An Overview of Mobile Ad hoc Networking

M. Scott Corson
corson@flarion.com
Flarion Technologies
Bedminster, NJ USA
Overview of Presentation

- Introduction to MANET
- Applications for MANET
- IP-based MANET Control Rationale
- IETF Standardization Work Status
MANET (1832-1883)

“Father of Impressionism”
whose work influenced

- Edgar Degas
- Claude Monet
- Auguste Renoir
- Alfred Sisley
- Camille Pissarro
- Paul Cézanne

Edouard Manet
Mobile Ad Hoc Networking

Technology also known as ...

- **Mobile Packet Radio Networking**
 - Term coined during early military research (70s, 80s)

- **Mobile Mesh Networking**
 - Term which appeared in an *Economist* article regarding the structure of future military networks

- **Mobile, Multihop, Wireless Networking**
 - Perhaps the most accurate term
Characteristics of MANET Technology

Mobile Ad hoc Networks (MANET)

- No wires or cabling (cheap installation)
- Mobile infrastructure possible (flexible)
- Autonomous operation possible (stand-alone)
- Relatively low capacity (Mbps)
Hybrid Communications Networks

- mobile ad hoc networks
- cellular/PCS/WLAN/networks
- high speed networks
- satellite overlay

No fixed infrastructure (fully mobile network)

fixed or static infrastructure
Likely Initial Usages

✧ Small-scale (few nodes)

✧ Usage in Diverse Applications

• Commercial
 – Industrial: factory, construction site, outdoors
 – Office/Home: personal networks

• Government-specific
 – Fire/Safety/Rescue/Disaster Recovery operations
 – Military

• Community/Urban Networks (HAM radio-type)
 – “covert” networks
Large-scale usage (many nodes)

- Commercial
 - Mobile Cellular-like Infrastructures
- Government
 - Large-scale Military Networks
- “Free” Community/Urban Networks
 - Unrestricted local communications
MANET: A network of highly mobile platforms that are not dependent on pre-existing or fixed communications infrastructure.

Router connects hardwired local net to multiple wireless interfaces.

Combined host/router with multiple wireless interfaces.

Airborne router provides asymmetric links to MANET.

Embedded host/router with single wireless interface.

Ad hoc networks form and disband as mobile nodes enter and exit net.

Maneuvers: A network of highly mobile platforms that are not dependent on pre-existing or fixed communications infrastructure.
Initial Architectures

- Low power sensor networks
 * “Surveillance” webs
- Small, relatively static, embedded ad hoc networks
 * “Bluetooth-type” networks
- Small-to-medium sized, mobile ad hoc networks
 * “802.11-style” networks
A Wireless LAN (WLAN) Standard

- 2.4 GHz, 1 to 11 Mbps WLAN technology capable of efficient multihop operation using peer-to-peer CSMA/CA mediated access
- Range: nominal 250 meters, but extendable with power amplification
- Suitable for in-building and outdoor usage
- Cost: $100’s per transceiver, possibly $10’s per transceiver in future
802.11 Uses

Campus-sized networks
 • people
 • vehicles

Voice over IP over MANET over 802.11
 • peer-to-peer
 – point-to-point
 – multi-hop
 • non-optimized---yet works good enough as long as network loading is low
A global specification for wireless connectivity created by an industry consortium

- “cable replacement” technology
- 2.4 GHz, 1 Mbps wireless LAN technology capable of multihop operation
- Short Range: 10m initial range (100m coming)
- Suitable for in-building and personal use
- Cost: $5 per transceiver chip targetted
Bluetooth Uses

☞ Personal Networks
 • cellphone to laptop (in briefcase ;-) , ...

☞ Desktop Networks
 • between laptop, desktop, printer, fax, network

☞ Spontaneous Networks
 • ad hoc meetings, laptop to laptop
 • conferences
Wireless technologies will continue to evolve

Multiple technologies can be used simultaneously—multi-mode radios

- There is need for a standards-based approach at the network layer
Mobile Ad hoc Networking and the Internet Engineering Task Force (IETF)

M. Scott Corson
corson@flarion.com
Flarion Technologies
Bedminster One
135 Route 202/206 South
Bedminster NJ, 07928

Joseph Macker
macker@itd.nrl.navy.mil
Information Technology Division
Code 5540
Naval Research Laboratory
Washington, D.C. 20375
Future Global Internet Architecture

Wireless Cloud (mobile Internet)

Fiber Optic Core (fixed Internet)
Characteristics

- Dynamic topologies
- Bandwidth-constrained, variable capacity, asymmetric links
- Energy-constrained operation
- Wireless vulnerabilities and limited physical security
Advantages of IP Routing for MANETs

Traditional Mobile Packet Radio Design
- Proprietary
- Single technology
- Technology-specific networking

IP-Based Design
- Standards-based
- Degree of physical media independence
- Routing flexibility, efficiency and robustness
- Eased interoperability with Internet
- Hardware economies of scale
- Future quality of service support
Why an Internet Layer Solution?

(... as opposed to subnet-based, link-level addressing and routing)

- The intent is the same as the original concept of the Internet:
 “... to develop a homogeneous networking capability over a heterogeneous networking infrastructure.”

Commercial Driver-> Cost Effectiveness

- In this case, the infrastructure is wireless rather than hardwired with
 - *Multiple* wireless platforms
 - *Multiple* link-layer technologies
MANET: An autonomous system of mobile nodes which may consist of separate networked devices or may be integrated into a single device
Logical Topology of Wireless Fabric for Routing at the IP Layer

Topologies of Wireless Technology A and B

Logical link
Logical node
Logical
Physical

Mobile node
MANET: A network of highly mobile platforms that are not dependent on pre-existing or fixed communications infrastructure

Router connects hardwired local net to multiple wireless interfaces

Combined host/router with multiple wireless interfaces

Airborne router provides asymmetric links to MANET

Embedded host/router with single wireless interface

Ad hoc networks form and disband as mobile nodes enter and exit net

Host

Wired LAN Interface

Router

Satellite Interface

Wireless Interface
Application to Today’s Networking

IP-based MANET can provide robust, low-capacity communications

- Secondary form of information delivery
- Primary form when higher capacity options are unavailable

Advantages include:

- Cost effectiveness
- Flexibility
- Interoperability
- Physical media independence
“One size does not fit all...”

Smaller Networks
- Ad hoc On-demand Distance Vector (AODV)
- Dynamic Source Routing (DSR)
- Optimized Link State Routing (OLSR)
- Topology-Based Reverse Path Forwarding (TBRPF)

Larger Networks
- Temporally-Ordered Routing Algorithm (TORA)
- Zone Routing Protocol (ZRP)
- Landmark Router (LANMAR)
IETF Standards Snapshot

- AODV: completed second WG last call for comments on promotion to Experimental RFC status
- DSR: second last call coming
- OLSR and TBRPF: respective proponents are engaged in a debate within the WG for mindshare
- Large-scale MANETs: Near-term impracticality and lack of WG interest have put this work into question
- Flooding: work beginning on requirements definition
Questions???

For More Information...

corson@flarion.com
macker@itd.nrl.navy.mil

http://tonnant.itd.nrl.navy.mil/manet/manet_home.html