the estimation of thresholds. Section 8 discuses the ranking of OSs. Section 9 presents the experimental evaluation
and finally Section 10 concludes the paper.

2. Related work

To the best of our knowledge there is not any related work at all in the area of the automated generation of OSs (apart from the
early work in [5] that included only preliminary descriptions). We present and compare related work of the area.

2.1. Keyword search

Full-Text search techniques in relational databases facilitate the discovery of tuples that contain queried keywords; e.g. Oracle
9i Text [6], IBM DB2 Text Information Extender [7], Microsoft SQL Server 2000 [8], MySQL Full-Text search [9], etc. Whilst, R-KwS
techniques facilitate the discovery of joining tuples (i.e. Minimal Total Join Networks of Tuples (MTJNTs) [3]) that collectively
contain all query keywords and are associated through their keys; for this purpose the concept of Candidate Networks is
introduced. MTJNTs are (1) total as they must contain all query keywords and (2) minimal as every leaf node must contain a
unique keyword. For instance for the keyword query “Leverling Peacock”, R-KwSs will return MTJNTs with Orders of Customer
Leverling prepared by Employee Peacock, etc. (e.g. Fig. 4). Note that because of the minimality constraint, o2 cannot contain
elaborating and potentially interesting data such as its OrderDetails and that both leaf nodes c2 and e3 contain unique keywords.
Note also that for the same reason, if a keyword query consists of only one keyword, e.g. “Peacock”, the results will be composed by
single nodes (Fig. 5(b)). DISCOVER [3], DBXplorer [10], Mragyati [11], and relational stream keyword search [12] use series of SQL



o2

e3c2

PeacockLeverling

Fig. 4. An MTJNT result for keyword query “Leverling Peacock” (based on the sample dataset of Fig. 3).
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statements in order to execute such keyword queries whilst other systems such as BANKS [1,2] convert the whole database into a
data-graph. Other work in R-KwS also investigates efficiency, effectiveness and ranking [13–24].

Evidently, the proposedparadigmdoes not only differentiate semantically from traditional R-KwSs but also technically. Semantically
as illustrated by Figs. 4 and 5, the proposed paradigm produces an OS for each tDS containing the keyword(s), whereas R-KwS produces
MTJNTs that collectively contain all keywords. In other words, the proposed paradigm produces summaries of information about
particular DSs, whilst traditional R-KwSs produce results describing the associations of the given keywords. Furthermore, the proposed
paradigm can produce meaningful OSs even with a single keyword in contrast to R-KwS that requires a set of keywords to produce
meaningful MTJNTs. Technically, the proposed paradigm considers GDS graphs (described in Sections 3 and 4.2), Affinity and Attribute
Affinity in order to generate OSs, whereas R-KwSs consider Candidate Networks in order to produce MTJNTs.

Earlier work in keyword search includes proximity searches [25]. Proximity searches are specified by a pair of queries: A “Find
query” specifies a Find set of objects that are potentially of interest and a “Near query” specifies a Near set. The objective is to rank
objects in the Find set according to their distance to the Near objects. For instance, the query “Find Orders Near Peacock Leverling”
will return Orders ranked based on their proximity to keywords Peacock and Leverling. Namely, o2 which has distance one from
both Near keywords will be ranked higher than o3 which has distance one only to Peacock. Although this search paradigm
differentiates semantically from our work, technically employs similar techniques. For instance, ranking considers the proximity
(i.e. distance) of objects and the impact of “hub” relations. As we explain in Affinity Calculation section, these are metrics that we
also build upon for the calculation of Affinity. Similar metrics have also been considered in semantic Web search [26].

Précis queries resemble our work because they include additional information to the nodes containing the keywords by
considering neighboring relations and their attributes [27–29]. More precisely, a précis query result is a logical subset of the
original database (i.e. a subset of relations and a subset of tuples). For instance, the précis for the query “Peacock” is a subset of the
database that includes the tuples containing “Peacock” (e.g. e3, e4) and their neighboring tuples from Orders, OrderDetails,
Products, Employees, etc. (Fig. 5(c)). Précis also support the narrative presentation of the results, e.g. “Peacock is an employee…”,
“Peacock has an order…”, “Order 10273 has orderdetails….”, “Orderdetails 10273 consists of product 2…”, “Product 2 is…”, etc.
In contrast to our result which is a set of two separate OSs (Fig. 5(a)). OSs producemore personalized summaries about the DSs, i.e.
a hierarchical structure with the DS tuple as a root (rather than a database subset or its equivalent narrative presentation). In this
spirit, some tuples are replicated in OSs when necessary. For instance, the Employee e2, which Employees e3 and e4 report to,
appears in both OSs and tuple r1 is replicated twice in the e4 OS. On the contrary, précis do not replicate such information and as a
consequence, users may find big précis difficult to understand (even their narrative presentation).

A significant technical difference is that the selection of neighboring relations and their attributes is based onweightsmanually
set by DBAs (in contrast to our approach where Affinity is automatically generated). For instance, for the Northwind database, this
will require, in addition to the threshold, 112 manually set weights: two weights per relationship (2*13 relationships) plus one
weight per attribute (86 attributes). Evidently, this is a demanding and difficult task for the DBA and probably an impossible task
for ordinary users.
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2.1.1. Ranking in R-KwS
R-KwS techniques also facilitate the ranking of their results; such ranking paradigms consider (combined functions) of the

following important (among other) metrics:

(1) The result's size, i.e. the consideration of the inverse of the amount of joins. The intuition is that, the less joins an MTJNT
contains themore important semantically it is. On the contrary, this rankingmetric is inappropriate for OS rankingwhere an
OS containing many and well connected tuples should have certainly greater importance. For instance, an Employee who
has served many orders should have higher ranking score than another Employee with fewer orders.
Note also that almost all such paradigms try to capture somehow the Affinity (as proposed in this paper) of tuples
comprising an MTJNT by considering the inverse of the amount of (weighted) joins (e.g. [1–3]). The amount of joins
corresponds to the relations distance metric of our Affinity formula (Section 5.1). However, as we show in Section 5, this is
only one metric of Affinity; as schema design, data distributions and spurious short-cuts also affect Affinity. Therefore, we
believe that even for MTJNT ranking, the proposed Affinity may be a more appropriate ranking metric rather than solely the
amount of joins (i.e. distance).

(2) IR-style techniques [14–18], i.e. the consideration of the amount of times keywords (terms) appear in MTJNT results and
also in tuples and attributes of the database. Such techniques have several limitations when applying on databases in
general and also on OSs in particular as they miss important tuples that do not contain the keyword(s). For instance
consider the keyword query “Peacock”, the territories that Peacock serves also have some Importance (analogous to the
Importance of Peacock and the other employees serving the particular territories) even though they do not include the
particular keyword. Recall that usually an OS contains the keyword(s) only once, at the tDS (i.e. the root node of the OS) and
therefore such techniques will fail to rank effectively the remaining tuples of the OS.

(3) Tuples' Importance, i.e. the consideration of the authority flow through relationships in the corresponding data-graph of the
database, e.g. PageRank [30], ObjectRank [31,32], ValueRank [33], BANKS (i.e. PageRank inspired) [1,2], etc. For instance,
ObjectRank and ValueRank are extensions of PageRank on databases that employ the concept of Authority Transfer Rates
between the tuples of each relation of the database in order to control the flow of authority.
Such ranking systems, unlike IR-style techniques, can produce effective Importance scores for all tuples of the database
regardless whether they contain the keywords or not. This is very useful in ranking OSs, as we can assign scores to all tuples
of the OS (including those that do not include the keywords). Hence, they can be used in OS ranking in order to estimate the
global Importance score for each tuple of the database.

2.2. Schema summarization

Schema clustering and summarization techniques investigate similar semantic properties of schemata such as Affinity and
Importance in order to cluster and summarize schemata respectively; where Affinity and Importance are two different concepts.
More precisely, Affinity measures the closeness between entities; e.g. Employee e3 is semantically closer to Order o2 than to
Product p2 (Fig. 5(a)). Whereas, Importance ranks entities according to their significance using metrics such as connectivity
(centrality) influenced mainly by PageRank [30]; e.g. Product p2 is more important than p1 because it is more connected (as it
participates in more orders). Earlier related work in schema clustering relies only on schema properties without considering the
data distribution, e.g. on semantics embedded in relationships; examples of such work are [34,35].

More recent work on schema summarization [36,37] investigates the Affinity and Importance of schema elements in order to
produce a schema summary of XML and relational databases respectively. For instance, according to [36] the Affinity of a relation Ri

to RDS, denoted as Af−HRi→RDS (or simply Af−HRi
), can be calculated as follows:
Af−HRi→RDS =
1
fdi

⋅ ∏
fdi

j=2

1

RC Rj−1→Rj

� � ð1Þ
where fdi is the distance of Ri to RDS, j ranges over all relations along the path from Ri to RDS and RC is the Relative Cardinality between
those relations (all these terms are explained in detail in Section 5). An important similarity of our work with the Affinity formulas
proposed in [36,37] is the consideration of both schema and data distribution (e.g. distance and Relative Cardinality). On the other
hand, there are several differences that make the Affinity proposed in [36,37] inappropriate to apply on our paradigm. Firstly, the
Affinity in [36,37] produces scores which are very difficult to combine with a common threshold in order to generate OSs, mainly
because they are skewed, and secondly, schemasummaries correspond to thewhole schema in contrast toOSswhich correspond to an
object (thus are tuple-oriented i.e. tDS-rooted) and therefore, Affinity has a differentmeaning. Another semantic difference is that they
disregard properties specific to relational databases suchas “spurious short-cuts” created by hub relations (the impact of hub relations
on Affinity is discussed in Section 5). Nevertheless, Affinity comparative results and further discussion are presented in Section 9.

2.3. Attribute filtering

Although attribute filtering and ordering in databases' queries has been examined in many database contexts, unfortunately
none of this previouswork is suitable for the automated filtering of attributes in OSs. For instance in R-KwS, précis queries facilitate
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the filtering of attributes [27]; however this filtering is not completely automatic since it is based onweightsmanually set by DBAs.
In other related work, the filtering decision is based on query's attributes which do not exist in our case, e.g. [38].

Related work in schema and ontology matching investigate the matching of schema and ontology elements respectively [39–
41]. Such methodologies employ, among other techniques, linguistic and attributes' data type matching; application of such
techniques has been used for attribute clustering in this work.

3. The proposed searching paradigm: an overview with examples

In this section, the proposed paradigm is illustratedwith examples of keyword queries on the Northwind database based on the
sample dataset of Fig. 3. Thedetailed schemata of theNorthwind [4] and TPC-H [42] databases are included in theAppendix (Figs. 18
and 19).

In the context of the proposed novel keyword search paradigm, a keyword query is a set of keywords that can identify DSs; e.g.
(1) “Peacock”, (2) “Janet Peacock”. The result of such a keyword query is a ranked set of OSs; where an OS is a tree comprised of
(projections of) tuples, with the tDS tuple as the root node and tDS's neighboring tuples (i.e. tuples that are associated through their
keys) the child nodes. An OS is generated for each tuple (tDS) found in the database that contains the keyword(s) as part of an
attribute's value. Therefore, for the above query examples an OS will be generated for tuples (1) {e3, e4} and (2) {e3} respectively.
Full-Text facilities are employed to find all such tuples (Section 4.1).

In order to construct OSs, the proposed approach combines the use of graphs and SQL. The rationale is based on the fact that
some relations, denoted as RDS (where tDS∈RDS contains the keyword(s)), hold information about the Data Subjects (DSs) and the
relations linked around RDSs contain additional information about the particular DS. For each RDS, a Data Subject Schema Graph
(GDS) is automatically generated; namely a directed labeled tree that captures a subset of the database schema with RDS as a root.
The challenge now is the selection of the relations and attributes fromGDS that have the higher Affinity with the RDS that need to be
traversed in order to create a good OS. For this reason, Affinity measures of relations and attributes in GDS are investigated,
quantified and annotated on the GDS. Provided an Affinity threshold θ a subset of GDS can be produced; denoted as GDS(θ).
Furthermore, provided both Affinity and Attribute Affinity thresholds θ and θ′, a GDS(θ, θ′) can be produced. Finally, by traversing
the GDS(θ, θ′) we can now proceed with the generation of OSs.

For instance, for the keyword query “Janet Peacock”, θ=0.7 and θ′=0.7 the system will automatically generate the report
presented in Fig. 1. Since the keywords are found in tuple e3 (i.e. the tDS which belongs to the Employees relation) then Employees
relation is considered as the RDS and consequently the Employees GDS (Fig. 7) will be generated by our GDS Generator. Our system
will insert tuple e3 at the root node of the OS tree and then will start traversing the dataset based on the Employees GDS in order to
generate the rest of the report. Note also that some attributes are filtered out, e.g. from Products all attributes are filtered out
except from ProductName.

4. System architecture

A high level representation of the proposed architecture is presented in Fig. 6. In this section, a brief description of the system's
modules is presented; yet, more important modules are described in more detail in the following sections.

Firstly, the user enters the identifying keywords for a DS together with an Affinity and Attribute Affinity thresholds into the
system. Then, the Master Index returns all tuples that contain these keywords (Section 4.1). The second step is the generation and
annotation (with Cardinality and Relative Cardinality information) of necessary schema graphs (GDS, GS, etc.) (Section 4.2). Then,
the Affinity and Attribute Affinity Calculationmodules will calculate the Relation Affinity and Attribute Affinity to RDS respectively;
these scores are annotated on the GDS (Sections 5 and 6 respectively). Steps 2–4, i.e. GDS Generation, Affinity and Attribute Affinity
Calculation modules, can be pre-computed and their outputs can be reused during a keyword search. OS Generation module takes
as input the tuple set and GDS(θ, θ′) graphs in order to generate the OS (Section 4.3). Finally, the OS Ranking and Presentation
module ranks and prints in an intelligible form the ranked set of OSs (Section 4.4 and Section 8).

4.1. Master Index

The user enters his/her query as a set of keywords into the Master Index; which has been implemented using the MySQL Full-
Text search [9]. TheMaster Indexwill return all tuples that contain the keywords as part of an attribute value; the set of such tuples
forms the DBid-kw set. During this phase we can limit the search space with more narrowed searches; namely to a set of relations
and attributes (Boolean expressions such as OR are also supported). For instance, Employees.LastName, Naming Clusters AN of
attributes (i.e. clusters composed of naming attributes, e.g. Name, Surname, First name, Company name, etc.), DS IDs such as
primary keys, etc. This can be very useful in order to eliminate keywords found in physical relations or AC clusters (AN and AC

clusters are described in Section 6) that potentially will give meaningless OSs.

4.2. GDS Generator

This module takes as input the DBid-kw tuple set and automatically generates (1) a GDS for each RDS that its tuples exists in
DBid-kw and (2) a schema graph GS; both types of schema graphs are generated without any user intervention. Alternatively, the
generation of GDS graphs can be pre-computed for all potentially interesting RDSs.
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Definition 1 (Data Subject Schema Graph (GDS)). A GDS (V, V′, E) is a directed labeled tree that has an RDS as a root node and
captures the subset of the schema surrounding RDS; where any surrounding relations participating in loop relationships are replicated. It
consists of:

• a set of nodes V={R0,… , Rn| n≥0} where each Ri represents a relation of the database schema and the root node R0 has the additional
property that represents RDS. Each node is labeled with Cardinality, Affinity and Attribute Affinity scores;

• a set of nodes V′={Rn+1, … , Rn+m} where each Ri from V′ is a replication of Rj from V that participates either in a loop or recursive
relationship. Again, each node is labeled with Cardinality, Affinity and Attribute Affinity scores;

• a set of edges E={(Ri→Rj)|Ri, Rj∈V∪V′, each Ri→Rj captures the primary to foreign key relationship between relations Ri and Rj}.
Each edge Ri→Rj is labeled with a name, Relative Cardinality and Reverse Relative Cardinality. □

All GDSs have a common maximum depth T; i.e. the longest distance fdi of any Ri to RDS. For the exemplary databases that we
consider in this paper, T was empirically set to 4 as evaluators selected in most cases relations in GDSs with maximum fdi≤3 and
exceptionally with maximum fdi=4 (since relations with fdi≥4 represent completely irrelevant data to RDS). In general, other
values of T can also easily be considered; although intuitively we observe that T≤4 is generally adequate. GDS Generator, whilst
constructing GDS, actually does two tasks: (1) “Treealizes” the schema graph GS by inserting RDS as a root, adding neighboring
relations as child nodes and replicating looped relations and relationships and (2) annotates the GDS with properties such as
Cardinality, Relative Cardinality, etc.



216 G.J. Fakas / Data & Knowledge Engineering 70 (2011) 208–229
Treealization is very useful for later operations on GDS; e.g. it simplifies their annotation and enumeration. More precisely,
relations and relationships participating in loop or recursive relationships (e.g. the relationship ReportsTo on Employees) are
Treealized, i.e. replicated accordingly and then included in the GDS (denoted with rounded corners in diagrams; see figure below).
Such relations are retrieved as a closed path (namely first node is retrieved up to twice (as first and last node) and the rest
intermediary nodes only once) when the loop length is smaller than T. Similarly recursive relationships are retrieved up to twice.
Preliminary precision and recall measures revealed that this approach gives better results.

The complexity of the GDS Generator algorithm is rather simple and this is due to the T and close path (of looped relations)
constrains. Fig. 7 shows the GDS for Customers and Employees RDS for T=4. Relations are annotated with their Cardinality and
relationships with their Relative Cardinality (RC) and Reverse Relative Cardinality (RC). The Appendix includes additional
examples of GDSs for the TPC-H database (Fig. 20).

4.3. OS generation

This module takes as input (1) the tuple set DBid-kw and (2) the corresponding GDS(θ, θ′) graphs and produces an OS tree for
each tuple in DBid-kw. For the generation of an OS, a breadth-first traversal of the corresponding GDS(θ, θ′) with the tDS tuple as the
initial root entry of the OS is employed. The algorithm employs relational operations with the general format σRi. FK=tj. PK(Ri) for
Rj→Ri (i.e. 1:M) relationships and σRi. PK=tj. FK(Ri) for Rj←Ri (i.e. M:1) relationships for each node tj of OS, where Ri is the current
relation and tj is a tuple that belongs to the parent relation Rj. The results of each execution of these operations are appended to the
OS tree as child nodes of tj.

4.4. OS ranking and presentation

This module takes as input the (1) set of OSs, (2) relations' Affinity scores and (3) global Importance scores of each comprising
tuple (global Importance scores may be maintained in a database). It calculates the Importance of each OS and then prints them
descending their Importance. In Section 8, we describe in detail the formulas and parameters we use for ranking OSs.

During presentation, we can merge tuples that are associated with a 1:1 relationship (Fig. 1).

5. Affinity calculation

In this section, we investigate the semantic of Affinity AfRi→RDS (or simply AfRi
) between a relation Ri to the RDS in relational

databases, define metrics that will assist to calculate Affinity and finally present an Affinity formula. The concept of Affinity
has also been investigated and applied in schema clustering and summarization [34–37]. However, in those cases the Affinity
between relations has a more general meaning and its semantics are slightly different from Affinity applied here. According
to our knowledge the definition, investigation and quantification of Affinity as proposed in our work have not been attempted
before.

5.1. The Affinity formula

For the quantification of Affinity the following metrics are considered.
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Fig. 7. Customers and Employees GDSs.
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5.1.1. Relations' distance
The primarymetric for closeness between an Ri to the RDS is their distance on the GDS schema graph, namely the length (i.e. the

number of relationships) of the path from the Ri to the RDS. The shorter the distance is the bigger the Affinity between the two
relations is. For instance, considering the Customers RDS of our running example, we can easily see that Orders is semantically
closer than EmployeeTerritories to the Customer RDS.

If a path from Ri to the RDS contains a physical relation (such as an M:N relation that consists only of the primary keys
(PKs) of the participating relations) then we disregard the additional relationship. Let ldi and fdi be the logical and physical
distances on a path respectively and |M:N| be the amount of M:N physical relations in the path then ldi= fdi− |M:N|. We
see that Orders and CustomerDemographic, although they have different fdi they have equal Affinity to RDS since they have
equal ldi(=1). Note that relations such as Orders, OrderDetails, although they act sometimes as intersection relations they are
not considered as physical relations. (We only consider logical relations to include in an OS and assume that Ri is also a logical
relation.).

5.1.2. Connectivity
A secondary metric of closeness between Ri to RDS is Ri's connectivity on both the database schema, denoted as Schema

Connectivity (Coi) and the data-graph, denoted as Relative Cardinality (RCi→ j). Let the Schema Connectivity Coi of Ri be the
amount of relationships Ri participates in. For instance, the relation CustomerDemographic has Coi=1 since it participates only in
one relationship (i.e. with relation Customers) and Orders has Coi=4 since it participates in four relationships (i.e. with relations
Customers, Employees, Shippers and OrderDetails). Therefore, the relation CustomerDemographic is closer to the Customer RDS

than Orders since they have common logical distance (i.e. ldi=1) but different Schema Connectivity (i.e. 1 against 4). This is a very
interesting closeness property because we notice that CustomerDemographic exists only to provide additional information about
Customers in contrast to Orders which is connected with several other relations. This is some kind of semantic dedication from
CustomerDemographic to Customers.

Let RCi→ j represent the Relative Cardinality of Ri and Rj, namely the average number of tuples of Ri that is connected with each
tuple from Rj (this concept was also used in [36,37]). However, our interest in Relative Cardinality of Ri is only limited towards its
parent relation on the GDS; therefore let RCi be the RCi→ j where Rj is the parent relation on GDS. Relative Cardinality can easily be
calculated as follows: Assuming that all tuples are connected and there are no null values on keys: RCi→ j=|Ri| / |Rj| for 1:M
relationships and RCi→ j=1 for M:1 relationships. Alternatively, RCi→ j will need to be calculated by counting the connections on
the data-graph. For instance, the RCOrders→Employees represents howmany Order tuples are associated with a particular Employee,
i.e. |ROrders| / |REmployees|=830/9=92. Similarly, RCEmployeeTerritories→Employees=5.5, therefore EmployeesTerritories semantically is
closer than Orders to Employees. Another example is RCNation→Customer from the TPC-H database, an M:1 relationship, where only
one tuple from Nation is associated with a particular Customer. Generally we can conclude that M:1 relationships give higher
closeness.

It should also be noted that RC is not commutative. For instance, whilst RCOrders→Employees=92 RCEmployees→Orders=1. Now, let
Reverse Relative Cardinality, denoted as RCi→j , be the reverse of RCi→ j (i.e. RCi→j= RCj→ i). Similarly to RCi, let RCi be the RCi→ j

where Rj is the parent relation on GDS. Apparently, 1:1 relationships have RCi→j =RCj→ i=1 and therefore result to higher
closeness. For instance, if we hypothetically assume that RCNation→Customer =RCNation→Customer=1 (i.e. each Customer belongs to a
different Nation) and therefore their relationship is 1:1, we can easily infer that their Affinity is even closer.

5.1.3. Penalization of lateral data (from hub relations)
Analyzing further relational database schemata, we realize that ‘hub’ relations give lateral data to the RDS [1,2,25]; such

paths containing ‘hubs’ have the following structure: RDS…←Rhub→R2. More precisely, the bigger the RCRhub→R2 the
more irrelevant data we get; i.e. in fact lateral information for the DS. For instance in the TPC-H database, RSupplier with ldi=2
from the RCustomers←RNation→RSupplier path will result to a big list of Suppliers coming from the same Nation as the
Customer; something not directly relevant to Customer (but only laterally relevant). Furthermore, the cardinality of hub–child
relations, e.g. R2, in large databases is huge having a significant impact on f-score results. For this reason, lateral data extracted by
such “spurious short-cuts” should be excluded from OSs. This can be penalized by increasing the impact of ldi and Relative
Cardinality.

5.1.4. Affinity Descriptor of Ri (DAf(Ri))
Let the Affinity Descriptor of Ri to RDS be a list of weighted metrics; namely, DAf(Ri)={(m1, w1), (m2, w2), … (mn, wn)}

where ∑wj=1. In this context, we define metrics m1…mn as follows: m1=f1(ldi), m2=f1(log(10⁎RCi)), m3=f1(log
(10⁎RCi )), m4=f1(Coi). In the case of hub–child relations we penalize them as follows: m1=f1(ldi⁎h) and m2=f1(RCi)

where h=1.6 is a penalizing constant, and where f1 αð Þ =
11−αð Þ= 10 1≤α≤10
1 0bαb1
0 α N 10

8<
: .

These metrics measure the distance (m1), the Relative Cardinality (m2), the Reverse Cardinality (m3) and the Schema
Connectivity (m4) of Ri. The function f1 aims to scale accordingly all metrics to 1 and thus to control their variation so the Affinity
value does not skew excessively. For the same reason, since RCi and RCi values may vary significantly, we depress their values
using logarithms. Other normalization methods, e.g. producing values in the range [0, 1], can also be investigated for depressing
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RCi and RCi . Note that the former approach produces absolute m2 and m3 metrics (since the absolute values are depressed)
whereas the latter produces relative metrics (since normalized values are produced in the range [0, 1]).

Definition 2 (Affinity). The Semantic of Affinity of Ri to RDS, denoted as AfRi→RDS (or simply AfRi
), with respect to a schema and a

database conforming to the schema, can be calculated with the following formula:
where
AfRi→RDS = ∑
j
mjwj⋅AfRParent→RDS ð2Þ

j ranges over all metrics in DAf(Ri), AfRDS→RDS=1 and AfRParent→RDS is the Affinity of the Ri's Parent to RDS. □
The above Affinity formula produces a score in the range [0, 1] and the RDS is assigned the maximum Affinity score (i.e. 1). Also
note that the proposed formula (2) may also produce an Affinity score 1 for a relation Ri (where Ri≠RDS), if all metrics of Ri have a
score of 1; i.e. ldi=1, RCi=1, RCi =1 and Coi=1. In other words, a relation Ri that participates only in one relationship (therefore
Coi=1) and this unique relationship is 1:1 with the RDS (therefore ldi=1 and RCi=RCi =1). Such a relation can be merged with
RDS without violating normalization rules; which means that Ri semantically is a part of RDS but for some reason during the
database design it was created as a separate relation.

5.2. Discussion

Experimental analysis of Affinity formula has revealed that usually any Ri with ldi up to 3 gives good f-score results as long as
lateral data from hub relations are excluded. In fact, the proposed Affinity formula has been tuned accordingly so as an Affinity
threshold θ=0.7 in combination with the following metric weights: w1=0.5, w2=0.4, w3=0.05 and w4=0.05 will include only
such relations for the particular two databases (but also for any other database). In general, DBAs and users can employ the
technique proposed in Section 7 for the selection of a threshold closer to their needs (that estimates the OS size). Regarding
metrics' weights, they should note that metrics m1 (distance) andm2 (Relative Cardinality) are themost influential for the Affinity
estimation and thus give analogously more weights to w1 and w2 (e.g. w1=0.5, w2=0.4). Fig. 8 illustrates the Affinity results of
relations for Employees, Customer, Order and Shipper RDSs for the Northwind database based on these weight settings.

Furthermore, thorough user evaluation also revealed that user needs or even user perceptions regarding the comprehen-
siveness (and therefore abstraction) of an OS may vary. For instance for the Employees GDS, some evaluators consider Product as
relevant whilst others as irrelevant and detailed data. DBAs and users can deal with this requirement by controlling the level of
comprehensiveness by adjusting θ (or the estimated OS size, discussed in Section 7) accordingly. For this reason, the proposed
Affinity Ranking rRi

Af (or simply rRi) of each Ri and hence the overall Affinity Ranking Correctness (ARC) of relations was also
investigated and compared with users' perceived Affinity rankings (Section 9.1.2).

6. Attribute Affinity calculation

In this section, we investigate the semantic of Affinity AAfRi.Aj→RDS (or simply AAfAij
) between attributes Aj (e.g. a cluster of

attributes denoted as Aj) of the relation Ri to RDS and then propose an Attribute Affinity formula. The quantification of Attribute
Affinity is useful in order to filter out attributes that are not really relevant to RDS since not all attributes of all Ris are relevant. As
explained in the Related work section, existing work in attribute filtering is completely inappropriate for our paradigm.

In order to achieve a good quantification of Attribute Affinity we need to investigate the semantics and the affinity properties of
attributes in relational databases not only in general but also in the context of GDS. In a relational database, a relation comprised of
two sets of attributes: (1) the set of physical attributes denoted as AF and (2) the set of logical attributes denoted as AL. The former
comprised of physical data required by the relational model; namely primary keys and foreign keys and can be further clustered
into APK and AFK sets respectively. Attributes in AFK are not semantically interesting for users and therefore can be excluded from
RDS

Ri

Employees Customer Order Shipper

ldi, RCi, iRC
Coi

m1..m4 AfRi AfRi (rRi) AfRi (rRi) AfRi (rRi)

Employees RDS RDS 1.00 0.88 (3) 0.97 (4) 0.82 (4)
Employees (ReportsTo) 1, 1, 0.9, 4 1, 1, 1, 0.7 0.98 0.78 (5) 0.91 (5) 0.73 (5)
Employees (ReportedBy) 1, 0.9, 1, 4 1, 1, 1, 0.7 0.98 0.70(7) 0.85 (7) 0.66 (7)
Territories 1, 5.4, 1, 2 1, 0.9, 1, 0.9 0.96 0.55 (10) 0.66 (10) 0.51 (10)
Region 2, 1, 13.2, 1 0.9, 1, 0.88, 1 0.91 0.46 (11) 0.59 (11) 0.43 (11)
Order 1, 92.2, 1, 4 1, 0.8, 1, 0.7 0.90 0.94 (1) 1 (RDS) 0.89 (1)
Customer 2, 1, 9.1, 2 0.9, 1, 0.9, 0.9 0.85 1 (RDS) 0.99 (1) 0.83 (2)
Shipper 2, 1, 276.6, 1 0.9, 1, 0.75, 1 0.85 0.88 (2) 0.98 (2) 1 (RDS)
OrderDetails 2, 2.5, 1, 2 0.9, 0.96, 1, 0.9 0.84 0.88 (4) 0.97 (3) 0.82 (3)
Product 3, 1, 43.9, 4 0.8, 1, 0.83, 0.8 0.74 0.77 (6) 0.91 (6) 0.73 (6)
Supplier 4, 1, 1.6, 1 0.7, 1, 0.9, 1 0.63 0.65 (8) 0.82 (8) 0.62 (8)
Categories 4, 1, 6.1, 1 0.7, 1, 0.92, 1 0.62 0.65 (9) 0.81 (9) 0.61 (9)
CustDemographics 3, null, null, 1 0.8, null, null, 1 Null Null Null Null

, 

Fig. 8. Affinity for four GDSs from the Northwind database (Affinity Ranking).
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the OS. On the other hand, information described by attributes in AL is logically meaningful to users and need to be considered
for inclusion in OSs. The clustering of attributes into the above sets can easily be achieved since primary and foreign keys are
known.

The challenge now is how to assign an Affinity score to the attributes of AL; for this reason, the following approach is
proposed. AL is further clustered into disjoint sets of attributes A1,…,An and then each cluster Aj is assigned an Attribute Affinity
score (AAfAij

). For instance, a General (Universal) Clustering Approach of attributes that aims to address any arbitrary database is
proposed as follows (Fig. 9): (1) the AN cluster comprising of Naming attributes, such as Name, Surname, First Name, Company
Name, etc.; (2) the AG cluster comprising of general attributes, such as Address, Date of birth, etc.; and finally (3) the AC cluster
comprising of attributes including comments, descriptions, multimedia data, etc. Section 6.1 presents the Attribute Affinity
formula, Section 6.2 describes the proposed attribute clustering technique whilst Section 6.3 discusses alternative clustering
approaches.

6.1. Attribute Affinity formula

In this context, the following metrics are considered for the calculation of Attribute Affinity.

6.1.1. Relations' Affinity
The primary metric of Attributes Ri.Aj Affinity to RDS is the Affinity of Ri. This is based on the intuitive observation that the more

AfRi
decreases the less attributes of Ri are really relevant to the RDS. In many cases, although an Ri is included in a GDS(θ), only its

naming (e.g. Name, Surname, etc.) attributes are in fact relevant. For example for the Northwind Employees GDS, a user will be
interested in more attributes included in Orders relation than in Products relation since AfROrderNAfRProduct. More precisely, a user
would expect to see attributes OrderDate, RequiredDate, ShipName, etc. from Orders whilst the attribute ProductName from
Products will be adequate.

6.1.2. Attribute cluster's Affinity ranking (dAj)
A secondary metric is that AL clusters can intuitively be ranked by their Affinity to the RDS. For example for the proposed

General Clustering Approach, clusters have the following intuitive Affinity Ranking: AN, AG, and AC. In other words, if we had to
prune out some attributes from a relation (e.g. Employees; Fig. 9(b)), we would certainly prune out first AC, then AG and lastly AN.
This order represents in some way the ranking of abstractness of attributes.

Therefore an attribute cluster's Affinity Ranking (dAj) is assigned for each cluster; e.g. for AN, AG, and AC the dAj values 1, 2 and 3
respectively (other continuous ranking values may also be considered). Because some of these clusters are sometimes empty, a
more dynamic way of assigning dAj is required in order to increase a cluster's ranking when all its predecessor clusters are empty.
For this reason, the corresponding d(Aj) function is introduced. As shown in Fig. 9(a), dAG=1 if AN is empty and dAC=1 if both AN

and AG are empty. In other words, if a relation does not include an AN cluster then dAG is set to 1 instead of 2; similarly if a relation
does not include neither AN nor AG clusters then dAC is set to 1 instead of 3.
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Fig. 9. (a) The General Clustering Affinity Approach. (b) Attribute clusters (with each attribute's name and data type (size)).
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Definition 3 (Attribute Affinity). The semantic of Affinity of a cluster of attributes Aj of a relation Ri to RDS, denoted as AAfRi. Aj→RDS (or
simply AAfAij

), can be calculated with the following formula:
AAfRi :Aj→RDS = f2 dAj

� �
⋅AfRi→RDS ð3Þ

the function f2 is defined as f2(α)=1−w∙(α−1)/10, w is a tuning weight, AfRi→RDS is the Affinity of Ri to RDS and dAj
is the
where

Cluster's Affinity Ranking defined by the function d(Aj). □

The function f2 (similarly to f1) aims to scale accordingly dAj to 1. On the other hand, the tuning weight w is necessary for the
definition of a threshold value θ′; for instance for θ′=0.7, w is set to 1.5. The above formula produces a score in the range [0, 1].
Note that according to the above formula only the RDS (with AfRDS=1) can have all of its clusters with AAfAij

≥0.70 and therefore all
clusters filtered in the OS for θ′=0.7, whilst for the rest Ris, for example, always AAfAiCb0.70 and therefore AC is always filtered out
for θ′=0.7. Fig. 10 illustrates the Attribute Affinity results for the Northwind Employees RDS using the same weight settings as
those used in Fig. 8.

6.2. Attribute clustering (the General Clustering Approach)

According to the proposed clustering approach, each cluster Aj is associated with a set of rules that can be used for the
clustering of Aj. Schema matching [40] techniques, which combine linguistic and attributes' data types matching can be used to
cluster attributes based on these clustering rules.

The clustering rules of the General Clustering Approach are summarized in Fig. 9(a) and more precisely its clustering is
achieved as follows. Firstly, the AC is created by considering the data types of attributes, namely by including attributes of text with
big size (e.g. N75 characters; i.e. comments or descriptions, etc.), multimedia content, etc. Secondly, the AN is created by combining
linguistic and data type matching. For this purpose, a NamingDictionary containing 21 synonym and hyponym words (together
with their stems) for the words “Name” and “Surname” (e.g. Surname, Family name, Patronymic, etc.) was generated from the
WordNet Dictionary [43]. Finally AG is created by deducting AN and AC from the AG set (namely AG=AL−AC−AN). These
problems have already been well addressed by schema and ontology matching techniques [39–41] and it is beyond the scope of
this paper to examine them in further detail.

6.3. Discussion

The clustering of attributes can also be described by ontologies; the use of ontologies will enhance clustering quality and
flexibility (e.g. more and finer clusters). The proposed General Clustering Approach of attributes (i.e. AN, AG, and AC clusters) is
general (universal) and aims to address any domain theme of databases; ranging from trading (e.g. Northwind and TPC-H),
bibliographic (e.g. DBLP [44], IMDB [45]), university (e.g. [46]) databases, etc. Certainly, the consideration of a particular domain
theme of a database during attribute clustering in combination with the use of ontologies describing such domains will improve
results quality; since it will facilitate finer and more accurate clustering. For example, in a bibliographic database, the naming
attribute of a publication (e.g. a paper [44,45]) is usually called a “Title” instead of a “Name”. In our work, this bibliographic domain
idiom for a naming attribute will be missed out and clustered as AG instead. In addition, the automated identification of the
database theme domain (e.g. trading, bibliographic, etc.) and their relations' themes (e.g. relations Employees describe a physical
person whilst Shippers and Customers describe Companies, etc.) in combination with predefined ontologies will further improve
these facilities. These are plans for future work.
RDS

Ri( Attr. Clust.)  

Employees
f2(dAj) AfRi AAAf

Employees (AN, AG, AC) RDS 1 1, 0.85, 0.7
Employees (ReportsTo) (AN, AG, AC) 1, 0.85, 0.7

0.98 0.99, 0.84, 0.69
Employees (ReportedBy) (AN, AG, AC) 1, 0.85, 0.7

0.98 0.99, 0.84, 0.69
Territories (AG) 1 0.96 0.97
Region (AG) 1 0.91 0.91
Order (AG) 1 0.90 0.90
Customer (AN, AG) 1, 0.85 0.85 0.85, 0.72
Shipper (AN, AG) 1, 0.85 0.85 0.85, 0.72
OrderDetails (AG) 1 0.84 0.84
Product (AN, AG) 1, 0.85 0.74 0.74, 0.63

Fig. 10. Attribute Affinity for Employees GDS (Northwind database).
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7. Estimation of thresholds

The selection of appropriate thresholds according to the user needs may be a difficult task. As with small thresholds, we may
obtain extremely large OSs or alternatively with large thresholds we may obtain very small OSs. We propose a technique that
facilitates users to select more quickly the suitable Affinity and Attribute Affinity thresholds by estimating the size of OSs for the
particular thresholds. This approach is not only more convenient for users but also simpler to comprehend.

In order to estimate an Affinity threshold, we estimate the size of an OS in tuples using the Relative Cardinalities of relations
in GDS(θ). Let OS(θ) be the OS generated with GDS(θ), |OS(θ)| be the amount of tuples of OS(θ), R(OS)i be any relation in GDS(θ),
|R(OS)i| be the amount of tuples from the relation Ri in the OS(θ) and RCi→ j be the Relative Cardinality between Ri and Rj (as
defined in Section 5). Then, the estimated |OS(θ)| can be calculated with |OS(θ)|=∑|R(OS)i| where |R(OS)i|=|R(OS)j|⁎RCi→ j

and Rj is the parent relation of Ri. Fig. 11(a) gives us an indication of estimated |OS(θ)|s for the Employees GDS. For instance
|OS(0.95)| is calculated as follows. GDS(0.95) includes Employees (ReportsTo), Empoloyees (Reported By) and Territories.
Their |R(OS)i|s are 0.9 (=1⁎0.9), 1 (=1⁎1) and 5.4 (=1⁎5.4) respectively; since they all have a common |R(OS)j|=1 (i.e. the tDS)
and respective RCi→ js are 0.9, 1 and 5.4. Therefore, estimated |OS(0.95)|=1+0.9+5.4=7.3. Finally, we round the estimated
numbers of |OS(θ)| as to avoid any confusions of users.

Similarly, we can estimate an Attribute Affinity threshold. Namely, for a given GDS(θ, θ′) we estimate the size of an OS in
terms of attribute clusters (alternatively, we can estimate the amount of attributes or bytes). Let OS(θ, θ′) be the OS generated
with GDS(θ, θ′), |OS(θ, θ′)| be the total amount of attribute clusters of the OS(θ, θ′) and |R(θ′)i| be the amount of attribute clusters
in the relation Ri (i.e. with AAfAijNθ′). Then, the estimated |OS(θ, θ′)| can be calculated with |OS(θ, θ′)|=∑(|R(OS)i|⁎ |R(θ′)i|),
where |R(OS)i| is calculated as above. Fig. 11(b) gives an indication of estimated |OS(0.70, θ′)|s for the Employees GDS.

8. Ranking of OSs

The result of a query may comprise a set of OSs, e.g. the result of the query “Peacock” on the dataset of Fig. 3 comprises two OSs
(Fig. 5). In some cases the set of OSsmay be very large and thus an effective ranking of OSs is necessary. Recall that existing ranking
semantics of traditional R-KwS are inappropriate for OS ranking as they rank higher results with small size [1–3]. In contrast, an OS
containing many well connected tuples should have certainly greater Importance. For instance, in the aforementioned example,
the Employee Margaret Peacock who has served two orders is more important than Employee Janet Peacock who has served only
one. Thus their corresponding OSs should be ranked accordingly.

In order to rank OSs we estimate an Importance score for each OS, denoted as Im(OS). We treat each OS as a document
comprising of |OS| tuples where each tuple is associated with a local Importance score denoted as Im(OS, ti). We propose that the
Importance of an OS should combine:

(1) The local Importance of each tuple (Im(OS, ti)) in the OS. More precisely, the more important tuples an OS contains the higher
Importance it has. Hence, the summation of the local Importance of tuples should be considered.

(2) The size of the OS (|OS|). Because solely considering the summation of local Importance of comprising tuples will favor large
OSs, we also penalize large OSs by normalizing with their log(|OS|). We use log to depress the impact of the size. Also note
that excluding the log will result to the average of Im(OS, ti) which is not desired as it is misleading.

Therefore, the following combining formula can be used for estimating the Importance of an OS:
where

where
relatio
ti to th
from t
the Im
Im OSð Þ = ∑Im OS; tið Þ
log jOS jð Þ + 1

ð4Þ

the local Importance of each tuple ti in an OS (namely Im(OS, ti)) can be calculated with:

Im OS; tið Þ = Im tið Þ⁎Af tið Þ ð5Þ
Im(ti) is the global Importance of ti in the database. We can use ranking systems that consider authority flow through
nships to calculate global Importance scores, such as PageRank [30], ObjectRank [31], ValueRank [33], etc.Af(ti) is the Affinity of
e tDS; namely the Affinity of the corresponding relation it belongs to, to RDS (namely Af(Ri) and can cheaply be obtained
he GDS). The product of Im(ti) with Af(ti) aims to reduce the global Importance contribution of each tuple accordingly to
(OS, ti) (since Af(ti)≤1). This was necessary as discrimination of tuples with different Affinity is considered crucial.
Estimated |OS( )|
0.95 7
0.90 105
0.85 289
0.80 520
0.75 520
0.70 750

’ Estimated |OS(0.70, ’)|
0.95 8
0.90 106
0.85 291
0.80 524
0.75 524
0.70 940

a b
Θ θ θ θ

Fig. 11. (a) Estimated |OS(θ)| in tuples. (b) Estimated |OS(θ, θ′)| in attributes clusters.
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9. Experimental evaluation

The proposed keyword search paradigmwas evaluated with two databases, namely TPC-H and Northwind. The size of the TPC-
H database is 1 GB (≈8.6⁎106 tuples; Scale Factor 1) and the size of the Northwind database is 3.7 MB (≈3.3⁎103 tuples). For the
experiments, we used Java, MySQL and a PC with AMD Phenom 9650 (Quad-Core) processor, 2.3 GHz and 4 GB of main memory.
The DBMS maximum memory was set to 80 MB. We firstly present the search quality, then the performance and finally
comparative results with other existing work.

9.1. OS quality (evaluation methodology)

In this section, we investigate the quality of OS and GDS(θ) in terms of accuracy and completeness, where the correct results
were provided by humans. For this reason, a thorough survey was conducted where ten lecturers and students from our
department and also from the School of Computer Science of the University of Manchester participated. The volunteers had no
involvement in this work and they were firstly introduced to the new keyword search paradigm and the semantics of OS results.

The quality of OSs (and thus GDS(θ)s) is measured by standard precision, recall and f-score (P/R/F) metrics. Precision measures
accuracy (i.e. the fraction of correct results), recall measures completeness (i.e. the fraction of all correct results actually captured),
and f-score represents their weighted harmonic mean.

9.1.1. Quality of relations filtering (P/R/F results)
For this evaluation task, the participants were given twelve GDSs (i.e. six from the TCP-H and six from the Northwind database)

and were asked to define manually their own GDSs, denoted as GDS(h)s. The participants did not provide completely identical GDS

(h)s since their GDS(h)s had some minor differences (this was anticipated anyway, since this is a subjective task). For example, a
comprehensive enquiry about a Supplier may demand information such as Products, Categories and Orders; on the other hand an
abstract enquiry may be limited only to the Products the particular Supplier supplies. For this reason, in order to obtain common
comparative criteria, we requested from the participants comprehensive but at the same good GDS(h)s.

The following experiments also investigate the impact of metrics' weights and thresholds. The following weight schemes and
thresholds were investigated: W1=bbbbbbbbbbbbbbb0.5, 0.4, 0.05, 0.05NNNNNNNNNNNNNNN, W2=b0.4, 0.3, 0.15, 0.15N, W3=b0.6, 0.3, 0.05, 0.05N, W4=b0.7, 0.2,
0.05, 0.05N, W5=b0.4, 0.5, 0.05, 0.05NandW6=b0.25, 0.25, 0.25, 0.25Nand θ1=0.70, θ2=0.65, θ3=0.75, and θ4=0.80, withW1

and θ1 as the initial setting.
Fig. 12(a) summarizes the quality of the GDS(θ) produced with initial setting: θ1 and W1 in terms of P/R/F results. More

precisely, it depicts the average of P/R/F results of GDS(θ) and each GDS(h) (namely by considering relations that are included or
GDS Precision, Recall and F-score (Averages)
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Fig. 12. GDS quality (P/R/F results).
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excluded in GDS(θ)). Fig. 12(b) summarizes the impact of descriptors weights by presenting f-scores of GDS(θ). The initial setting
(W1) gives the best average of f-score results, i.e. 89.44% whist W5 the worst i.e. 86.77%. Note that the proposed Affinity formula
was designed based on the initial weight scheme. Evidently, there is not a significant impact of the weight settings on P/R/F of
GDSs; since f-score range is [86.77, 89.44]. Whilst, Fig. 12(c) depicts the impact of thresholds; thresholds 0.70 and 0.75 produce the
best f-scores (≈89%). As expected whilst θ increases, precision decreases whereas recall increases.

Fig. 13(a) summarizes the quality of OSs produced by a GDS(θ) (with θ1 andW1). More precisely, it depicts the average of P/R/F
results of OSs produced by each GDS(θ) for 10 randomly selected tDSs (or for all tDSs if |RDS|b10) against OSs produced by the
corresponding GDS(h). The average size in tuples of the randomly selected OSs per GDS is also indicated (below the GDS name). In
summary, f-scores range from 96% (i.e. for Northwind Shippers GDS) to 56% (i.e. for TPC-HNation GDS) and the average P/R/F scores
are 90.3%, 83.9% and 82.2% respectively. The poor results for Nation OSs were to some extent expected because of the large Relative
Cardinality involved. In summary, these are very good P/R/F results.

Fig. 13(b) summarizes the impact of different descriptor weight schemes on OS P/R/F scores by depicting f-scores per GDS. As
shown, the impact on the Northwind G DSs is insignificant. On the other hand, on the TPC-H database some weight schemes (e.g.
W4 and W6) result to very poor scores (e.g. for Nation and Region GDSs). Fig. 13(c) shows the average P/R/F scores for the two
databases per weight scheme. It verifies again that the impact is significant on the TCP-H database; this is due to the large Relative
Cardinality involved. In conclusion, W1, W2, W3, and W5 give very good results with averages of f-score ranging from 81.1% to
83.8%. These weight schemes also reveal that m1 and m2 have the most significant effect and that if their corresponding weights
belong to the range [0.4, 0.6] can yield to very good results.

Comparing results from Figs. 12 and 13, we observe that W1 is the safest weighting scheme to choose since it performs well on
both cases for both databases. On the GDS level it returns f-score=89.44% (i.e. the best P/R/F results of all), whilst on the OS level it
returns f-score=82.20% (i.e. an insignificant difference from the best f-score=83.8% produced byW5). This is due to the Relative
Cardinality effect on the P/R/F results of OSs. Certainly, the P/R/F results on the OS level are significantly more important than the
ones on a GDS level. In conclusion, a DBA must investigate for the suitability of the proposed initial weighting scheme for each
particular dataset.

9.1.2. Relation's Affinity Ranking Correctness (ARC)
During the first task of the evaluation (Section 9.1.1), it was revealed that a critical factor of the variation of human's perception

of a good summarywas because of the different perception regarding the abstraction or comprehensiveness of an OS. Based on this
observation, we realized that another accurate measurement of the quality of our approach is the correctness of the Affinity
calculation and more precisely the ranking of relations based on their Affinity. Since, users can experiment with abstraction or
comprehensiveness by adjusting (by either increasing or decreasing) gradually the threshold accordingly. For instance, if a user
believes that the OSs produced are very over-detailed then he/she can increase θ or alternatively if he/she believes that OSs are
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very abstract and additional information about the DS is retrievable then θ can be decreased. For this reason, we also asked our
volunteers for each GDS to rank relations based on their Affinity to the RDS.

The results in Fig. 14 denoted with Af depict the average of Affinity Ranking Correctness (ARC) of the proposed Affinity formula
(produced using the initial settings) against evaluators' rankings. (Whereas comparative results, denoted with Af-H, depict ARC
produced by Affinity formula (1) [36] and are discussed in Subsection 9.3.) We use the correlations to measure ARC. More
precisely, we calculate the correlation between the proposed Affinity Ranking (i.e. rRiAf) for each Ri in GDS and the evaluator's Affinity
Ranking (denoted as rRih ). In conclusion, the average results were very encouraging with values ranging from 0.72 (for Employees
GDS) to 0.97 (for Products GDS) both from the Northwind database. Note that the maximum correlation is 1 and that is achieved
when the two rankings are identical.

9.1.3. Quality of attribute filtering (P/R/F results)
The following P/R/F results compare attribute filtering proposed by GDS(θ, θ′) against evaluators' GDS(θ, h) on both GDS and OS

levels. For comparative reasons both GDS(θ, θ′) and GDS(θ, h) were comprised of the same set of relations, therefore they were both
generatedwith a commonAffinity threshold θ=0.70andweighting settings (namelyW1). TheAttributeAffinity threshold and tuning
weight w were set to 0.70 and 1.5 respectively; attribute clusters included in each relation of GDS(θ, h) were defined by evaluators.

Fig. 15(a) depicts the average of P/R/F results of GDS(θ, θ′) against each evaluator's GDS(θ, h) (namely by considering
attribute clusters of each relation in GDS(θ, θ′) and GDS(θ, h)). f-Scores range from 85.7% to 100% and the average P/R/F scores are
88.0%, 96.0% and 91.5% respectively. On the other hand, Fig. 15(b) summarizes the average P/R/F results of OSs produced by each
GDS(θ, θ′) for the 10 selected tDSs (same tDSs used in previous experiments) against OSs produced by the corresponding evaluator's
GDS(θ, h). In summary, f-scores range from 86.3% to 100% and the average P/R/F scores are 93.3%, 98.6% and 95.6% respectively. In
summary, these are very good P/R/F results.

9.2. Performance evaluation

In this subsection, we present performance results of the proposed system. Firstly, we investigate the space required by the OS
contents and the space savings achieved by employing attribute filtering. Fig. 16(a) summarizes the size of OSs (in bytes) with and
without attribute filtering for the experiments of Section 9.1.3. These results exclude the structural space required for the OS tree
construction. Evidently for the two benchmarks, the space savings after filtering attributes are very significant; more precisely, size
reductions range from 86% to 8.7% (i.e. for TPC-H Region with a reduction from 7,117,106 to 928,326 bytes and Northwind
Suppliers with a reduction from 18,108 to 16,520 bytes respectively), whilst the average reduction is 50%. These significant
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reductions are due to the extensive repetitions of relations such as Customers and Suppliers in large OSs such as Region and
Nation. These relations include big in size AC clusters and thus their exclusion impacts positively the OS's size.

Secondly, we investigate the time required by the various modules of the system. More precisely, the average time for the
generation of a GDS graph and the calculation of the Affinity and Attribute Affinity of a GDS are 16 ms and 6 ms respectively. We are
very satisfied with these times (and therefore do not elaborate discussions) because these tasks can be pre-computed (i.e. one
time tasks) and then reuse their output during keyword search. Note that both these tasks are cheap to execute because their
input, i.e. the schema graph, is small and also memory based.

The CPU execution time required for the generation and presentation of OSs was more thoroughly investigated. As expected,
experimentation revealed that attribute filtering did not have any important impact on the CPU time for the OS generation.
Therefore, the following results (Fig. 16(b)) do not present any comparative results but only an indication of the time required for
the generation of an OS for each GDS. The size in terms of tuples for each OS is also indicated (below the GDS name). The results
revealed that both (1) OS size and (2) database size affect significantly CPU time. For instance for the Northwind database, the
particular OS for Customers required less time than the OS for Shippers, since OS sizes are 308 and 3224 tuples respectively.
Similarly, comparing the time for the OS generation for the particular Northwind Shippers (with size 3224) with the time for the
TPC-H Customers OS (with size only 173 tuples), we observe that the TPC-H Customers OS requires double time.

Fig. 16(b) also presents comparative results between OS generation and presentation. The results revealed that OS generation
is muchmore demanding than OS presentation and this is because of the big I/O operations required. The results also revealed that
only the OS size affected CPU time for the OS presentation (in contrast to OS generation where the database size also affected).

An interesting observation is the extremely large times required by TPC-H Nation, Region and Shipper OSs (especially during
OS generation), i.e. due to the huge size of the corresponding OSs. In such cases, the users can very easily detect potentially
demanding OSs by using the threshold estimation techniques (discussed in Section 7) so they can act accordingly.

We run each OS generation experiment 20 times, excluded the worst and best measurements and then calculated the average
of the remaining 18 measurements. In all experiments cold cache memory was used.

9.3. Comparative results

According to our knowledge there is not any other existing work directly relevant to OSs so we can compare our results with.
Nevertheless we discuss and compare where possible our results with existing related work.

9.3.1. R-KwS
Traditional R-KwS query results are not comparable with our work as they differ fundamentally both semantically and

technically. More precisely, R-KwSs produce results describing the associations of the given keywords (e.g. “Leverling Peacock”)
whilst OSs produce summaries of all information about particular DSs (e.g. “Janet Peacock”).

9.3.2. Précis
Précis queries have some similarities with our work as they also summarize information, although they have slightly different

semantics. For instance, in OS queries, given an identifying set of keywords (e.g. “Janet Peacock”), an OS is generated for each DS;
whereas in précis queries, given a more general set of keywords (e.g. “Janet Peacock” or “Peacock sales”), a subset (summary) of
the whole database is generated. Using the same evaluators, we compared OSs and précis results in terms of their friendliness and
ease of use when trying to obtain a thorough report of information about a DS (which is the objective of the proposed keyword
search paradigm).

More precisely, we presented to our evaluators results in the OS and précis formats and asked them to score them in the scale
1–10 and also to justify their scores. We emphasized to them the objective of this keyword search paradigm (which is the
generation of thorough personalized reports of DSs) and we asked them to score the friendliness and ease of use of the contents of
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the results. We presented the queries, the corresponding results and their format in a randomized order to the evaluators so we do
not make them biased in favor to one method. We presented to the evaluators results from various queries; ranging the size
and amount of OSs per query, the GDS and the corresponding database. The results for each query, in either format, contain
the same contents as correctness of results is not what we investigate but their friendliness and ease of use. E.g. similarly to the
results for the “Peacock” keyword, presented in the two formats in Fig. 5(a) and (c) respectively that correspond to the same
contents.

Fig. 17 depicts the average of the comparative evaluation results of our survey, where num(OS) represent the amount of OSs
per query result and ave(|OS|) their average in size. In general, the evaluators expressed more preference to OSs' format. More
particularly, for large in size and amount of OS results (e.g. Q2, Q3, Q5, Q6, and Q8), they strongly preferred OSs (e.g. in Q2 the
difference of preference of the two approaches is 32%). The users explained that they preferred OSs mainly for presentation
reasons, since OS format replicate information not only inside each OS but also in all OSs per query result and this made OSs more
self-contained and thus easier to comprehend and use. In contrast, in the précis format (which is a subset of the database); it was
difficult for the evaluators to connect the data and make sense what information is contained for each DS. For small results with
fewer and smaller OSs the difference of preference was smaller (e.g. Q1, Q4 and Q7; more precisely in Q1 the difference of
preference is only 9%). This is because for smaller results précis were not that difficult to use in comparison to OSs. In general,
regardless of the method, evaluators expressed more preference to smaller in size OS and précis results in comparison to larger
ones. In summary, the evaluation revealed that OS results are always more preferable by users than précis for all queries in terms
of friendliness and ease of use. This was anticipated as OSs and précis have slightly different semantics and this is the reason that
précis were not that preferred by the evaluators for our purpose (i.e. for summaries of data of DSs).

In terms of quality correctness, précis results are produced by manually set weights, thus there is not any meaning
comparing précis results (since their contents is selectedmanually) against OSs. However, assuming that we had an algorithm that
transforms a précis query result (i.e. the database subset) to an OS format, then this “Précis OS”will correspond to the OS produced
by the GDS(h) proposed by users or DBAs.

9.3.3. Affinity
In schema summarization the concept of Affinity is also investigated and quantified, e.g. the Affinity formula (1) [36]. Although

this formula is not completely appropriate for our paradigm, we try to apply it in order to calculate an Affinity for each Ri for
comparative reasons. Yet, it is not very easy to use it in order to generate OSs and then compare OS quality since a corresponding
threshold is needed. The selection of an effective common threshold for all GDSs of a database is very difficult as Affinity values
were very skewed (with a fast decline; this is because metrics were not normalized). For instance, for the TPC-H Customer GDS,
ordered Affinity values were 1, 0.5, 0.1, 0.013, 0.008, etc. whereas for Parts GDS 0.25, 0.12, 0.083, 0.062, etc. On the contrary, our
formula was designed to support more easily the selection of a common threshold.

ARC is a fair comparative metric since it considers the ranking of relations according to their Affinity (regardless of any
thresholds). In Fig. 14 we also present ARC results created with Affinity [36]. In summary, our results are better for all twelve GDSs. In
average, the difference of the correlation coefficient of the two affinity rankings is 0.10 for the twelve GDSs and more precisely the
difference for the Northwind database is 0.09 whilst for the TPC-H database is 0.05 (recall that the maximum correlation is 1). This
difference was expected since Affinity in [36] ignores Affinity properties specific to relational databases, such as hub relations,
schema connectivity, etc. Note that even this small difference of ARC is enough to yield very poor P/R/F results (especially on large
datasets).

10. Conclusion and future work

This paper introduces a novel keyword search paradigm that facilitates the automated extraction of data held about DSs in a
relational database. According to the best of our knowledge, this keyword search paradigm has not been attempted before. Such a
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searching paradigm, that liberates users from schema and query languages, will certainly be a great contribution especially now
with the wider use of web accessible databases.

The result of a keyword query of the proposed paradigm is an OS; where an OS summarizes all data held about a particular DS
(e.g. a person or any other logical object) in a database. The proposed paradigm produces OSs by traversing the data-graph; for this
purpose the GDS, RDS and tDS concepts are introducedwhich correspond to the sub-schema graph, relation and tuple containing the
keywords. It starts from a tuple containing the keyword, i.e. the tDS and continues traversing neighboring tuples (by traversing
GDS) as long as the data traversed is relevant to tDS.

Certainly the primary challenge of this work is the selection of which relations and attributes in the GDS to traverse. Therefore,
an important contribution of this paper was the introduction, investigation and quantification of Relation and Attribute Affinity in
the GDS context. These Affinity scores in combination with the thresholds provided by the DBA (or users) will facilitate the
automated generation of OSs. A technique is also proposed that facilitates users to select more quickly the suitable thresholds by
estimating the size of OSs for the particular thresholds.

We conducted experiments on two databases, namely TPC-H and Northwind. The excellent P/R/F and Affinity Ranking
Correctness results proved the quality of the proposed Affinity formulas.

A direction of future work concerns the investigation of snippets of OSs, i.e. the generation of more synoptic OSs with smaller
size containing only the most important and distinguishable tuples of each OS; since some OSs may be very large in size. For this
purpose efficient and effective algorithms will be investigated. A different direction of future work concerns further investigation
of attribute clustering techniques, the automated identification of database theme domains and their relations' themes. For these
problems, ontologies will be considered.

Acknowledgment

This work was partially supported by the “Hosting of Experienced Researchers from Abroad” programme (ΠΡΟΣΕΛΚΥΣΗ/
ΠΡΟΕΜ/0308) funded by the Research Promotion Foundation, Cyprus.

Appendix A
CustomerID

CompanyName

ContactName

ContactTitle

Address

City

Region

PostalCode

Country

Phone

Fax

CustomerID

CustomerTypeID

CustomerDesc

CustomerTypeID

OrderID

CustomerID

EmployeeID

OrderDate

RequiredDate

ShippedDate

ShipVia

Freight

ShipName

ShipAddress

ShipCity

ShipRegion

ShipPostalCode

ShipCity

ShipperID

CompanyName

Phone

OrderID

ProductID

UnitPrice

Quantity

Discount

CategoryID

CategoryName

Description

Picture

ProductID

ProductName

SupplierID

CategoryID

QuantityPerUnit

UnitPrice

UnitsInStock

UnitsOnOrder

ReorderLevel

Discontinued

SupplierID

CompanyName

ContactName

ContactTitle

Address

City

Region

PostalCode

Country

Phone

Fax

HomePage

RegionID

RegionDescription

TerritoryID

TerritoryDescription

RegionID

EmployeeID

TerritoryID

EmployeeID

LastName

FirstName

Title

TitleOfCourtesy

BirthDate

HireDate

Address

City

Region

PostalCode

Country

HomePhone

Extension

Photo

Notes

ReportsTo

PhotoPath

Employees
(9)

EmployeeTerritories
(49)

Territories
(53)

Region
(4)

Shippers
(3)

Products
(77)

Suppliers
(29)

Order Details
(2155)

Categories
(8)

Orders
(830)

Customers
(91)

CustomerCustomerDemo
(0)

CustomerDemographics
(0)

Fig. 18. The Northwind database schema (with the Cardinality of each relation).
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Fig. 19. The TPC-H database schema (with the Cardinality of each relation for Scale Factor 1).
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ig. 20. The TPC-H customers and supplier GDSs. Relationships are annotated with RC and (RC) whilst relations with AfRi and (|Ri|), where AfRi was calculated with
e weighting schemes W1.
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