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ABSTRACT
A testbed is a powerful complement to simulation and emulation
for evaluation of wireless sensor network (WSN) applications. How-
ever, testbeds tend to be limited to lab environments and tightly
coupled to specific hardware and sensor OS configurations. These
limitations, in addition to dependency on local infrastructure make
it hard to evaluate applications on actual hardware in the intended
target environment.

We introduce Sensei-UU, a WSN testbed designed to be easily re-
locatable between different physical environments and not tightly
dependent on specific sensor hardware or OS. The ability to relo-
cate the testbed enables users to evaluate WSN applications in their
intended target environments. The wide range of supported sen-
sor node platforms allows users to evaluate heterogeneous applica-
tions. Sensei-UU achieves its flexibility by following a distributed
design in which control functionality is put on control machines
close to the sensor nodes, and by using a wireless control channel.

We have run experiments to ensure that our wireless control chan-
nel does not interfere with the WSN application under evaluation.
We show that Sensei-UU can be relocated between environments
and that seemingly similar physical locations can have a large dif-
ference in radio environment. These differences between locations
motivate the need for relocatable testbeds like Sensei-UU.

1. INTRODUCTION
A testbed is a powerful complement to simulation and emulation
for evaluation of wireless sensor network (WSN) applications. While
testbeds offer the possibility to run code on real hardware with a
real sensor OS in a real environment exposed to interference, they
are often limited in varying any of these parameters. As a result of
these limitations, there may be significant discrepancies between
results obtained in a testbed and results from an actual deployment.

We introduce the Sensei-UU testbed, which aims to reduce these
limitations of a testbed environment. Rather than being restricted

to a lab setting, Sensei-UU can be easily relocated to different envi-
ronments, enabling WSN applications to be evaluated in different
locations. In contrast to many existing testbeds, it supports many
different types of sensor hardware and sensor OSs. As Sensei-UU
is easily expandable and based on inexpensive hardware and open-
source software, it is an attractive alternative to testbeds that are
tightly coupled to specific hardware or application scenarios.

The ability to easily relocate a WSN testbed makes it possible to
evaluate application behavior in different environments. This is
useful as each location has its own characteristics in terms of ra-
dio propagation (interfering radio sources, fading effects, signal
dampening, etc.) and sensor stimuli. Both radio effects and sen-
sor stimuli may have a significant impact on the application. The
ability to run an application in-situ, while keeping the benefits of
doing it in a testbed setting, makes it easier to evaluate the impact
from the surrounding environment in a controlled manner. The al-
ternative would be to simulate or emulate the target environment in
a lab, or to simply deploy the application and rely on post-mortem
analysis when something breaks.

Deploying the testbed into the target environment also enables us-
ing the testbed as a harness for an actual deployment during the
verification and debugging phase – when everything is working
properly, the testbed components can be removed and one is left
with a deployment that has been verified to be operating correctly.

By design, the Sensei-UU testbed makes few assumptions about
hardware and sensor OS used. While it certainly supports the com-
monly used combination of motes and TinyOS[10], it is far from
limited to that. We have successfully used a variety of sensor hard-
ware ranging from motes to smartphones, running different sensor
OSs like TinyOS, Contiki[6], Linux and Symbian. Experiments
can use arbitrary combinations of sensor node configurations, as
long as it is possible to control and monitor them remotely. In fact,
Sensei-UU does not even assume sensor nodes to be stationary, but
rather mobile by default with a stationary location as a special case
of mobility. This means that the testbed supports scenarios that
include mobility.

The main contribution of the work presented in this paper is a WSN
testbed that is not tightly coupled to location, sensor hardware or
sensor OS. This simplifies evaluation of WSN applications in dif-
ferent locations using different hardware and OSs. Not being lim-
ited to a particular application scenario and also easily expandable,
Sensei-UU is an attractive alternative for anyone who wants to eval-



uate their WSN application in a testbed without being limited to
fixed testbed settings or having to develop a new testbed of their
own.

The key to an easily relocatable testbed is to have a wireless control
channel. This wireless control channel makes Sensei-UU indepen-
dent of existing infrastructure for communication, but it raises con-
cerns about interference between traffic generated by the control
and management of experiments, and the experiments themselves.
We have investigated the combination of using IEEE 802.11 as a
control channel and standard IEEE 802.15.4 communication in the
WSN being evaluated. Our findings are that with care taken when
choosing radio channels and with some separation between the dif-
ferent antennas, usage of a wireless control channel is not having a
significant impact on the WSN traffic.

Relocating the testbed to a different physical environment will give
the testbed user different characteristics that might affect the appli-
cation running on the sensors. We have run the same experiment at
two different locations to ensure that we get similar, yet not iden-
tical results. The experiments preserve trends in the results caused
by topology and mobility while getting variation caused by the sur-
rounding environment.

In this paper we first describe selected related work on WSN testbeds,
followed by an outline of our testbed design. We will then describe
our own implementation of the testbed and use it to evaluate inter-
ference between the control channel and the WSN, and show how
results are affected when relocating the testbed.

2. RELATED WORK
Testbeds have successfully been used to evaluate many aspects of
wireless sensor networks. A large number of WSN testbeds follow
an indoor setup, in which sensor nodes are attached to a fixed con-
trol infrastructure. The control infrastructure consists of low-power
computers, such as laptops or WLAN access points, to which one
or more sensor nodes are connected, usually over USB. This con-
nection is used for programming, logging data, or injecting sen-
sory data into a sensor node. The control computers communicate
with a server over an Ethernet or WLAN connection. Experiment
management, such as reprogramming sensor nodes or collecting
log data, are performed over the control infrastructure to limit the
testbed’s influence on the WSN application. Testbeds which follow
this general approach include Motelab [23], NetEye [18], Re-Mote
[2], Tutornet [22], TWIST [8], and w-iLab.t [4]. These testbeds dif-
fer in the hardware components used, their software architecture,
user management, and individual features. Deployments of these
testbeds comprise up to 204 sensor nodes (in the case of TWIST).
TelosB [1] sensor nodes stand out as being the most widely used
sensor nodes for such testbeds.

With the exception of Re-Mote, the above mentioned testbeds use
the TinyOS serial forwarder to extract log data from sensor nodes.
Since the serial forwarder makes assumptions about the format of
log data dictated by TinyOS, it makes it harder to use these testbeds
with other sensor OSs, such as Contiki. The NetEye testbed also
supports the use of a WLAN control channel like Sensei-UU, but
has not been designed with relocatability as an explicit goal. Sim-
ilarly, the other mentioned testbeds were also not designed to be
easily relocatable. Furthermore, they often support only a fixed set
of sensor node hardware and do not support experiments that in-
clude mobile phones.

Figure 1: High level design of Sensei-UU.

3. DESIGN OF SENSEI-UU
Sensei-UU is designed to enable users to repeat experiments with
mobile, heterogeneous nodes in diverse environments – in contrast
to using a static indoor testbed with predefined hardware and sensor
OSs. These features makes Sensei-UU a powerful tool for evalua-
tion of WSN applications in their target environment.

To achieve this, Sensei-UU needs to be relocatable with a reason-
able overhead to set up the testbed at a new location. This means
that the testbed cannot rely on infrastructure (such as an Ethernet
network) which may not be available in the environment where the
testbed is to be deployed. A wired control channel is not only time
consuming to build, but it also limits where sensor nodes, in the
WSN to be observed, can be positioned. Therefore, Sensei-UU
supports a wireless control channel that offers flexibility when plac-
ing nodes and makes deployment and configuration of the testbed
faster and easier.

The overall design of Sensei-UU is depicted in Figure 1. Sensor
nodes are connected to distributed machines called sensor hosts.
All sensor-specific software and configuration data is stored only
on the sensor host to which the sensor is connected. This approach
fits our distributed design and allows for easy relocation of parts of
the testbed. Sensor hosts are connected to each other for synchro-
nization and coordination purposes, and connect to a site manager
over a wireless control channel for control and management. Sen-
sor hosts and the site manager communicate via the control chan-
nel, which is separated from the WSN under observation. The site
manager provides users with access to the testbed.

3.1 Sensor Hosts
A sensor host is a machine in the testbed that provides means to
manage one or more sensor nodes attached to it. Management
tasks include reprogramming nodes, controlling power, collecting
log data, etc. To have sensor node management at the sensor hosts
has two main advantages. First, it simplifies the support of hetero-
geneous sensor nodes as only the sensor host where a sensor node is
attached needs to be aware of the sensor node’s hardware specifics.
Second, the placement of logging and control functionality on the
sensor hosts reduces the demands on the control channel in terms of
bandwidth, delay, connectivity etc. As log messages can be filtered
at the sensor hosts, log traffic and hence the bandwidth used can be
reduced and, because log events are stored locally, continuous con-
nectivity between sensor hosts and the site manager becomes less
important.

Since Sensei-UU supports mobile nodes, a sensor host may offer
one or more way of localizing itself. The sensor host is responsible
for converting the positions obtained with an arbitrary localization
method into one common format used by all sensor hosts in the



testbed. The sensor management software also provides a common
interface to power nodes on and off. To turn off a TelosB node, the
power to the corresponding USB port is cut and thus the program
is stopped. When the WSN node on a Symbian mobile phone is
turned off, the program collecting sensor data instead is stopped.

If a sensor node has a unique identifier that can be easily read by
the sensor host, it can be moved between sensor hosts while keep-
ing its identity in the testbed. It will get an estimate of its new
position from the sensor host it connects to. This hotplug function-
ality decreases the time to configure a deployment since there is no
need to keep track of which sensor node need to connect to which
sensor host.

3.1.1 Mobile Sensor Hosts
One aspect of heterogeneity in WSNs is whether nodes are mo-
bile or static. Mobile nodes introduce new challenges for WSN
testbeds. A typical scenario is that a person with a cellular phone
moves through a WSN, while tapping the sensor nodes’ data. We
refer to this type of mobility, where the sensor nodes move dis-
tances several times their size, as macro mobility. A mobile sen-
sor node may also do relatively small micro movements as well as
macro movements. Vibrations or rotations, where the movement
is very small compared to the size of the sensor node, we consider
to be micro movements that may need other approaches than what
Sensei-UU currently provides. However, that discussion is out of
scope of this paper as the focus of mobility in Sensei-UU is on
macro mobility.

Supporting macro mobility implies that sensor hosts may need to
be mobile and follow a mobility scenario. A challenge in such sce-
narios is to control movements with sufficient precision to support
repeatable experiments. The repeatability requirement requires that
sensor nodes both move to the same position from one experiment
to another and also that the same speed and timing are used. Cen-
tral to this problem is the ability to localize these nodes in real time
to ensure the movement pattern.

Sensei-UU currently supports two types of repeatable movements.
First, it supports movements carried out by humans who follow
real-time mobility scripts presented on their laptop displays. The
scripts describe a mobility scenario with predetermined and known
node positions. Different persons may get different instructions to
create a choreographed mobility pattern. This method was previ-
ously used in the APE testbed [11]. The accuracy of the positioning
depends on the ability of the persons moving the nodes to follow
the scripts. Second, Sensei-UU supports movements carried out by
robots that carry a mobile sensor host with attached sensors. With
robots it is easier to move at similar speeds between experiments,
but positioning and localization with sufficient precision becomes
a challenge – especially if we do not want to be too dependent on a
certain location or infrastructure for such purposes.

3.2 Control Channel and Site Manager
As we have a distributed design where sensor nodes may be con-
nected to different sensor hosts, we need a control channel over
which sensor hosts communicate between themselves and with the
site manager. Instructions to start, stop and reprogram sensor nodes
are sent over the control channel, as are events and sensor data de-
tected and collected at sensor hosts.

The site manager is the gateway to Sensei-UU. It provides the user
with direct access to the sensor hosts and their attached sensor

Figure 2: A screen shot of the monitor, which allows a user fine
grained control of the testbed.

nodes via the control channel. The site manager is designed to
allow a testbed user to control, observe, and manage experiments
using different applications. Examples of such applications include
a program that forwards data to a database for post-mortem anal-
ysis, the monitor GUI described in section 4.3, and a program to
coordinate movements of mobile nodes. The site manager can also
serve as a time synchronization server for the sensor hosts to ensure
that timestamps can be used to synchronize data.

4. IMPLEMENTATION AND HARDWARE
We have implemented and evaluated the testbed design outlined in
the previous section and used it for different types of experiments.
In this section we describe the actual implementation, based on in-
expensive commercial off-the-shelf hardware and open-source soft-
ware.

4.1 Sensor Hosts
We have identified commercially available hardware that suits dif-
ferent applications, and implemented the sensor host management
software. Examples of sensor host hardware include a Linux-based
broadband router, a Symbian-based smartphone, an Android-based
smartphone, and a Linux-based smartphone. In general, any type of
machine can be used as a sensor host, as long as it has a network in-
terface to connect to the control channel and an environment where
the sensor host management software can be implemented.

The management software for sensor hosts runs on ordinary Linux
machines, but some hardware is better suited as sensor hosts. When
Sensei-UU is used to evaluate WSN applications built on static
TelosB type sensor nodes, a suitable sensor host platform is the
Asus WL-500GP wireless access point, which runs a minimalistic
distribution of Linux called OpenWrt [12]. The choice to use ac-
cess points as sensor hosts is based on the good price/performance,
the appealing form factor, and the fact that they have IEEE 802.11g
interfaces. They also have USB ports, which serve as connection
points for sensor nodes.

4.1.1 Mobile Sensor Hosts
If sensor nodes need to be moved while they are managed by Sensei-
UU, Openmoko FreeRunner [7] devices are used as sensor hosts.
The FreeRunner is an open mobile phone running Linux. It has a
GPS receiver, Bluetooth interface, and a IEEE 802.11b/g interface.



Figure 3: A mobile node in Sensei-UU

The most important feature of the FreeRunner is its ability to act
as a USB master which makes it possible to attach external sensor
hardware.

Sensei-UU supports experiments that include smartphones. On
smartphones, the sensor node and the sensor host are the same
physical unit. The management software runs on both Symbian s60
[21] smartphones and Android phones [3]. The Symbian s60 sensor
host management software is implemented in Pys60 [15], which
is available for the Nokia N95. Pys60 allows access to the sen-
sors on the phones, such as accelerometer, GPS, and cameras. An-
other type of cell phones included in Sensei-UU is Android phones,
such as the HTC Hero. The Android phones run a C-version of
the management software with a Java configuration interface. We
attach USB sensor nodes to the HTC Hero when we want the mo-
bile phone to be part of the system we evaluate, because Android
phones have good user interface capabilities. A limitation is that
the HTC Hero cannot power the USB-bus, and therefore we need
to supply power with an extra battery pack.

For experiments with mobile nodes, Sensei-UU uses robots to en-
able repeatable node mobility. The robots are built with off-the-
shelf hardware to make them reproducible and affordable for other
users. A mobile node in our testbed consists of a Lego NXT robot,
a sensor node, and a smartphone. The robot supplies mobility and
carries the sensor node and the smartphone. In Fig. 3, a Lego robot
carries a smart phone and a TelosB sensor node. Although a cus-
tom hardware solution to mobility might offer higher precision con-
trol, we argue that the Lego robots offer a better price/performance
trade-off with sufficient precision.

Since Sensei-UU is a relocatable testbed, mobile nodes need to be
able to easily move and navigate in a new environment. To this
end, the robot navigates on a track system that is defined by tape
on the floor. The robot follows the track defined by the tape and
can be started and stopped arbitrarily by the testbed user. The track
system also contains specially marked positions on the track called
waypoints, which aid the robot in navigation. We have previously
described and evaluated the mobility approach [16, 13].

4.2 Control Channel and Site Manager
The site manager software is implemented in Python and typically
runs on a Laptop placed in the center of the deployment. All sensor
nodes are attached to the control channel via their sensor hosts,
and can be addressed and controlled individually. Currently IEEE
802.11g is used as a wireless control channel, but the design is not
limited to IEEE 802.11g; IEEE 802.11a can also be used as well
as a wired Ethernet. A requirement is that the reach of the wireless

control channel is greater than the range of the sensor nodes, and
that the control channel does not interfere with the sensor node
radio characteristics.

The range of IEEE 802.11g is often large enough to cover a small
deployment. This is the case since sensor hosts do not need to
communicate directly to each other; they only need to reach the
machine running the site manager. The site manager is therefore
preferably positioned in the center of the sensor hosts. In case not
all sensor hosts can reach the site manager, the sensor hosts can be
connected in a mesh network fashion with the site manager as the
sink/source. For longer distances, sensor hosts can be used as relays
or WAN technologies can be used to connect to the site manager.
Sensei-UU can for example use OLSR [5] or AODV [14] for multi-
hop routing between sensor hosts as those protocols are included in
the OpenWrt distribution.

Of great importance is the interference on sensor node radios caused
by the stronger IEEE 802.11 radios of the sensor hosts. This inter-
ference depends on the distances between the sensor nodes and the
sensor hosts, as well as on overlap in frequencies. It is of paramount
importance to understand and control this interference. We present
an evaluation of the effect of a IEEE 802.11g control channel on a
IEEE 802.15.4-based sensor network in Sec. 5.1.

4.3 User Interface
A testbed user can connect to a Sensei-UU deployment with differ-
ent tools. Such tools include a program that can connect the testbed
to a database to store experiment data, scripts to control repeatable
mobility, and a graphical interface which we will describe here.

The Vendetta software [17] is used for testbed management, to vi-
sualize testbed events and to control experiments. Vendetta is a
framework for managing distributed testbeds. With Vendetta one
can e.g. push new code to sensor nodes, start measurement data
collection, power sensor nodes up or down, and control the move-
ment of mobile nodes. These tasks can either be scripted for a batch
type of experiments or performed interactively, for example during
code development and debugging. The monitor is a Java applica-
tion that controls and visualizes the progress of an experiment (Fig-
ure 2). Control and monitoring tasks are defined in configurations
files and implemented as buttons in the user interface.

Measured data, such as packets moving between nodes and real-
time energy levels, are visualized in the monitor. The visualization
is done in a Java3D canvas. The 3D environment is useful when
experiments are spanning multiple floors. The graphical represen-
tation of the testbed is also useful when deploying new nodes, be-
cause the position of a sensor node can be set by moving the node
in the graphical interface. The updated position is pushed to the
sensor host and incorporated in the logging of the sensor node.

5. EVALUATION
A concern when using a wireless control channel is that it may in-
terfere with sensor node radios and electronics. This is especially
of relevance when overlapping frequencies are used, e.g., when an
IEEE 802.11b/g control channel and an IEEE 802.15.4-based sen-
sor network are co-located. We will in this section present the im-
pact of such interference on the WSN communication as a function
of distance between sensors nodes and sensor hosts.

When the testbed is relocated to a new location, we expect to get
different radio characteristics due to differences in fading, inter-



ference, etc. However, we do expect to get similar characteristics
related to the layout of the experiment, e.g., topology. We will
present results from running the same experimental setup at two
different locations.

5.1 Control Channel Interference
Previous research [19, 20] suggests that IEEE 802.11b and IEEE
802.15.4 can coexist if non-overlapping frequencies within the 2.4
GHz ISM band are used. The interference caused by IEEE 802.11b
on IEEE 802.15.4 has been studied analytically and in simulation
[19] with regard to Packet Error Rate (PER), transmission delay
and throughput as metrics. The conclusion is that both technologies
can coexist if channels are assigned carefully. Other empirical work
also showed similar results [20].

Our specific concern in Sensei-UU is that some sensor nodes are
attached to the sensor hosts via USB, meaning that nodes are lo-
cated nearby their sensor hosts. We ran experiments to investigate
how this proximity affects interference. In the experiments we vary
the distance between a transmitting sensor host and a sensor node
for different IEEE 802.15.4 channels. We use an instance of the
Sensei-UU testbed to run the experiments.

Figure 4: Experimental setup of interference evaluations.

5.1.1 Experimental Setup
The general setup of our experiment is shown in Figure 4. Two
sensor nodes were connected to two different sensor hosts. Sensor
node B sent packets to sensor node A while the sensor hosts cre-
ated artificial traffic on the IEEE 802.11g to potentially disrupt the
communication between the sensor nodes.

We used a Contiki program to generate the sensor node communi-
cation. In order not to hide any collisions, we disabled the IEEE
802.15.4 MAC layer on the sensor nodes so that no acknowledg-
ments or retransmissions are used. The results can thus be seen
as a worst-case study and it is most likely that the IEEE 802.15.4
performance will be improved when enabling the MAC layer.

The IEEE 802.11g was set to use channel 1, and the artificial traf-
fic on the control channel was constant bitrate UDP traffic gener-
ated by Iperf [9] saturating the link. The transmission power of the
IEEE 802.11g was set to 19 dBm, and the transmission power of the
IEEE 802.15.4 radio transmitter was fixed to 0 dBm. In each run,
sensor node B sent 200 packets over IEEE 802.15.4 to sensor node
A. Sensor node A logged every packet it successfully received. We
used Tmote Invents from Moteiv with a CC2420 radio transceiver
as sensor nodes and ASUS WL-500GP access points with a Broad-
com 4318 IEEE 802.11g card as sensor hosts. The presented re-
sults were all gathered during night time in our university building.
The reason to perform the experiments during the night is to limit
the influence of other wireless communications within the building

to increase the probability that measured interference is caused by
control channel traffic, rather than other IEEE 802.11g networks.

Each run of the experiment was repeated 10 times. Every run was
also repeated without IEEE 802.11g traffic to serve as a base and
reference case to estimate the background noise.

The following parameters were varied between different runs:

• The IEEE 802.15.4 channel was set to either 12 or 16. Chan-
nel 12 overlaps with IEEE 802.11g channel 1, whereas chan-
nel 16 is outside of IEEE 802.11g channel 1. We have pre-
viously tested all IEEE 802.15.4 channels and channel 16
showed the most interference of the non-overlapping chan-
nels. Thus, in our set-up, channel 12 has the worst overlap
and channel 16 represents the worst non-overlap case.

• The sensor host generating the IEEE 802.11g traffic was al-
ternated, so that IEEE 802.11g and IEEE 802.15.4 traffic ei-
ther flowed in parallel or in opposite directions. The reason
to alter the direction of the interfering traffic was to inves-
tigate the effects of close electronic interference of both the
IEEE 802.15.4 receiver and sender.

• The distance dn between the sensor nodes and their sensor
hosts was set to 0 m, 1 m, 2 m, 3 m and 5 m. The distance
between the sensor hosts dsh was set to 5 m, 10 m and 15 m.

5.1.2 Interference Results
We measured the Packet Error Rate (PER) for channel 12 and 16
when the senders are co-located. PER is the ratio of the number
of packets not received to the total number of packets sent. The
results are presented in Figure 5. In the case when the two traffic
flows went in opposite directions, we observed little interference.
Due to space constraints, we decided to omit this data here, and
instead focus on the case were traffic flows in the same direction
(i.e., from sensor node B to sensor node A, and from sensor host B
to sensor host A).

Figure 5a shows that the PER is not linearly correlated with the
distance between sensor hosts, as the PER does not increase when
the distance between sensor hosts increase. The two points with
a higher PER (when dsh is 10 m while dn is 1 m and 5 m) also
have a very high standard deviation (Table 1), i.e., during some
of the runs with these configurations a lot of packets were lost,
whereas during other runs with the same configuration packet loss
was low. From manual inspection of our log files we could confirm
that the results from those two configurations are divided into two
clusters. The first cluster of measurements has PER values similar
to other measurements, while the second cluster has substantially
higher PER values. The runs with high PER values are in sequence,
which leads us to suspect that an interference source outside of our
control has been active during these runs. The additional interfer-
ence during those two measurements can also be seen in Table 1.
It shows as a non-zero value when there is no IEEE 802.11g traf-
fic between the sensor hosts. We have not further investigated the
origin of this interference, nor have we made extra measurements,
as we do not plan to use overlapping channels for WSN traffic and
control channel.

Figure 5b shows PER values when non-overlapping channels are
used. The results are less intuitive. The PER values when the sen-
sor nodes are positioned on top of the sensor hosts show a col-
lapse of IEEE 802.15.4 communication with PER values close to



5

10

15

Distance SH to SH [m]

1
2

3
4

Distance SH to sensor node [m]

 0

 0.2

 0.4

 0.6

 0.8

 1

PER

(a) Overlapping channels (IEEE 802.15.4 channel 12
and IEEE 802.11g channel 1). The senders are co-
located at the same sensor host.
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(b) Non-overlapping channels (IEEE 802.15.4 channel
16 and IEEE 802.11g channel 1). The senders are co-
located at the same sensor host.

Figure 5: Packet Error Rate versus the distance between sensor nodes and sensor host (SH), and the distance between the sensor hosts.

1. When the sensor hosts are 10 meters apart 97 % of the IEEE
802.15.4 packets are lost. We have seen similar trends at other
channels, but IEEE 802.15.4 on channel 16 had the highest PER
values. We suspect that circuits on the Tmote Invent are suffering
from interference, creating a high PER, rather than it being radio
collisions. Further investigation is needed to understand the phe-
nomenon in detail, but for our purpose of investigating the feasibil-
ity of a 802.11g control channel, this evaluation suffices.

In summary, we draw the conclusion that a IEEE 802.15.4-based
sensor network does not suffer from interference of the testbed’s
wireless control channel if non-overlapping channels are used and
sensor hosts and sensor nodes are always separated by at least 1 m.
It is worth noting that other sources of interference, such as a uni-
versity WLAN network or microwave ovens, may still potentially
interfere with the sensor network communication. However, we be-
lieve that such a degree of realism (interference from another net-
work) is desirable when one wants to evaluate a sensor network in
a testbed. Furthermore, complete shielding from uncontrolled in-
terference sources is outside of the scope of a testbed and can only
be achieved in a shielded environment such as an anechoic cham-
ber. What we have shown in this section is that the influence of the
testbed’s wireless control channel on the sensor network communi-
cation is low under the stated precautions.

5.2 Relocatability
As Sensei-UU is relocatable, we have used it in different locations.
Here, we show how measurements in two seemingly similar corri-
dors differ. The experiments were run in two different buildings.
First in our lab called the Angstrom building and then in another
building called Polacksbacken.

Figure 6: Experimental setup for evaluation of link characteristics
in a corridor environment

The overall setup for the two experiments is shown in Figure 6.
A robot carries a sensor node along a 32 m long, straight track.
Three stationary sensor nodes are placed 0.5 m next to the track at

dsh [m] dn [m] Traffic direction channel PER stddev
10.0 0.0 none 12 0.0 0.0
10.0 0.0 none 16 0.01 0.01
10.0 0.0 same direction 12 0.18 0.04
10.0 0.0 same direction 16 0.97 0.01
10.0 0.0 opposite direction 12 0.15 0.02
10.0 0.0 opposite direction 16 0.82 0.03
10.0 1.0 none 12 0.01 0.0
10.0 1.0 none 16 0.0 0.0
10.0 1.0 same direction 12 0.39 0.21
10.0 1.0 same direction 16 0.0 0.0
10.0 1.0 opposite direction 12 0.2 0.03
10.0 1.0 opposite direction 16 0.0 0.0
10.0 2.0 none 12 0.0 0.0
10.0 2.0 none 16 0.0 0.0
10.0 2.0 same direction 12 0.18 0.05
10.0 2.0 same direction 16 0.0 0.0
10.0 2.0 opposite direction 12 0.0 0.0
10.0 2.0 opposite direction 16 0.0 0.0
10.0 3.0 none 12 0.01 0.01
10.0 3.0 none 16 0.0 0.0
10.0 3.0 same direction 12 0.19 0.03
10.0 3.0 same direction 16 0.0 0.0
10.0 3.0 opposite direction 12 0.01 0.01
10.0 3.0 opposite direction 16 0.0 0.0
10.0 5.0 none 12 0.02 0.01
10.0 5.0 none 16 0.0 0.0
10.0 5.0 same direction 12 0.51 0.36
10.0 5.0 same direction 16 0.0 0.0
10.0 5.0 opposite direction 12 0.04 0.03
10.0 5.0 opposite direction 16 0.0 0.0

Table 1: Packet Error Rates when the distance between sensor
nodes and sensor hosts and 802.15.4 channel is varied. The sen-
sor hosts are sending on IEEE 802.11g channel 1 which overlaps
with IEEE 802.15.4 channel 12 but not with channel IEEE 802.15.4
channel 16.



0 m, 16 m, and 32 m. TelosB sensor nodes are used for both the
stationary sensor nodes and the mobile sensor node.

We use a Contiki application to measure the RSSI of packets re-
ceived by the mobile node. The stationary nodes send PING pack-
ets to the mobile node and the mobile node responds with a PONG
packet that contains the RSSI value with which the PING packet
was received. The three stationary nodes send PING packets in a
strict round-robin fashion to avoid packet collisions.

Figure 7b shows RSSI from the Polacksbacken building and Fig-
ure 7b from the Angstrom building. Comparing Figure 7a with
Figure 7b, the three nodes have the highest RSSI readings at simi-
lar positions. However, the three curves have different local peaks
at the two sites. We believe that the differences are due to the par-
ticular corridor structures in the two buildings such as different ma-
terials in the walls, etc.

If a WSN application would be deployed in these two different en-
vironments, the performance could differ. For example, if a node
picks its routing neighbors by the highest RSSI, the mobile node
would change from node 1 to node 2 at 5 m in the Angstrom build-
ing while the corresponding change would at earliest take place at
10 m in the Polacksbacken building. This type of differences be-
tween environments is what Sensei-UU is designed to evaluate.

The ability to set up Sensei-UU in different environments allows
performance experiments not only in the lab, but also in potential
target environments. Figure 7 shows that the environment might
have a significant impact on a WSN application, depending on how
sensitive the application and its underlying protocols are to RSSI
changes.

From our measurements, we conclude that Sensei-UU is relocat-
able between different environments and that seemingly similar lo-
cations can have large variation in radio characteristics.

6. FUTURE WORK
An important aspect when running experiments is to understand
the environmental conditions – especially when the same experi-
ment is moved between different target environments. We plan to
extend the testbed with functionality for fingerprinting, i.e., charac-
terizing conditions and properties of experiments to make it easier
to compare experiments that run under different conditions to each
other.

In our current implementation of the testbed, we have made the im-
plicit assumption that sensor hosts are always reachable from the
site manager. There may be situations when this is not always the
case, e.g., if the control channel provides intermittent connectivity
or is partitioned, or if there are large delays in the communication
over the control channel. These problems can be addressed with a
delay-tolerant control channel where sensor hosts continue to oper-
ate autonomously in the absence of constant communication with
the site manager.

7. CONCLUSIONS
We have presented Sensei-UU, a testbed for wireless sensor net-
work applications that is designed to be easily moved between dif-
ferent environments, simple to setup and work with while support-
ing a variety of sensor hardware and sensor OSs. The sensor host
software has been ported to different platforms, enabling us to build
a testbed including wireless routers, Symbian smartphones, An-

droid phones and Openmoko FreeRunners as sensor hosts to which
sensor nodes are attached. As we use a wireless control channel in
the testbed, we have investigated the interference between the con-
trol channel and the sensor network to ensure that experiments are
not affected by control channel traffic. Our measurements show
that, if care is taken when channels are selected and nodes are
placed, the control channel will not interfere with the experiments.

Our experience with Sensei-UU is so far very positive. During
the design and development, we have configured and reconfigured
Sensei-UU deployments more than twenty times at different loca-
tions. While working with Sensei-UU, we have found the design
highly flexible and extensible. For example, a deployment with
four sensor hosts and seven sensor nodes will fit in a small back-
pack and can be configured in well under half an hour. We have also
found that the distributed design, where much functionality is put
at the sensor hosts, makes it easy to incorporate different types of
sensor hosts within one deployment. An example of such deploy-
ments is when mobile nodes are included. The design then makes
it easy to change which type of localization is used. Therefore we
think that Sensei-UU meets the requirements of being a relocatable
testbed with support for heterogeneous mobile nodes.

From our interference measurements we conclude that the interfer-
ence between IEEE 802.11g and IEEE 802.15.4 can be controlled,
provided that not overlapping channels are used and that the sensor
nodes are enough separated from the sensor hosts. Still we advo-
cate that all Sensei-UU experiments should be proceeded by inter-
ference measurements since the interference is highly depending
on sensor hardware and possibly also on the actual environment.

We also show that our testbed can be moved between environments
and that seemingly similar environments can show different radio
characteristics.

Our ambition is to make the testbed design and software available
for other researchers in the field. Sensei-UU is licensed under the
Gnu General Public License (GPL) and will be publicly released
together with configuration instructions for sensor hosts.
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