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Abstract. During phases of transient connectivity, sensor nodes receive
a substantial number of corrupt packets. These corrupt packets are gen-
erally discarded, losing the sent information and wasting the energy put
into transmitting and receiving. Our analysis of one year’s data from an
outdoor sensor network deployment shows that packet corruption follows
a distinct pattern that is observed on all links. We explain the pattern’s
core features by considering implementation aspects of low-cost 802.15.4
transceivers and independent transmission errors. Based on the insight
into the corruption pattern, we propose a probabilistic approach to re-
cover information about the original content of a corrupt packet. Our
approach vastly reduces the uncertainty about the original content, as
measured by a manifold reduction in entropy. We conclude that the prac-
tice of discarding all corrupt packets in an outdoor sensor network may
be unnecessarily wasteful, given that a considerable amount of informa-
tion can be extracted from them.
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1 Introduction

Outdoor sensor networks experience significant variations in radio link perfor-
mance over time [1,2]. When links are in a transient state, they receive a large
amount of corrupt packets, which are commonly discarded. Consequently, the
information the sender intended to transmit is lost and has to be retransmitted.
Therefore, corrupt packets incur a cost on the networks’ limited energy budget
for both transmitting and receiving the corrupt packet, and for retransmission.

We study corrupt packets from an 802.15.4-based outdoor deployment in
a remote area. We find that corruption occurs to a non-negligible degree on
intermediate links. It emerges that corruption follows a distinct, stable pattern
that holds over various time scales and across links. We explain this pattern
by considering an implementation aspect of low-cost 802.15.4 transceivers, the
tie resolution strategy in coding, and a channel model in which errors occur
independently. While corruption in packets has been studied recently in outdoor



networks [3] and earlier in the case of interference [4, 5], we are the first to explain
the occurence of the observed pattern.

Some earlier work has also addressed how to make use of corrupt packets.
Apart from forward error correction, the approaches either selectively retransmit
parts of a packet that are suspected to be corrupted [6, 7], or aim to reconstruct
a correct packet from multiple corrupt packets [8].

We take a novel path to handling corrupt packets. We note that data in sen-
sor networks is often inherently uncertain, e.g., due to limited accuracy of sensor
readings. We therefore propose an approach that—rather than trying to exactly
reconstruct a corrupt packet—probabilistically infers the packet’s original con-
tent by exploiting the pattern in corruption. In combination with application
knowledge, our approach enables recovery of information from corrupt pack-
ets. In contrast to earlier work, our approach does not need retransmissions of
corrupt packets and hence does not incur an additional communication cost.

The evaluation of our approach shows that the uncertainty associated with a
corrupt packet can be reduced significantly, as measured by an up to eight-fold
reduction in entropy. We further validate our approach by applying it to data
collected from a second deployment in another location, and find that it enables
recovery of information from corrupt packets.

In summary, this paper makes the following core contributions:

— By analyzing data from a long-term outdoor deployment, we describe the
distinct pattern of how 802.15.4 packets are corrupted. Crucially, we can ex-
plain the pattern by considering implementation aspects of low-cost 802.15.4
transceivers and a simple radio channel model.

— Based on our insights, we describe an approach that probabilistically infers
the original content of a corrupt packet. We evaluate this approach on a
data set from a separate deployment, and find that it enables recovery by
correctly assigning high probabilities to the original content. We also achieve
a manifold reduction in the uncertainty associated with a corrupt packet.

To ensure that this paper is focused and self-contained, we have decided to leave
out certain systems aspects, which we will address in future work.

The rest of the paper is organized as follows. We describe our deployment
and data collection in Sec. 2, and briefly recap the IEEE 802.15.4 standard in
Sec. 3. We analyze packet corruption in our deployment in Sec. 4, and describe
our recovery approach in Sec. 5. Section 6 evaluates the approach, followed by
a brief discussion of practical aspects in Sec. 7. We then survey related work in
Sec. 8 and conclude the paper in Sec. 9.

2 Deployment and Data Collection

We deployed a sensor network at the outskirts of Uppsala, Sweden. The network
is located in an open field with no trees or bushes in the surroundings, in a remote
location that very few people have access to. The deployment is therefore not
affected by man-made radio interference, e.g., from WiFi or Bluetooth.
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Fig. 1: Outdoor deployment. Sensor nodes are labeled 1-16 in the right figure.

The network is comprised of 16 TelosB sensor nodes, which are equipped
with 802.15.4-compatible CC2420 radio transceivers that operate in the 2.4 GHz
ISM band [9]. The nodes are attached to four poles, with four nodes per pole
(Fig. 1a). The poles are aligned along a straight line with a distance of 20 m
between consecutive poles, as shown in Fig. 1b. On each pole, two nodes are
mounted at 0.5 m above the ground and two nodes are mounted at 1.5 m.

The purpose of the network is to study radio links in 802.15.4 outdoor net-
works. Therefore, nodes take turns in sending 34-byte long probing packets every
500 ms. Whenever a node receives a packet, it logs the received packet content
and the signal-to-noise ratio and Link Quality Indication (LQI) associated with
the packet. Rather than discarding corrupt packets, nodes are programmed to
also log corrupt packets. For power supply and log data collection, all nodes are
connected via 5 m long RF-shielded USB cables to low-power Linux machines,
which in turn are connected via Ethernet to a regular desktop PC that acts as
a central experiment monitor.

By analyzing the log files, which contain all sent and received packets (both
correct and corrupt), we can determine which parts of a corrupt packet have
suffered corruption. We use this information to analyze corruption in Sec. 4.

3 Recap of IEEE 802.15.4

We briefly recapitulate the aspects of the IEEE 802.15.4 standard that are rele-
vant to this paper. IEEE 802.15.4 is a standard for low-rate, low-power wireless
communication [10], which has found wide-spread adoption in sensor networks.

A transmitted byte is represented by two four-bit symbols. 802.15.4 employs
a direct sequence spread spectrum (DSSS) technique, in which each of the 16
possible symbols is represented by one code word. A code word, in turn, is rep-
resented by a 32-bit long pseudo-noise chip sequence.

We clarify the operation of 802.15.4 with an example. A sender wants to
transmit a packet with n bytes of payload to a receiver. The sender translates
each byte to two symbols. For each symbol, it determines the corresponding
code word. The code words’ chip sequences are then modulated onto a carrier
frequency. The receiver demodulates the incoming chip sequences and matches
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Fig.2: The left figure exemplifies the amount of corrupt packets received for a
specific link. The right figure shows that almost all intermediate links receive a
substantial amount of corrupt packets.

them to the known code words. In this way, the receiver decodes 2n symbols,
from which it can construct the n payload bytes.

Synchronization is required to detect packet boundaries. A sender starts each
packet with a predefined preamble, followed by a start frame delimiter and a
length field. Upon decoding a preamble and start frame delimiter, a receiver
knows that a packet is being transmitted. If the receiver fails to decode the
preamble, the packet is lost.

Due to noise on the radio channel, a receiver’s demodulated chip sequence
may differ from the chip sequence transmitted by the sender. In this case, the
incoming chip sequence is matched to the closest code word. DSSS thereby
achieves resilience against noise, since there is a many-to-one mapping between
chip sequences and code words. If sufficiently many chips are demodulated in-
correctly [11], the receiver matches the incoming chip sequence to an incorrect
code word, and hence decodes the wrong symbol. In this case, packet corruption
occurs. To detect corruption, 802.15.4 packets end with a two-byte cyclic redun-
dancy check (CRC) field. A receiver computes the CRC for the incoming packet
and compares it against the received trailing CRC field. If they mismatch, the
receiver knows that corruption has occurred.

4 Packet Corruption in an Outdoor Sensor Network

In this section, we analyze corrupt packets that were received by nodes in our
deployment over the course of one year, from June 2012 to June 2013. We begin
by briefly quantifying the amount of corruption occurring in the deployment.
Then, we describe how corruption affects individual transmitted symbols, fol-
lowed by a characterization of the effect of corruption on whole packets. Our
analysis is focused on the regularities in corruption that enable the probabilistic
recovery of information, as described in Sec. 5.

Because corrupt packets are usually discarded, the degree to which packet
corruption occurs is unknown for most sensor networks. From our log data we
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Fig.3: Symbol mutations as observed in the data set and in simulation. Our
simulation model produces the same core pattern as the empirical measurements.

observe that intermediate links (links that have a PRR between 10% and 90%
[12,13]) experience a substantial amount of packet corruption. Figure 2a shows
a representative example of such an intermediate link. The depicted link initially
has a high PRR, but deteriorates over time. As PRR falls, the amount of corrupt
packets, indicated by the hatched gray area, grows.

Next we look at the amount of corruption over all intermediate links from the
duration of the deployment. We observe that about 80% of intermediate links
have a ratio of corrupt packets to correctly received packets of at least 0.5. That
is, for every two correctly received packets, they receive one corrupt packet on
average. Figure 2b illustrates this ratio of corrupt packets to correctly received
packets for intermediate links for a time span of two weeks in March 2013.

We conclude that packet corruption occurs at a non-negligible scale on inter-
mediate links. Because intermediate links are the best candidates for improving
network performance, this initial observation motivates us to understand packet
corruption in more detail.

4.1 Corrupt Symbols

We now consider corruption at the finest level of granularity at which it can be
observed in our deployment: the symbol level. If a node sends a packet containing
a symbol s; and due to corruption a receiver decodes the symbol incorrectly,
which symbol s; will the receiver likely decode?

Figure 3a shows how often each possible mutation s; — s; is observed over all
links from the span of twelve months. The figure is a visual representation of the
mutation matriz. An entry (j,i) of the mutation matrix denotes the frequency
with which we observed a sent symbol s; to be received as s;. The matrix diagonal
describes how often a symbol was decoded correctly. We omit the diagonal in
the figure to focus on corruption. The darker the color in the figure, the higher
the frequency. A distinct visual structure emerges in the figure, which leads us
the following three observations:
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Fig. 4: Hamming distances for 802.15.4 code words (left) and MSK-transformed
code words (right). The MSK transformation explains observations 1 and 2.

Observation 1: Mutations are not uniformly distributed. If corruption occurs
to a sent symbol, the received symbol depends on which symbol was sent. For
example, if a node sends symbol sg which suffers corruption, the receiver most
commonly decodes it as a s5 (see column 0). Conversely, if a node receives a
corrupt symbol as ss, it is least common that s;3 was sent (see row 5).

Observation 2: The most significant bit of a symbol is more stable than other
bits. Note that the subdiagonal (8,0) to (15,7) and the superdiagonal (0, 8) to
(7,15) are lighter than the rest of the plot. For each column, the corresponding
entry on these diagonals represents the symbol which differs from the sent symbol
in only the most significant bit. For example, the sent symbol sy = 0000, is least
commonly decoded as sg = 10005. This leads to the most significant bit of a
symbol being more stable on average in our deployment.

Observation 3: Symbols sg to sy are more stable than other symbols. Consider
the bottom left quadrant in Fig. 3a. It is significantly lighter than the other
quadrants. This reflects the fact that in our data, the symbols sy to s7; are
unlikely to be decoded as sg to s15. The converse is not true. Consequently,
symbols sy to s7 are less commonly corrupted than symbols sg to s15.

The pattern shown in Fig. 3a represents mutation frequencies aggregated
over all links over the whole time span of the deployment. We confirmed that
the pattern also holds for individual links, and at various time scales. An inde-
pendent research group has recently observed a similar pattern in an outdoor
environment [3], which suggests the observations to be general.

To the best of our knowledge, no explanation has been offered so far as to why
the pattern emerges. As Schmidt et al. point out [3], the pattern is surprising
because it shows a negative correlation to the pairwise hamming distances of
the code words defined in the 802.15.4 standard (see Fig. 4a). For example, the
hamming distance between the code words for sy and sg is low, yet this mutation
is among the least common in our deployment.



We attribute the first two observations to an implementation aspect of low-
cost 802.15.4 transceivers. Rather than implementing an O-QPSK demodulator,
as suggested in the 802.15.4 standard, many low-cost transceivers use an MSK
demodulator instead [14]. While an MSK demodulator can correctly receive a
chip sequence sent by an O-QPSK modulator, the received chip sequence will
be transformed. Therefore, MSK-based 802.15.4 transceivers use a transformed
set of code words to ensure compatibility with other 802.15.4 transceivers. The
hamming distances between the transformed code words are shown in Fig. 4b.

Observation 1 can be explained by considering that each code word varies in
its hamming distances to other code words. Therefore, the symbol that a corrupt
chip sequence is decoded as depends on which symbol was sent.

Next, observation 2 follows directly from the observation that the MSK-
transformed code word for symbol s; has the highest hamming distance to the
MSK-transformed code word for the symbol which differs from s; only in the
most significant bit. This is visualized by the light sub- and superdiagonals in
Fig. 4b. Therefore, the most significant bit is more stable on average.

It remains to explain observation 3, which states that symbols sy to s; are
more stable than the other symbols. This observation does not follow from the
use of transformed code words, because code word distances are of course sym-
metric. We can explain the observation by considering how ties are resolved. A
tie occurs if a received chip sequence matches two or more code words equally
well. In this case, the transceiver must resolve the tie by choosing one of the
matching code words. In a simple simulation, we found that if ties are resolved
in a specific order!, a pattern very similar to the empirically observed muta-
tion matrix emerges (Fig. 3b). With the found order, a tie between two code
words sg<ij<7 and sg<j<i5 will always be resolved in favor of the first symbol.
Consequently, symbols sy to s7 are more stable, as stated by observation 3.

Our simulation assumed one sender and one receiver, a fixed signal-to-noise
ratio (SNR) at the receiver, and a channel model in which chip errors are inde-
pendent, as would be expected in an additive white Gaussian noise channel, for
example. Fixing the SNR implies a fixed chip error probability at the receiver.

We draw another useful conclusion from the similarity of the empirical and
the simulated mutation matrix. The similarity suggests that the radio channel
in the deployment can be modeled by a channel in which errors are independent,
as assumed in our simulation. Note that differences in absolute values in Fig. 3a
and Fig. 3b can be explained by considering that the simulated mutation matrix
is based on a fixed SNR, whereas the empirical mutation matrix is based on
packets received at various SNR levels. Nonetheless, the similarity holds.

In summary, we conclude that corruption follows a distinct pattern, which
we attribute to MSK-transformed code words, the tie resolution strategy and a
radio channel with independent chip errors.

1 .
The order is S7,864...5,50,S515,S514, ..., S8.
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4.2 Errors in Packets

In the previous section, we considered the effect of corruption on individual
symbols. We now shift our focus one layer up in the network stack to the link layer
and consider how corruption affects whole packets, i.e., sequences of symbols.

Distribution of Errors How are symbol errors distributed within a packet?
Figure 5 shows this distribution where for each position of the payload, the plot
shows the frequency with which a symbol at this position was corrupt. The x-
axis is annotated with the content of the payload. For example, the first four
positions contain the packet header.

The error frequency is similar across all positions, ranging from 4.5% to 6%.
Although the distribution is roughly uniform, there are notable deviations. First,
the symbol at position 0 is most often corrupt. Second, there is a periodicity: the
error frequencies for positions 4 to 19 are similar to the frequencies for positions
20 to 35, and so on. These deviations can be explained by the content of sent
packets. For all packets sent in our deployment, position 0 always contains sym-
bol sg, which we know to be least stable. Furthermore, the payload of the probing
packets sent in our deployment repeats itself after position 20, giving rise to the
observed periodicity. Finally, because the sent packets contain structured rather
than random content, some positions have slightly higher corruption frequencies
than others. The observed deviations from uniformity are within range of the
deviations we would expect due to the effects described in Sec. 4.1.

Correlation of Errors Are errors correlated? L.e., does an error at position z
tell us something about whether an error occurred at position y? We computed
pairwise correlations between all positions over all corrupt packets. The maxi-
mum absolute correlation between any two symbol positions is less than 0.09.
Considering that a value of 0 indicates no correlation at all, we conclude that
there are no notable correlations between errors at different positions. Therefore,
symbol errors are independent from each other. This observation agrees with our
assumption that the deployment’s radio channel is well described by assuming
independent chip errors.

Amount of Corruption in a Packet Finally, we quantify how many symbols
in a corrupt packet are incorrect. Figure 6 shows a normalized histogram of the
number of symbol errors per corrupt packet. The figure shows that most packets
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have very few errors, and that the frequency of occurrence decreases with an
increase in the amount of corruption.

5 Recovering Data from Corrupt Packets

We now describe how we use the observations from the previous section in an
approach which for a given corrupt packet defines a probability distribution over
the possible sent packets.

Computing a Probability Distribution over Possible Sent Packets We
consider how to infer the likely sent data from a received corrupt packet. Our goal
is to assign probabilities to the possible sent data, given the data in a corrupt
packet. Recall from Sec. 3 that corruption occurs if sufficiently many chips in an
incoming chip sequences are decoded incorrectly and hence the chip sequence is
matched to the wrong code word. For the remainder of this analysis, we denote
the probability of an individual chip in a received chip sequence being flipped
as Pehip- For now, assume that we know penip for each received packet. We will
revisit this assumption in the next section.

For a given value of pchip, we can compute through simulation a corresponding
mutation matrix MPeir, For example, the mutation matrix shown in Fig. 3b
describes the mutation probabilities for pehip, = 0.3. Most importantly to our
approach, the matrix rows describe the mutation probabilities for a received
symbol. Note that the matrix main diagonal describes the probabilities of a
symbol being received correctly.

For a given received packet, we now want to infer the first symbol of the sent
packet. Let the first symbol of the received packet be s;, and consider the case in
which we know the packet to be corrupt because the CRC failed. By considering
row j of MPerir we can assign a probability to each possible sent symbol that
could have led to the receiver decoding s;. More specifically, the probability that
the sent symbol s; is decoded as the received symbol s; is given by the entry
M of the mutation matrix. We write p(s;|s;) = M;"". For example, the
probability p(s5|s13) that symbol s5 was sent when s135 was received is given by
M50 . This reasoning holds for all position of the packet.

Because symbol errors are independent, we can readily assign probabilities
to sequences of sent symbols. Assume, for example, that a receiver decoded the



sequence of symbols r = (s13, S3, S0, $11). What is the probability that the actual
sent symbols were t = (s5, 83, 51, 511)7 Due to independence, this probability is
given by the product of the individual mutation probabilities:

p(tlr) = p(ss, 53,51, 511]513, 53, S0, 511)
= p(55|813) ~p($3|53) 'p(31|80) 'p(811\311)
= M MR M M

In the manner we just outlined, a probability can be assigned to every possible
sent symbol sequence for a given received symbol sequence and a given value of
Dehip- This conceptually simple idea comprises our recovery approach. For each
received, corrupt packet, we can compute a probability distribution over the
possible sent packets. To compute the distribution, all we need to know is the
chip error probability pchip during packet reception.

To summarize, our approach determines a probability distribution over the
possible sent data for given received data in a corrupt packet and a given penip.
This concludes our description of recovery. We deliberately do not specify how
the probability distribution is to be used by an application, because we believe
that application knowledge should drive this process.

Estimating pchip To assign probabilities to possible sent data, we need an es-
timate of the chip error probability pchip for each corrupt packet. Unfortunately,
low-cost transceivers do not provide such an estimate directly. Although there
is a well-defined relationship between SNR and the chip error probability [15],
we found the resolution of SNR reported by low-cost transceivers too low for a
meaningful pepip estimate.

To overcome this obstacle, we estimate pchip for each packet by considering
the LQI value associated with the packet. In the case of CC2420 transceivers,
LQI is reflective of the correlation of an incoming chip sequence to the matched
code word over the first eight symbols of a packet [9]. Therefore, we expect it
to reflect the chip error rate. We construct a mapping from LQI values to chip
error estimates as follows: for each LQI value [, we determine the empirically
observed symbol error probability for symbol sg. We then calculate the chip
error probability plchip that yields the same symbol error probability for sg. We
then construct a mapping from LQI to chip error probability by interpolating a
3rd degree spline through the resulting (I, pihip) tuples. Our mapping is defined
on LQI values in the range from 32 to 90, which covers 98.5% of all corrupt
packets in our data set. We constrain the mapping to this range because we
observe only very few corrupt packets with LQI less than 32 or higher than 90,
and we therefore have little support to construct a mapping for these values.

While we do not expect our LQI to pchip mapping to be perfect, we note that
given the information that low-cost transceiver usually provide about the chan-
nel, it is difficult construct with a more well-defined estimate. We are confident
that if transceivers were to provide high-resolution SNR measurements, a more
exact estimator of chip error probabilities can be designed.



6 Evaluation

Our proposed approach defines a probability distribution over the possible sent
data for given received data in a corrupt packet. We now address two questions
pertaining to the resulting distributions. First, to what extent does the approach
reduce uncertainty about the original content of a corrupt packet? Second, is the
resulting distribution for a given corrupt packet meaningful? L.e., does it assign
probabilities in a way such that the actual sent data has a high probability?

6.1 Reduction in Uncertainty

Let us address the first question of how much our approach reduces the uncer-
tainty associated with a received, corrupt packet.

We consider the case in which a node sends a packet containing a 16-bit
word t that we are interested in. This word could, for example, encode a sensor
measurement, but for the sake of this analysis, we assume that we do not have
any application-specific knowledge about the likely content t. We assume that a
corrupt packet is received that contains the 16-bit word r. Due to the corruption,
we do not know whether r» = t or not.

As a base case, assume that the corrupt packet is simply discarded. In this
case, we know nothing about t. It could have taken any of the 2! = 65,536
possible values with equal probability. We measure the uncertainty associated
with the discarded, corrupt packet by considering the entropy of the probability
distribution over all possible words ¢’ that could have been transmitted. There
are 16 bits of entropy:

65535

Hdiscard = - Z p(t/) lng(tl)
t'=0

—> 27 '%log27'% = 16.
t/

Next, we consider the case in which we do not discard the corrupt packet.
The corrupt packet contains a word r, but we do not know if r = ¢t. Using the
approach described in Sec. 5, we can compute the probability p(#|r) for every
possible 16-bit word ¢’. As in the case of the discarded packet, we can compute
the entropy, which depends on the estimate of pchip, and on the received word r:

65535

H,=—>" p(t'|r)logp(t'|r).

t'=0

Figure 7 depicts the entropy for both the base line case and our approach
for different values of pchip. The y-axis denotes the entropy. The x-axis relates
to the received word r as described below.

In the base case, in which the corrupt packet is discarded, the entropy is
16 regardless of which word was received in the corrupt packet, and regardless
of the chip error probability. With our approach, which assigns probabilities
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the possible sent words by considering which word r was received in the corrupt
packet, the entropy depends on r. This is an effect of our observation that symbol
mutations are not uniform. For a given chip error probability penip, the entropies
H, are plotted in increasing order along the x-axis.

The figure makes it clear that our approach significantly reduces the entropy
associated with a corrupt 16-bit word. In the case of a chip error probability of
0.2, the entropy is reduced to less than 2 bits—an eight-fold reduction of the
entropy of the base case. For a higher chip error probability of 0.3, the entropy is
still halved in comparison to the base case. In the case of an extreme chip error
probability of 0.4, the entropy is reduced by two bits. However, for such a high
chip error probability, most packets will be lost rather than corrupt because the
preamble is likely to be corrupt as well. We therefore conclude that for realistic
chip error probabilities of 0.2 to 0.3, our approach vastly reduces the uncertainty
associated with a corrupt packet.

6.2 Evaluation of Probability Assignment

We have shown how our probability assignment reduces the uncertainty associ-
ated with a corrupt packet. It remains to show that the probability assignment
is sensible, i.e., that there is a meaningful relationship between the probability
assigned to possible sent words ¢’ and the word ¢ that was actually sent.

To address this question, we consider corrupt packets from a deployment
different from the one that provided the data for the analysis in Sec. 4. Evaluating
our approach on data from a different deployment increases our confidence in the
generality of our findings, and helps understand whether our approach is strongly
tied to the observations from our deployment in Uppsala. The other deployment
is located in the Abisko national park in northern Sweden, which lies above the
polar circle (latitude of 66° 33’ 44” N) in a climate that differs significantly from
the climate in Uppsala. The Abisko deployment consists of 12 TelosB sensor
nodes, and has a spatial layout similar to the Uppsala deployment. We consider
corrupt packets from Abisko that were received during the first week of April
2013. We focus on this week because the deployment did not have any operational
problems, such as failing nodes.

The data set of the Abisko deployment contains ca. 440,000 corrupt packets.
We know the correct payload for each packet from our log data. We consider a
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16-bit word t in these packets that describes the source address of the sender.
We do not use any knowledge about the possible content of this word. For each
corrupt packet, we estimate the chip error probability pchip based on the packet’s
LQI measurement, as described earlier. We use the estimate to compute p(t|r),
which is the probability that is assigned to the sent word ¢ when r was received.
Clearly, it is desirable that a high probability be assigned to the sent word.

Figure 8a shows the empirical cumulative distribution function of the proba-
bility assigned to the sent word ¢ for each corrupt packet. The x-axis shows the
probability assigned to the sent word. The y-axis shows for how many of the
packets this probability was below the corresponding x value. Note that for only
30 % of the corrupt packets, a probability of less than 0.7 is assigned to the sent
word. For only 28 % of the corrupt packets, the probability assigned to the sent
word is less than 0.5. It follows that for most corrupt packets, a high probability
is assigned to the word that was actually sent. For these packets the probability
assignment is sensible. However, a very low probability is assigned to the correct
word for about 25% of the corrupt packets. Note that this does not imply that
the assignment is wrong—in cases of a high chip error probability, there will be
high uncertainty. High uncertainty means that the probability distribution will
be more uniform across all possible sent words. The question thus is whether
these low-probability assignments come from corrupt packets with high chip er-
ror probabilities. Before turning to this question, we conclude from Fig. 8a that
for more than 70% of the corrupt packets, the probability assignment is sensible,
because it assigns a high probability to the sent word.

We now order all possible sent words by decreasing order of assigned prob-
ability and determine the rank. E.g., the word ¢’ that has been assigned the
highest probability has rank one, the word with the second highest probability
has rank two, etc. If two or more words have the same probability, they have the
same rank. We are interested in the rank assigned to the sent word ¢.

The distribution of rank of the sent word is shown in Fig. 8b by an empirical
cumulative distribution function. The figure shows that in 95% of the cases, the
sent word is assigned a very high rank. I.e., the sent word is assigned a higher
probability than most other possible candidates. We take this as an indication



that even in cases where the highest probability is not assigned to the sent word,
the sent word still takes a very high probability in comparison to other pos-
sible candidates. For the remaining 5% of corrupt packets, the rank is almost
uniformly distributed up to the maximal rank of 65,536. We attribute this ob-
servation to misestimations of the chip error probability pchip. Since we estimate
Denip from LQI, and LQI is only measured over the first eight symbols of a packet,
it may by pure chance sometime misrepresent the chip error probability.

To summarize, we have shown in this section that for most corrupt packets,
the sent word is assigned a high probability in comparison to other candidates.
We conclude that the probability assignment we described in Sec. 5 indeed as-
signs probabilities in a meaningful manner. This observation suggests that our
estimator of pehip based on LQI is sufficiently accurate to enable recovery. Our
approach thus enables sensor networks to infer the possible sent word corre-
sponding to a corrupt packet.

7 Practical Considerations

We briefly discuss three aspects of practicality.

First, our approach determines a probability distribution over possible sent
data. It does, by design, not produce a single value. When application knowledge
about the likely content of a packet is available, this knowledge can be combined
with our probability distribution to constrain the likely sent data even further.
Application knowledge could be, for example, knowing the domain of a mea-
sured value from previous measurements. Such knowledge is often used to detect
outliers, assess data quality, or handle missing data (e.g., see [11,16,17]). Such
approaches are largely orthogonal to our proposal. Because the distributions
computed by our approach are not centered around a single value, we believe
that in combination with application knowledge, an even more exact inference
of the content of corrupt packets is possible.

Second, a related question pertains to the complexity of our proposal. Note
that the maths involved in determining the probability distribution is compu-
tationally very simple. Yet, for a received n symbol sequence, there are 16™
different possible sent values in the case of corruption. Enumerating all of them
is infeasible for larger values of n. However, even for situations with moderately
high chip error probabilities, many probabilities will be very close to zero. We
envision that an application performing recovery will be interested in the top
k < 16™ possible sent sequences with the highest probabilities. These can be de-
termined efficiently without enumerating all possible values. Therefore, we are
confident that recovery can be performed in-network by nodes that are slightly
more powerful than the TelosB-type nodes.

Third, the packets we analyzed in this paper were all sent and received by
Texas Instruments CC2420 transceivers. Although this particular chip has a
very high prevalence in academic research, the question arises of how well our
findings translate to other 802.15.4 radio chipsets. In part, the observed pattern
is an effect of the use of MSK demodulators, which are cheap to implement [18].



Therefore, they are common in low-cost transceivers. Consequently, we expect
the pattern to hold for other transceiver, too. Note that because the pattern
emerges even on short time scales, its presence in a particular radio chipset can
be readily verified in an anechoic chamber.

8 Related Work

Wireless channels are inherently unstable [19,12], causing errors in transmis-
sions, and making mitigation strategies for these errors a wide field of research.

Schmidt et al. study corruption in an 802.15.4-based outdoor network and
make observations similar to ours [3]. They point out that bit errors are not
equally probable over all positions in the payload in 802.15.4 packets. They
compare their empirical results to the expected values using code words as used
with O-QPSK modulation. Han et al. identify patterns in the bit error probabil-
ities of the payload in 802.11, which are not due to the channel conditions nor
hardware-specific [20].

By using a software-defined radio, Wu et al. characterize the error patterns
of individual 802.15.4 chip sequences in order to determine the channel condi-
tions [21]. Similarly, Jamieson et al. implement a scheme in which they count
the differences between the received and the known chip sequences to estimate
the likelihood of a symbol being corrupt [6]. They then use this information, as
part of a MAC protocol, to only re-transmit symbols that were likely corrupted.
Dubois-Ferriere et al. combine successive alternating packets in order to infer
the correct payload [8]. They show that this is feasible even when consecutive
packets are broken, making the approach more robust than regular forward error
correction. Hauer et al. propose to selectively retransmit parts of a packet during
which there was a strong variation in received signal strength [7].

9 Conclusion

In this paper, we have described how corruption systematically affects symbols
and packets in an outdoor 802.15.4 sensor network. We described a pattern
in corruption that we attributed to the use of MSK demodulators, a specific
tie resolution strategy when decoding, and a channel model with independent
errors. These insights allowed us to formulate a novel probabilistic approach to
recover information from corrupt packets. We showed that the approach reduces
the uncertainty associated with a corrupt packet, and that it correctly assigns
a high probability to the data that was actually sent. We will address systems
aspects of our approach in future work and develop a concrete implementation of
the proposed ideas. We specifically plan to investigate the trade-off between data
quality and energy consumption, as well as the the relationship of our proposed
recovery mechanism to other approaches such as forward error correction.

We conclude that patterns in packet corruption in outdoor sensor networks
can be understood, and that information may be recovered from some corrupt



packets. All is not lost when it comes to corrupt packets, and therefore discarding
all of them is unnecessarily wasteful.
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