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Abstract

We describe Haggle, a network architecture that dissemi-
nates content among mobile users based on the match be-
tween their interests and the metadata of content. Central
to Haggle’s design is a set of search based networking
primitives, which draw inspiration from web and desk-
top searching. These primitives enable, for instance, con-
tent to be disseminated in order of relevance to receivers,
and to be asynchronously demultiplexed to applications.
Other areas in which they enable novel solutions and ab-
stractions include: naming and addressing, resolution,
forwarding, and resource management. We describe how
this is accomplished, and then illustrate the feasibility of
our architecture through an implementation and evalua-
tion. The results show that Haggle scales to hundreds of
mobile devices, and thousands of pieces of content.

1 Introduction

Today’s computing experience is to a large extent char-
acterized by searching; it is used to efficiently locate and
structure content on the web, as well as on our local com-
puters. Despite the central role of searching, there is no
explicit support for it in network architectures. In this pa-
per, we therefore argue that it is beneficial to deeply em-
bed search abstractions in architectures. Not only does
this make it simpler to develop content oriented appli-
cations, but it also enables novel solutions to many net-
working problems, such as resolutions, demultiplexing,
forwarding, and resource management. To support our
claims, we present Haggle — a network architecture for
opportunistic and content-oriented communication.

The first steps toward defining Haggle were taken
in [17], and this paper provides a good introduction to the
scenarios that Haggle targets, and the problems of the ex-
isting Internet architecture. These include the tight tem-
poral and spatial coupling between applications and the
underlying network [7], and the inflexible selection of

transport methods and network interfaces. Here we take
the next steps in the development of Haggle by incor-
porating search based resolution, which provides novel
solutions to the problems above, as well as other ones.
To describe these problems and the solutions provided
by Haggle, we give a short overview of how Haggle op-
erates.

Haggle devices persistently store content and metadata
that they spread through disseminations. The contents
should only be dissimenated to users that wish to receive
it, according to their interests. Thus, Haggle devices that
encounter each other first exchange interests. Once this
is complete, they start to exchange the matching content.
However, all the content can rarely be exchanged during
a single interaction, and there may be several devices to
consider simultaneously. A challenge is thus to decide
which content to send, whom to send it to, and in which
order it shall be sent.

We see these decisions as determining bindings be-
tween items of content and devices. The bindings should
be deferred as long as possible due to the changing con-
text (i.e., the stored content, metadata and in-situ state),
which is important for making relevant bindings. There
is hence a need to resolve the bindings dynamically as
late as possible, and to order them according to the num-
ber of matching interests.

Traditional approaches to resolution, such as DNS and
ARP, retrieve persistent bindings using lookups, whilst
the context itself is non-persistent and forgotten once the
lookup is complete. These approaches hence work in-
efficiently in Haggle, where the context is stored persis-
tently, and bindings are resolved dynamically. The tra-
ditional approaches further do not provide the ability to
order bindings.

Our solution is search based resolution. We draw
inspiration from desktop search systems [1, 2]. They,
intend to replace traditional file and path based name
lookups with search based resolutions, in which files are
located by matching keywords against their metadata.



We extend this approach by allowing local files to also
represent other devices in the network. Only the as-
sociated metadata makes the actual distinction between
devices and content. In the case of devices, the meta-
data represents, e.g., the interests of the device owner,
and searching thus maps and ranks the relationships' be-
tween devices and content. We make these search primi-
tives native to Haggle, and in the paper we describe how
they work, and the advantages and challenges they bring.
The new contributions we offer are as follows:

e We define a set networking primitives based on
search based resolution (Section 2.3). These al-
low flexible and late binding between content and
receivers.

e We describe a new architecture designed around
search based resolution (Section 3). It embeds
asynchronous and content-oriented communication,
which is suitable for opportunistic networking envi-
ronments.

e We implement Haggle and show the feasibility of
the architecture through an evaluation (Section 4
and 5). The results show that search based reso-
lution scale on constrained devices to hundreds of
nodes and thousands of pieces of content.

The rest of the paper...

2 Design Overview

In this section we start by giving a high level overview
of Haggle, followed by formal definitions of the search
based networking primitives that underly its design. We
then continue with describing in detail how the primitives
are used in Haggle, and how they enable novel solutions
to many networking problems.

2.1 Desktop Searching

Today’s operating systems store files in a namespace of
directory and file names that tell little, if anything, about
the content of the files. The structure and format of any
metadata in the files are proprietary to each application
and file type, and therefore many disparate namespaces
exists. There is no unified way to access content via
metadata and searching is hence made unnecessarily dif-
ficult. Desktop search applications alleviate this prob-
lem by extracting metadata in a common format that can
be easily indexed and searched. This metadata names-
pace is however optional and is not native to applica-
tions. As soon as data is transferred over the network

IRelations are, in this context, used synonymously with bindings.

it leaves this namespace, although it may perhaps enter
it once again on another node. The data hence traverses
several namespaces in which its metadata is not exposed.
This hides potentially useful information that could oth-
erwise be exploited in, e.g., forwarding. Online content
is also indexed and searched by popular search engines
like Google. But this is yet another metadata format and
hence namespace that exists in parallel and is incompat-
ible.

2.2 Unified Metadata Namespace

Haggle’s metadata namespace aims to unify the disparate
namespaces described above — application local ones as
well as those in networks. By bridging traditionally sep-
arated namespaces we can build relations between en-
tities, which otherwise would be difficult and also less
flexible. A unified namespace connects spatially sepa-
rated, but otherwise identical, namespaces (e.g., file sys-
tems on different physical devices), allowing relations
to be established in a way that is indifferent to loca-
tion. Note, however, that locality can also be expressed
in metadata. But whether this metadata has a an impact
on how relations are resolved is a late binding decision,
as we show later.

The different entity types exist in the unified
metadata namespace as data objects that are tuples
(metadata,data). The metadata describes an entity,
whilst the actual data is optional. Although an entity
could potentially be many different things, we limit our-
selves here to two types; content, e.g., MP3-files, PDF
documents, or JPGs, etc., and nodes that represent, e.g.,
computing devices, such as smartphones or laptops.

In the case of content, the metadata describes the con-
tent and may be extracted from the file when the data
object is created. The metadata then travels with the con-
tent as the data object is forwarded in the network. In the
case of nodes, the metadata instead expresses the inter-
ests that the node announces. In most situations, there is
no data in data objects that represent nodes.

The data object is the single format in the namespace
that penetrates the entire architecture, the network, and
also applications. This makes Haggle a layer-less de-
sign. The metadata of data objects contain attributes in
the form of name-value pairs. When two data objects
share an attribute they have a relation in the namespace.
Relations arrange data objects in a flat non-hierarchical
way. The “strength” of a relation increases with the num-
ber of shared attributes.

An actor is an abstraction of a data object process-
ing entity that act on the namespace. Actors may corre-
spond to, e.g., users, applications, or processing threads,
which may or may not be spatially or temporally co-
located, i.e., on one node or on separate nodes. Actors
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Figure 1: Metadata namespace with logical domains de-
fined by searching and filtering.

can insert new data objects in the namespace and can
also resolve the relations of data objects in the names-
pace. Data objects can have different relations depending
on the “point-of-view” of an actor. Actors have the flex-
ibility to choose this view, and also change it when they
wish. We refer to a point-of-view as domain, which in-
corporates a subset of the data objects in the namespace,
as illustrated in figure 1. Actors that insert and filter data
objects in the same domain can signal each other, simi-
larly to how layers signal each other in the TCP/IP stack.
In order to do this, actors need primitives that allow them
to resolve and filter the information in the namespace,
such that they can structure it in a way that makes sense
to them.

In the following section we formally define relations
between data objects in the namespace and the primitives
available to resolve and interpret information in it. We
then look at how these primitives can be implemented
in reality and how they provide novel solutions to many
networking problems.

2.3 Search-based Networking Primitives

Let V denote the set of vertices that correspond to data
objects in a unified metadata namespace (we may use
vertices and data objects interchangeably). A denotes the
set of attributes over all v € V', and A, C A is the set of
attributes in the metadata of data object v. We define a
relation graph over the metadata namespace as a multi-
graph Gg = (V, E), where an edge e = uv between ver-
tices u,v € V is part of F if and only if |A, N A,| > 1.
In other words, G is a graph of data objects V', which
are pair-wise connected via edges in F only if a pair of
data objects share at least one attribute. We define three
basic primitives on Gg:

Insert: We define an insertion i : Gg — G such that
't is arelation graph, G C G’ and |G| — |Ggr| = 1.

Filter: Let Ay C A be a set of filter attributes. We
define filtering f : Gr — G'g, such that G = (V' E’)
is an induced subgraph® of G and Vv € V' : Ay C A,

Query: We define a query q : Ggr — G, such that
Go = (Gr,w) is a weighted query graph defined by
the map w : E — R, which we call a weighting func-
tion. Note that w is defined independently for the two

directions of an edge. In this paper we use a weighting

function
w(ub) = Z

ag E(Au ﬂAU)

a(wg),

where u¥ is the directed edge from u to v, and wi} € N
is the k:th weight in a set W, associated with u, where
|[Wy| = |Ay|. The function @ — R on w}’ is defined by
the actor performing the query.

The insertion i(G g, v) inserts one new data object in
the metadata namespace. We assume for now that data
objects are never removed from the namespace.

The filtering f(Gr,Ay), defines a domain in the
namespace described by G, and which incorporates
only those data objects that have all attributes of A¢. Fig-
ure 2 illustrates filtering. A relation graph G contains
three data objects with associated attributes. A filter ap-
plied on G R generates a subgraph that incorporates only
those data objects matching all attributes in the filter’s
attribute set Ay.

The query q(Gr,w) generates a weighted query
graph. Figure 3 illustrates two example queries that
weight a relation graph differently. The query graph gen-
erated by ¢; is acquired using a constant weighting func-
tion, where the weight of the edge uv in both directions
will be equal to the number of shared attributes between
u and v. The second query ¢;, generates a query graph
with edges 1t weighted by the ratio between the number
of shared attributes between v and v and the total number
of attributes of u.

We use the basic primitives defined so far to define
the higher level networking functions demultiplexing and
resolution.

Demux: Let Gr = (V, E) be arelation graph and C' a
set of actors where Ve € C : A, C A is the set of interest
attributes of actor c. We define demultiplexing d : G —
D, such that D = V(f(Gg, Ay)) for some filter f with
associated attribute set Ay, and Ve € C': Ay C A..

Resolve: Let Go = (V, Q,w) be a query graph, s €
V a fixed vertice, and (S, 5) a cut in Gg, where s €
S. We define a resolution v : Gg — D<, such that

2Given a graph G = (V, E), then G’ is an induced subgraph of G
if G’ C G and G’ contains all edges uv € E with u,v € V.
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Figure 2: A filter operation f on a relation graph G,
where vertices vy, vz, v3 correspond to data objects with
different, but overlapping, sets of attributes.
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Figure 3: Two different query operations, ¢; and g2, on

Gr from figure 2, using aq1 (wy) = 1 and ag(w}) =

| ~ 1+ respectively.

D< = S\ sis an ordered set and Vv € S : {d(v) >
P, rank(d(v)) < p}. The function § : V' — R is a map,
which we call a vertice weighting function, and rank :
R — {1,2,...,|V]|} is a map that ranks vertices in V" in
order of decreasing weight. The parameters ¢ and p are
constants that decide the cut (S, S).

The demux operation d( f(Gr, Af), C) demultiplexes
data objects in the relation graph G'r to actors that have
interests matching the filter attributes A ;.

The resolve operation r(q(Gr,w),s,d, ¥, rank,p)
returns an ranked list of data objects. The query graph
determines the “strengths” of relations between data ob-
jects in a relation graph and the resolution r resolves and
ranks particular relations from the point of view of s. The
function § determines (through weighting) the “impor-
tance” of each data object. The constants ¢ and p deter-
mine the cut in the graph relative the data object s, by re-
spectively eliminating data objects with too low weights,
and setting an upper limit on the number of data objects
returned.

The primitives defined allow a lot of flexibility, and to
make things a bit more easy to grasp, we describe two
common resolutions that actors execute: (1) given a data
object, they wish to resolve the nodes interested in the
data object, and (2) given a node, they wish to resolve the
data objects matching the node’s interests. We will refer

to these resolutions as r,, and r4, respectively. As nodes
are data objects in the metadata namespace, albeit treated
specially, these two cases correspond to essentially the
same resolve operation; namely one that finds the data
objects in the namespace with direct relations to a given
data object, under some condition on the strengths of the
relations.

Thus, given a data object s representing a node or a
piece of content we can use a resolve with w based on

a(w) = {1

if u € neighbor(s),
0 otherwise.

and a vertice weighting function

e€E

where E is the set of incoming edges to v and 1 a
minimal edge weight. Figure 4 illustrates this resolution
on a relation graph of six data objects with ¢ = 0.3 and
p = 3. In this case the result will be an ordered list
(v1,v2). If we change the vertice weighting function to
use the set of outgoing edges E 7 instead, we get the list
(vg,v1) as a result. Actors can hence themselves decide
how resolutions are executed.

After having formally defined primitives that can be
applied to the metadata namespace, we now instead turn
to describing how these can be implemented and used in
reality.

Figure 4: A resolution is a cut in the relation graph.

2.4 Persistent and Searchable Storage

To enable search-based resolution, each Haggle node
maintains a data store that stores data objects persistently
in a searchable state. The state of the data store is up-
dated as nodes encounter each other in the network and
and exchange data objects. A node’s data store thus rep-
resents its current view of the global namespace, which
of course at most times is incomplete. This does, how-
ever, not affect our search based networking primitives —
it only limits the scopes of resolutions.
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Figure 5: A logical overview of the searchable data store,
showing example mappings between nodes and data ob-
jects via shared attributes.

Figure 5 shows a logical overview of how information
is structured in the data store once data objects have been
inserted. Separate data structures are used to represent
nodes, attributes and data objects. As data objects are
received, their metadata attributes are inserted into the
attribute data structure and links are made to the actual
data objects. If a data object represents a node, which is
indicated by special metadata, a node object is also cre-
ated. The node object is linked, via the shared attributes,
to the original data object, as well as other data objects.
Attributes thus connect nodes and data objects in the data
store.

The demux and resolve primitives correspond in
the data store to persistent queries and non-persistent
queries, respectively. Persistent queries insert permanent
filters into the data store that demultiplex data objects
to actors asynchronously, at any point in time. Non-
persistent queries, on the other hand, can only be ap-
plied to the data store synchronously, and immediately
(as soon as the queries finish) return results. We now de-
scribe how these two networking primitives are used to
implement the fundamental functions of Haggle.

2.5 Dissemination and Event Notification

The functionality of Haggle is split into two planes; the
event notification plane that notifies actors of events they
are interested in, and the content dissemination plane that
disseminates content among the nodes in the network.
Search based networking primitives are integral parts of
both planes.

The event notification plane is a means for actors to
signal each other — locally or remotely, and to subscribe
to certain events. Persistent queries are part of this plane
and they generate events when data objects match a fil-
ter. Actors insert data objects in the metadata namespace

(i.e., in the data store), and at some point in the future the
data objects might match a persistent query made by an-
other actor — on the same node or on another node. The
events generated by matches also pass on the matching
data objects. Other types of events can also occur in the
event notficiation plane, e.g., low battery power events
from the operating system, and a external events; such as
the discovery of a new neighbor node. We describe the
event model in detail in section 3.

The content dissemination plane is based on non-
persistent queries (i.e., resolve primitives). Dissemina-
tion resembles multicasting; every node data object with
arelation to a specific data object defines a dissemination
(or multicast) group. Note that the bindings between a
data object and receivers are not determined only by the
originator of the data object — they are resolved anew
by every node that receives the data object as it is dis-
seminated in the network. There are no “destinations”
in the data object. The resolution that binds a data ob-
ject to receivers can vary with the state of each node’s
data store, and the parameters they use in their resolve
queries. But, if nodes exchange all their node data ob-
jects, the possible bindings will improve continuously as
a data object is disseminated, i.e., more receivers will be
resolved. However, it is up to each node to decide how
much to disseminate.

Dissemination can involve forwarders with interests
that do not match the data objects forwarded. We refer to
these nodes as delegate forwarders, to distinguish them
from nodes that only forward data objects that they also
wish to receive themselves. A node may, of course, act
as both a delegate and receiver at the same time, depend-
ing on the data objects forwarded. However, the basic
dissemination that the plane carries out is non-delegate
forwarding. We specifically discuss delegate forwarding
in the next section.

To determine how to disseminate, two nodes that meet
first exchange their so called node descriptions. These
are the node data objects that represent them in the meta-
data namespace, and they contain, among other things,
their interests that establish relations to other data ob-
jects. Once a node has received a neighbor’s node de-
scription, and has inserted it into the data store, it can
apply r4 to decide which data objects to forward. These
may include other node descriptions it has received, as
they are also data objects. Note that co-located nodes can
rarely exchange all the data objects that match their inter-
ests, due to the duration of co-locations, bandwidth, and
available storage. In this situation, an important concept
of search based resolution is that data objects are ranked
and exchanged in order of their rank. We call this ordered
forwarding. If new data objects are inserted in the data
store during co-locations, 7,, can be used to determine if
it is of interest to any current neighbors. Figure 6 illus-
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Figure 6: Resolutions in the content dissemination plane.
(1) Node descriptions are exchanged, followed by data
objects in order of rank (rg). (2) A new data object is
exchanged whilst nodes are co-located (r},).

trates the different resolve operations that occur during
co-locations.

2.6 Searching as a Networking Abstraction

The primitives of search based resolution enable novel
solutions and abstractions to problems of mobility, in-
termittent connectivity, and data dissemination. In this
section we discuss the broader implications of searching
as a networking abstraction.

Naming & addressing: We break with “traditional”
naming and addressing schemes that explicitly refer to,
e.g., services or end-points. We instead use metadata to
bind physical (or logical) entities through search prim-
itives. The interests of a node (i.e., the attributes in its
metadata) work as both a name identifier and address.
The combined interests provide an identity, while the re-
lations they establish determine a (logical) location, and
thus an address.

Although file-sharing applications fit this naming and
addressing scheme well, personal communication by de-
fault does not. However, point-to-point communication
is really a dissemination to exactly one node. Address-
ing a specific node is hence a matter of compiling a set
of attributes that match well that node’s interests, and
thus restricts the group of nodes involved in the dis-
semination (delegate forwarders may facilitate dissem-
ination, although they are not part of it). The weights
w}, which are used in the query primitive, allow nodes
to express their interest in metadata namespace more ac-
curately. Imagine, for example, a data object that con-
tains an email message destined for a specific node. A
personal attribute like email="john.doe@haggle.org”,
should in this case weigh more than generic attributes,
such as subject="The meeting”. John Doe can express
— by weighting the interest attributes in his node descrip-
tion — that he is more interested in receiving data objects
labeled with his email address, than those labeled with
other generic attributes.

Note that only attributes in data objects that represent

nodes are weighted. It does not make sense to weight
attributes in data objects in general, since different nodes
have their own view on their importance. Thus, if the
email data object, in the example above, is a vertice v in
a relation graph and w is a vertice representing John Doe,
then only the edge b is affected by the weighting, and
not vit.

Resolution & binding: An important concept of
search based resolution is that bindings are done only
at the time resolutions are performed. The query deter-
mines the binding, although the metadata of individual
data objects of course limits which bindings can be done.
In comparison, resolutions with, e.g., DNS or ARP, are
lookups that just fetch semi-static bindings that are pre-
determined. Search based resolution, on the other hand,
allow late and flexible bindings that occur continuously
as data objects are disseminated.

Another important concept is the ranking provided by
search based resolution. It makes it possible to tune res-
olutions. For instance, to resolve a set of receivers of a
data object, it is possible to bind only nodes that share,
e.g., at least 80% of its attributes with the data object, or
have at least n attributes in common.

Demultiplexing: Flexible filter based demultiplexing
allow spatial and temporal decoupling of senders and re-
ceivers. For example, a data object that is inserted into
the data store by an application may be demultiplexed
immediately to another application on the same node, or
whenever an application adds a matching interest, or at
some time in the future to an application on another node.
A data object can also be demultiplexed to several appli-
cations at once. In comparison, port number demulti-
plexing, as done in TCP/IP, binds a packet to one single
remote application or service, already at the source node.

The comparison to port based demultiplexing is, how-
ever, not entirely fair. Port demultiplexing works on
small application data segments and has to be very fast,
and makes it easy to stream data directly to applications.
The demultiplexing of a data object is not done until the
entire application data unit is received. However, data
objects can also be streamed if the metadata header is
seen as an initiator for a stream session. The header is
then received first, to determine demultiplexing, and then
the stream is internally redirected to the receiver(s).

Forwarding: Determining delegate forwarders, i.e.,
nodes that carry data objects on behalf of others, is a task
for forwarding algorithms. We anticipate that there is
no single forwarding scheme that is suitable for all en-
vironments. However, search based resolution makes it
possible to integrate a number of different schemes. We
have defined the r, and r,; resolve queries that deter-
mine direct relations in a relation graph. Similar resolve
queries, e.g. 7y, can be defined to find delegate for-
warders over several hops in the graph, although at the



cost of increased resolution time. We do not address spe-
cific delegate forwarding algorithms in this paper.

Ordered forwarding is also an important concept en-
abled by search based resolution. In the literature, for-
warding schemes often do not decide the order in which
messages are forwarded, because they commonly as-
sume that all messages can be forwarded during node
co-locations. Ordered forwarding can better utilize time
limited node contacts, by sending the most important
data objects first.

Resource & congestion control: The content dissem-
ination plane can be tuned according to the available re-
sources of nodes; in terms of disk space, bandwidth and
battery power. By expressing resource polices in node
descriptions, a node can signal a neighbor, which then
tunes its resolutions related to the signaling node, accord-
ing to the policies in the received node description. For
example, when battery or storage is low, a node sets a
restrictive policy that limits its own dissemination — and
through the signaling — also the amount of information it
receives. Data objects are affected by the restrictions in
order of least important first. This is hence a congestion
control scheme that automatically limits the dissemina-
tion in a way that is more sophisticated than, e.g., random
drop schemes.

Security: Search based resolution relies on the will-
ingness of nodes to share their interests and the metadata
of data objects with each other. We believe it is possi-
ble to develop ways to do secret attribute matching, i.e.,
without revealing the semantics of the attributes. But,
this is something we have to investigate further.

In a broader scope, we see that well established prin-
ciples to establish trust and authentication, and guaran-
teeing data integrity, work well also in Haggle.

3 The Haggle Architecture

In this section we give a detailed description of the Hag-
gle architecture and how it is designed around the search
based networking primitives that we have defined.

3.1 The Core System

The Haggle architecture is data centric, event-driven and
modular — features that allow it to scale from constrained
systems to well provisioned ones. Central in the archi-
tecture is the kernel. It implements an event queue, over
which processing entities, called managers, communi-
cate. The kernel contains, apart from the event queue, a
number of shared data structures, such as active neigh-
bors, listening sockets, and also the data store. Figure
7 depicts how the kernel, managers and applications are
located in the architecture, and how they can interact.

Applications
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Figure 7: The Haggle architecture comprises a kernel
and a set of managers.

Managers are instantiations of actors that operate
within a domain of responsibility. They implement the
functional logic of Haggle and interact only directly with
the kernel. A manager is oblivious to anything outside its
domain of responsibility and hence cannot directly call
another manager. It is limited to producing and consum-
ing events, and to interaction with the data store. This
strict isolation makes it easy to add new managers and to
plug them in dynamically — potentially even at run-time.

The circular structure illustrates the layer-less design;
no manager is logically positioned on top of another one.
Data objects are passed among managers unmodified,
i.e., without additional headers, and to native applica-
tions as well. A manager might be dependent on other
managers that generate events it consumes, but it knows
nothing about how these events are generated or from
where they originate. Managers can delegate processing
tasks to modules that do work within their domains of re-
sponsibility. Modules are depicted in the figure as small
circles attached to certain managers. We describe each
manager in detail later, and here we instead focus on the
core system and the interfaces provided to managers.

The event-driven design is essential for a search-based
architecture; searching usually involves costly I/O and
therefore requires asynchronous operation through event
callbacks. Both persistent and non-persistent queries are
events in the event notification plane. A persistent query
generates an event every time a data object matches its
associated filter in the data store. Similarly, the result of



non-persistent queries are returned in events, such that
the queries do not block the system while being pro-
cessed. The event model also fits nicely with the oppor-
tunistic nature of Haggle; physical node encounters are
events that drive the system internally. Events are gen-
erated when devices are discovered in the neighborhood,
and this triggers disseminations to occur. If the neigh-
borhood is static and no applications generate new data,
the system sits idle, thus preserving resources.

3.1.1 Data Centric

The data object is the single format of information ex-
changed in Haggle, and is also what defines the meta-
data namespace. Data objects spread among nodes as
they encounter each other in the network. They enter
and leave a node through a single point, and there are no
layers that define an up or down, i.e., whether data ob-
jects come from applications or the network. There is
hence no distinction made between data objects received
locally (from applications) or those received from other
nodes in the surroundings. Whether delivery is local or
over the network is transparent.

To achieve efficient dissemination of data objects,
Haggle is concerned with (1) how data objects relate to
one another in the metadata namespace, and (2) deciding
to which nodes it should disseminate, and (3) how it can
interface with nodes once they are encountered. Three
data types help with these bindings internally: Attributes
are part of the metadata of nodes and data objects, and
can therefore establish relations between them, whilst
also allowing filtering and demultiplexing. Nodes inter-
nally represent communication peers, and when a bind-
ing between a data object and a node is made, the node
can be attached to the data object as a means to address
the peer. Interfaces represent a way to interface with the
peer — it can be a physical interface, for instance an Eth-
ernet or WiFi card, or a logical interface provided by an
IPC mechanism, such as a local socket or a pipe.

Whilst attributes are part of the metadata of data ob-
jects and nodes, the metadata itself is expressed in XML.
This makes the metadata easy to parse, filter and search,
using technologies such as XPath. Nodes and interfaces
can also be expressed in metadata, and are transformed
into internal objects when the data object is parsed. How-
ever, only attributes build relations between data objects
in the metadata namespace, and other parts of the meta-
data are not visible in filtering and searching. These parts
have to be exposed by attributes in case managers want
to access the information. The metadata hence has a
generic part, consisting of attributes, and a specific part
consisting of other XML structures.

Figure 8 shows the structure of a node description,
which represents a node in the metadata namespace.

<?xml version="1.0"?>

<Haggle>
<Attr name="Haggle">NodeDescription</Attr>
<Attr name="DeviceName">Haggle—1</Attr>

‘% <Attr name="Music">Beatles</Attr>
§n <Attr name="Email" weight="10">joh.doe @haggle.org</Attr>
<Node id="046d57ed06a0d6b78e351e6aaf38d313e5648f6b">
) <Interface type="Bluetooth">00:1b:98:9c:3b:a8</Interface>
=
‘g <Interface type="WiFi">00:1b:fb:05:c5:db</Interface>
o

<Bloomfilter >AAAABWAAJYAAAA ... </Bloomfilter>

</Node>
</Haggle>

Figure 8: A data object metadata header in XML for-
mat, in this case a node description. The generic part
describes the nodes interests and builds relations in the
metadata namespace, whilst the specific part describes
the node.

Data objects that contain node descriptions are demul-
tiplexed based on the Haggle=NodeDescription at-
tribute, and once acquired, the specific part can be ac-
cessed and transformed into an internal node object that
is inserted into the data store. Managers on different
physical devices can thus signal each other using a pre-
determined attribute, instead of using header encapsula-
tions as layers do in the TCP/IP stack.

Data objects that contain actual content normally do
not have a specific part, but applications may use the
same principles as managers to implement signaling
themselves. Or, they may just attach additional metadata
that they do not want to be searchable.

3.1.2 The Data Store

The data store provides an interface that implements the
search primitives described in section 2.6. The backend
used to implement the primitives is hidden, such that sev-
eral backends can be supported. A typical backend uses
a relational database.

The data store does not store the actual data in data ob-
jects, only pointers to where the corresponding files are
located on disk. Every data object is timestamped and
may age, which is useful on devices with limited storage.
A user can set an age threshold, after which data objects
are deleted (their data may still be on disk). This lim-
its the amount of information disseminated. A popular-
ity counter also measures how often data objects match
queries. Popular data objects in this way age slower. The
architecture can accommodate several ageing and popu-
larity algorithms, but the development of such algorithms
is out of the scope of this paper. The data store also col-
lects context information, for example node encounters
and their durations, and other statistics that may be use-



ful for more accurate resolution.

The data store manages the filters that are associated
with persistent queries, and provides means to insert and
remove new ones. The non-persistent query interface im-
plements the r,, and r4 resolve primitives. As they are
both very similar, we here only describe 4. The resolve
query interface is as follows: resolve (node, max,
match, ratio, callback);. The max parame-
ter sets the an upper limit on the number of data ob-
jects returned, match sets a lower limit on the number
of attributes that have to match in a data object, and the
ratio specifies the percentage of attributes in a data ob-
ject that must match the node’s interest. The callback
parameter is the context used to return the result of the
query. The result is a ranked list of matching data ob-
jects.

3.1.3 Events

Haggle specifies three event types: public, private and
callback events. Public events are predefined events that
managers can register interest in. These are listed in Ta-
ble 1, along with producers and consumers and data type
passed. Any data passed with public events is protected
so that managers cannot change it. This is because sev-
eral managers may be interested in the same public event
and they therefore cannot manipulate the data that an-
other manager may rely on. They can keep a private
copy of the event data if necessary. Private events are,
on the other hand, registered dynamically with the ker-
nel, and are only known to the registering manager. This
means that the data is also private and may be changed
or kept for processing. Private events are used to imple-
ment timer based operations, such a garbage collection
and beaconing. They also implement persistent queries,
and each filter registered with the data store maps to at
least one private event associated with a specific man-
ager.

Callback events are one-time events that are non-
persistent, i.e., they occur exactly once. As they are also
private to managers, they can be seen as a type of pri-
vate event. The difference is that they require no registra-
tion and the callback context (handler function) is passed
along with the event instead of being stored persistently.
Callback events are typically used to implement non-
persistent queries, and occur only once per query made.

3.1.4 Data Paths & Processing Order

An implication of flexible demultiplexing is the lack of
predetermined processing paths for data objects. They
can be demultiplexed to several different managers, de-
pending on the metadata, and in no specific order. This
has two important consequences. First, a manager does

not know what type of processing a data object has been
subjected to. However, sometimes ordered processing
is necessary. The Security manager should, for exam-
ple, verify the integrity of data objects before they are
processed further by other managers. Second, as several
managers may show interest in the same public event,
and may demultiplex the same data object, there will be
many copies of data objects passed around?. This is ob-
viously less efficient than a layered stack approach which
passes data between layers in strict order. We hence trade
some efficiency for flexibility.

The way we address these issues is to define public
events that indicate the “state” of data objects. For in-
stance, managers that rely on the Security manager only
process data objects that are issued in events that indicate
security has been considered. The first three events in Ta-
ble 1, is an example of an event ladder that a data object
climbs as it is received. The Protocol manager issues the
first event as the data object is just received. The Se-
curity manager listens to this event and verifies the data
object passed in it, after which it issues a new event indi-
cating the data object’s new state. The Data manager in
turn inserts this data object in the data store and issues an
event that clears it for “general processing”. Managers
that process any of these events need to account for the
state of the data passed in them.

3.2 The Managers

After having described the core system we now turn to
detailing the managers and the functionality they pro-
vide.

Resource Manager: The Resource manager issues
resource policies, based on measurements of, e.g., bat-
tery level, disk space, and bandwidth. How to act on the
policy is a local decision made by each manager, since
they best know how to deal with resources in their do-
mains of responsibility. Under resource constraints, this
may include restricting disseminations, neighbor discov-
ery, and choosing power efficient ways to transmit data
objects. The Resource manager can also append resource
control metadata to the node description, in order to sig-
nal its policy to neighbors, as discussed in section 2.6.

We learned early on that a distributed policy imple-
mentation is crucial for efficient resource management.
Earlier experience with centralized policy control [17],
involved a system where managers registered tasks with
the Resource manager, which then scheduled them based
on the current policy. Such a system has two major draw-
backs. First, a centralized resource manager does not
have a good understanding of how to efficiently sched-
ule tasks that belong to another manager’s domain of

30nly the metadata header is passed around, as the data is stored on
disk.



Event Producers Consumers Data
Received Data Object Protocol Security, Any Data object
Verified Data Object Security Data, Any Data object
New Data Object Data Any Data object
Local Interface Up Connectivity Protocol Interface object
Local Interface Down  Connectivity Protocol Interface object
New Contact Connectivity  Node, Forwarding Node object
End of Contact Connectivity Node Node object
Send Data Object Any Protocol Data object
Resource Policy Resource Any Policy object
Data Object Targets Data Store Forwarding Data object

Table 1: Example public event types, with producers, consumers and associated data.

responsibility. Second, managers have equivalently bad
understanding of the policies in effect, which means they
might register tasks that never run (or run too late) under
a certain policy. This effectively wastes resources instead
of preserving them.

Connectivity Manager: The Connectivity manager
discovers local and remote network interfaces in order to
determine connectivity to other nodes. Local interfaces
are monitored for configuration changes, and whenever
connectivity is established, an event is issued and neigh-
bor discovery on the interface is started. The event in-
forms other managers of a new connectivity opportu-
nity. For instance, the Protocol manager starts listening
servers on interfaces that become active, so that incom-
ing data objects can be received.

The remote discovery is specific to the type of local in-
terface used. For instance, on a Bluetooth interface reg-
ular device inquiry scans are performed. In the case of a
WiFi or Ethernet, beacons are instead sent. The rate of
discovery can be varied depending on the policy set by
the Resource manager.

Node Manager: The Node manager collects infor-
mation about nodes that are encountered. Every time a
new neighbor interface is discovered, the Node manager
tries to exchange node descriptions with the node associ-
ated with that interface. Figure 8 shows an example node
description. From received node descriptions, the Node
manager creates internal node objects that it inserts into
the data store. The node description contains a bloomfil-
ter [5], which encodes the data objects a neighbor has in
its data store. This is used to avoid sending data objects
that a neighbor node already has received.

Protocol Manager: The Protocol manager is respon-
sible for sending and receiving data objects reliably.
With each interface type is associated a set of protocols
that can be used for data object transfer. TCP is normally
used for Ethernet and WiFi, whilst RFCOMM is used
for Bluetooth. UDP or UNIX sockets are used for local
inter process communication (IPC). Because the means
of transfer is transparent to other managers, the Proto-
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col manager can also support protocols such as BitTor-
rent, network coding schemes, and bundling protocols.
Choosing the best protocol and interface for transfer is a
Jjust-in-time decision, which depends on the current pol-
icy issued by the Resource manager. The Protocol man-
ager delegates the actual dispatching of data objects to
one of its modules.

Application Manager: The application manager acts
on behalf of applications inside the architecture. It im-
plements a signaling protocol, based on data objects with
control attributes, which it uses to communicate with ap-
plications. Internally, applications are represented by
node objects*, and can therefore be addressed as any
other nodes. This method of signaling is hence oblivious
to whether applications are running on the local device or
on remote devices. The Application manager uses filters
to demultiplex incoming signaling data objects sent by
applications. It also demultiplexes the applications’ data
objects based on filters they register using the signaling
protocol. Data objects for applications are thus first de-
multiplexed to the Application manager, which then re-
lays them to the applications. Internal events can also be
passed to applications that are interested in feedback on,
e.g., neighbors that are discovered.

Data Manager: The data manager inserts data ob-
jects into the data store, and must first make sure they
are valid. It performs checksum verification on data ob-
jects that contain checksum attributes. Applications may
optionally attach checksum attributes when they gener-
ate data objects. This allows end-to-end detection of
data corruptions, something which otherwise cannot be
guaranteed, as data objects can become corrupted whilst
stored in-between transfers. The Data manager may also
implement end-to-end acknowledgements for data ob-
jects.

Forwarding Manager: During node encounters, the
Forwarding manager determines the data objects to dis-

4 Application node objects are not inserted into the data store, and
are therefore not exposed in the metadata namespace. The node de-
scription aggregates the interests of applications instead.



seminate to co-located neighbors. First it does non-
delegate dissemination using the 4 and r,4 resolve prim-
itives. The decision to delegate other data objects to
neighbors is left to specific forwarding algorithms. They
exist as manager modules that are invoked depending on
the choice of forwarding algorithm, and the current re-
source policy. The Forwarding manager tunes the reso-
lution queries to fit the resource policy, and to achieve
congestion control, as described in section 2.6.

Running several forwarding schemes in parallel may,
however, lead to problems. First, the type of forwarding a
data object is subjected to needs to be consistent through-
out the data object’s life-time in the network. Otherwise,
different algorithms may counter-act one another. Sec-
ond, algorithms that account for resources in their for-
warding decisions, for instance bandwidth, may work
badly if they do not have exclusive control over the re-
sources. Greedy algorithms may starve other ones, or
make them behave inconsistently. We are investigating
solutions to these problems.

Security Manager: The security manager pro-
vides authentication of neighbors and performs integrity
checks on incoming data objects, and may encrypt and
decrypt data objects. The Security manager inserts a
public key in the local node description as an attribute,
and demultiplexes incoming node descriptions based on
the same attribute. The keys acquired from received node
descriptions are used for standard security functions. If
a node can acquire a certificate for a neighbor in some
other way, it can be used xwith the public key to au-
thenticate incoming node descriptions before they are ac-
cepted.

4 Implementation

We have created a reference implementation of the Hag-
gle architecture that runs on several platforms, includ-
ing Linux, Windows, Mac OS X and Windows Mobile.
There is also ongoing work to port it to Symbian, as our
main target platform is mobile phones. The code is writ-
ten in C/C++, consists of about 11000 lines of code (ex-
cluding applications), and implements all the basic man-
agers, except the Security and Resource manager. We in-
tend to implement them as well, but they are not essential
for illustrating the feasibility of a search based network
architecture.

Haggle runs as a user space process with a main thread
in which the kernel and managers run. Managers may
run their modules in separate threads when they need to
do work that requires significant processing time. This
may include sending and receiving data objects, comput-
ing checksums, doing neighbor discovery, etc.

Applications interact with Haggle using IPC provided
by a C-library, called libhaggle, which also exposes the
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get_handle() — h

free_handle(handle_t h);

publish_dataobject(handle_t h, dataobject_t *dobj);
register_interest(handle_t h, char *name, char *value, int weight);
register_event.interest(handle_t h, int eventld, event_handler_t handler);
event_loop_run(handle_t h); — dataobject_t *dobj
event_loop_run_async(handle_t h); — dataobject_t *dobj
event_loop_stop(handle_t h)

Figure 9: Haggle application programming interface.
Returned data is indicated with —.

publish-subscribe inspired API shown in Figure 9. This
API provides a clean embodiment of temporal and spa-
tial decoupling [7]. Applications can publish data ob-
jects and add interests, which are then appended to the
node description. The applications asynchronously re-
ceive data objects that match their interests, and can also
register to receive other events. The libhaggle library
makes it easy to write applications in various program-
ming languages, and we have so far written applications
in C/C++ and C#.

The current implementation supports Bluetooth and
WiFi connectivity, as this is a prevalent technology on
smartphones. Bluetooth is, however, preferred, as we
found the current WiFi technologies on smartphones to
be too power inefficient to be a viable option. We cur-
rently do not implement any forwarding algorithms that
do delegate forwarding.

The data store is based on an SQLite [3] backend,
which is suitable for small embedded devices. It runs in
a separate thread since disk operations involve I/O that
may take a relatively long time to complete, and would
otherwise block the event queue. We currently do not
implement ageing, although we collect the necessary in-
formation, such as timestamps.

We have developed two native applications for Hag-
gle; FileDrop and PhotoShare. FileDrop is a file sharing
application that monitors a directory on the file system.
When files are put in the directory, e.g., through drag-
n-drop, they are converted into data objects and inserted
into Haggle. Metadata is automatically extracted from
the files and they spread to other nodes according to this
metadata. Received data objects also end up in the shared
directory. PhotoShare is a Windows Mobile application
that allows a user to share pictures taken with the phone’s
camera. The user can add its own metadata to the picture
before it is turned into a data object that spreads to other
Haggle devices. Neither FileDrop nor PhotoShare rely
on other devices to run the same applications. Any de-
vice that exposes matching interests in its node descrip-
tion will receive the data objects.

Legacy applications can be supported by Haggle
through application proxys. In the email scenario, which
was discussed in section 2.6, a proxy application creates
data objects from emails, using the email header as meta-



data. The proxy also registers the user’s email address as
a weighted interest attribute. Any data objects that con-
tain the user’s email address will hence be received by the
proxy application, which can then pass on the enclosed
email to an email client.

5 Evaluation

[THIS SECTION IS WORK IN PROGRESS]

We investigate how search based resolution scales with
the amount of information in a node’s data store. The
query time should not be a significant factor relative the
time of node encounters, and should scale well with the
size of the data store. Queries should neither consume
too much resources, in terms of memory and CPU, such
that they make search based networking infeasible on
constrained platforms.

To perform the measurements, we designed a Bench-
mark manager that inserts fake data objects and nodes
into the data store, and then runs a set of queries that
try, for each node, to resolve the matching data objects.
We measure the time to complete each query, and the
number of data objects returned. The Benchmark man-
ager randomly picks attributes from a pool A of size m,
which it then copies into a set of data objects D, such that
each data object d € D, has a set of attributes A5 C A,
with |A4| = [. Similarly, a set of nodes N is created,
where each node n € N has |A,| = k. Note that we
never remove attributes from the pool, such that nodes
and data objects may share attributes between them. We
do, however, make sure that attributes are not duplicated
within individual nodes and data objects. The probabil-
ity P}, (x) that a node n shares « attributes with a data
object d is

1\ (m—1
o) = i)
(%)

and the probability P, that they have a relation is there-
m—1
(")

fore
~1_ (m’f)l
(7) m

We run benchmarks on two hardware configurations.
The first is a MacBook Air laptop with a 1.8 GHz Intel
Core 2 Duo CPU, 2 GB memory and 80 GB hard drive.
The second is a Samsung SGH-1600 Windows Mobile 6
smartphone, with 64 Mb RAM and a 220 MHz Texas In-
struments OMAP 1710 CPU. We use two attribute pool
sizes m set at 1000 and 10000 attributes, whilst we keep
the number of nodes fixed at 100, with each node hav-
ing k = 100 interest attributes. We use either 5 or 10
attributes in each data object and then vary the number
of data objects between 10 and 10000.

Po=1-P(z=0)=1-
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Figure 10: Query time scaling with size of the data store
(log-log scale).

Figure 10 shows the results from the different runs.
Solid lines indicate query time and dashed line the num-
ber of data objects returned. Note that we did not limit
the number of data objects returned, since we wanted to
see how it scaled with the amount of information in the
data store.

The results show that the smartphone is an order of
magnitude slower than the laptop. We believe a reason-
able sized data store lies between 100 and 1000 data ob-
jects, based on the power and amount of storage on a mo-
bile phone. We then have an upper bound on the query
time at around 20 seconds with 100 known nodes. This
might seem a lot, but for most scenarios the demands will
probably be less, and the query time around a couple of
seconds or more. Also note that there is only one query to
determine all data objects to be exchanged with a neigh-
bor node. The initial cost in time is hence amortized
over all the data objects exchanged. We see that with
increased attribute pool size, the query time decreases.
This is because it reduces the likelihood of a match be-
tween a node and a data object. With 5000 and 10000
data objects the query time is reduced by several seconds,
and the number of data objects returned is similarly re-
duced.

We also tried to limit the number of data objects re-
turned in the query, but this did not significantly affect
the query time, since each data object has to be matched
in the data store anyway. We therefore conclude that it is
the likelihood of a match between nodes and data objects
that determines the query time.

The evaluation shows the feasibility of search based
resolution. Although resolution time is significant on
large namespaces and constrained devices, we think that
it is not large relative the time it takes to discover neigh-
bors and transmit the content. We also believe there is
room for optimizations in the future as we develop our



implementation.

6 Related Work

Haggle builds broadly on two previous bodies of work.
The first comprises works that incorporate metadata
based namespaces, and search primitives. The sec-
ond body consists of new network architectures and
paradigms. We discuss them in the order mentioned.

The semantic file system [13] uses an attribute based
namespace to improve the structure and organization of
files, making them more easily searchable. Desktop
search tools, such as Google desktop [2], represent an
alternative approach that builds search indices based on
metadata extracted from files. Connections [16], en-
hances this type of searching by building temporal re-
lations between files. It defines a relation-graph that re-
sembles the one we use. EnsemBlue [15] is a network
file system that uses a spanning namespace to organize
data on ensembles of consumer devices. They use per-
sistent queries to notify applications of new files added
to the ensemble. INS [4] defines a hierarchical attribute
namespace that uses route-by-name lookups in an over-
lay network. Haggle shares similarities with all these
namespace approaches. However, it differs in one or
more of the following ways. 1) it builds relations not
only between content, but also mobile devices that are
not co-located at all times, 2) its metadata namespace is
flat and supports both content metadata and contextual
metadata, 3) resolution is done using searching instead
of name-to-location lookups.

Publish-subscribe (pub/sub) [8] is a broad term for
systems and network architectures that temporally and
spatially decouple the subscribers of content from the
publishers. Linda [12], is a programming language for
distributed and parallel computing that pioneered this ap-
proach. Although Haggle incorporates these concepts,
along with a pub/sub inspired API, it differs in how it
disseminates content. Pub/sub systems either dissemi-
nate based on exact matching filters [6], or channels of
topics [14]. We use filters only for local demultiplexing
and instead use in-exact searching with ranking in dis-
seminations.

The role-based architecture (RBA) [9] organizes com-
munication in functional units called roles instead of lay-
ers. Packets carry metadata in the form of role-specific
headers (RSHs). Haggle generalizes RBA by collaps-
ing the RSHs into metadata headers without predefined
structure. The roles of RBA correspond well to our man-
agers, but we do not as rigidly bind managers to certain
parts of data objects, as RBA binds roles to RSHs. RBA
neither incorporates searching and filter based demulti-
plexing. RBA uses a scheduler to determine the process-
ing order of RSHs. Haggle instead uses an event ladder
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to structure processing.

The delay tolerant network architecture (DTN) [10]
defines a bundle layer that incorporates a late binding ad-
dressing scheme based on end-point identifiers (EIDs).
The Unmanaged Internet Architecture (UIA) [11], also
uses EIDs which map to personal names that can orga-
nize devices in groups. Haggle shares the late binding
mechanisms with these architectures, but neither does
bundling nor uses EIDs.

Su et al. presented in [17], the previous Haggle ar-
chitecture. It used INS-inspired naming and was not de-
signed around search based resolution, which is our main
contribution. Although we are inspired by concepts and
terminology from that work, our architecture is a clean
slate design that differs significantly. For example, our
architecture is event-driven, use a different data object
format, and use decentralized resource management.

7 Discussion and Conclusions

We have presented Haggle, a network architecture
designed around search based networking primitives.
These primitives enable spatial and temporal decoupling
of senders and receivers and provide flexible resolution
mechanisms. Most importantly, the resolved data is
ranked, giving the resolver better control of, e.g., how
to disseminate the data.

These search primitives allow novel solutions to sev-
eral issues, which so far, have received limited attention
in related work, such as ordered forwarding and conges-
tion control. In future work we aim to investigate the
details of these mechanisms, as well defining resolutions
for delegate forwarding algorithms.

We also want to find ways to interface mobile Hag-
gle devices with infrastructure networks. It is clear that
Haggle devices will move in areas with infrastructure
connectivity, such as cellular networks. Haggle com-
plements that type of networking by leveraging social
networking aspects, for example, the fact that data ex-
changes are usually correlated with physical proximity.
Infrastructure access can be used to transmit small end-
to-end acknowledgements, whilst bulk data transfer is
performed peer-to-peer, without involving expensive and
slow infrastructure networks.
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