
0018-9162/97/$10.00 © 1997 IEEE November 1997 67

Asynchronous
Processor Survey

V
irtually all computers today are synchro-
nous, thanks to an internal timing device
that regulates processing. As systems grow
increasingly large and complex, however,
this little device—a clock—can cause big

problems with clock skew, a timing delay that can cre-
ate havoc with the overall design. It can also increase
the circuit silicon and power dissipation, which can
affect overheating and power supplies.

In seeking to overcome such limitations, computer
architecture researchers are actively considering asyn-
chronous processor design. By their very nature, for
example, asynchronous architectures permit modular
design. Each subsystem or functional block can be opti-
mized without being synchronized to a global clock,
which simplifies interfacing. Moreover, an asynchro-
nous system exhibits the average performance of all the
individual components, rather than the synchronous
system’s worst-case performance of a single compo-
nent. Furthermore, asynchronous processors may yet
prove to offer reduced power dissipation by inherently
shutting down unused portions of the circuit.

This article examines the key architecture issues that
concern designers and compares six developmental
asynchronous architectures.

ARCHITECTURE
Computer architecture researchers evaluate key

areas—including pipeline organization, instruction
issue, branching, and exception handling—when con-
sidering asynchronous and synchronous design and
implementation trade-offs. Our discussions concern
only pipelined, scalar, load/store machines, such as
Silicon Graphics’ MIPS R3000.

Pipeline organization
Pipelines—the means by which instructions are

physically processed—typically include one or more
stages for each instruction fetch, decode, execution,
memory access, and register update function.
Instructions do not necessarily pass through all stages.
For instance, a branch instruction requires neither
memory access nor a register update stage, nor possi-
bly the ALU (arithmetic logic unit) stage if the proces-
sor has the hardware to support branch instructions.

A branch instruction can be discarded after the
instruction is decoded, although doing so creates a
bubble (a nonutilized stage in the pipeline). Synchro-
nous pipelines eliminate the bubble by adding hard-
ware that “fills” each available stage on the next clock
pulse, to achieve effective data throughput. Asynchro-
nous pipelines, on the other hand, actually depend on
bubbles for effective throughput: Because they con-
sider these stages to be unoccupied, ensuing instruc-
tions fill the stage, and there is no need for additional
hardware. Improving pipeline performance generally
involves adding depth by creating multiple, simpler
pipeline stages. This has a twofold impact on clock
skew in synchronous systems: First, the additional
stages increase the capacitive loading on the global
clock signal, thereby increasing clock skew. Second,
the simpler pipeline stages permit a faster clock cycle,
which further exacerbates the clock skew problem.

Asynchronous systems enjoy improved performance
through increased pipeline depth but without the prob-
lems associated with clock skew.

Instruction issue
Instructions are usually processed in a certain order:

fetch, operand access, and either computation or mem-
ory access. The processor then posts the result back to
the register file. Thus an instruction that requires the
result of an earlier instruction can potentially read an
operand before the processor posts the result, a data
hazard called read-after-write (RAW). A data hazard
is a type of processing error that can lead to incorrect
results. In processors where instructions are allowed to
complete out of order, write-after-read (WAR) and
write-after-write (WAW) data hazards are also possi-
ble. However, in a processor with in-order completion,
WAR and WAW data hazards are avoided because the
operands are always read or written before succeed-
ing instructions write.

In synchronous processors with in-order comple-
tion, designers can avoid RAW hazards either by
inserting blank instructions, called NOPS (for “no
operations”), between the independent instructions or
by stalling the instruction until the hazard is elimi-
nated. Asynchronous processors, on the other hand,
easily eliminate RAW hazards because, after each

Synchronous processors, dependent on a clock, are not necessarily the
perfect computing solution. As this look at several experimental
approaches indicates, asynchronous processors may one day offer
improvements over present system performance.

Tony Werner
Venkatesh
Akella
University of
California,
Davis

Re
se

ar
ch

 F
ea

tu
re

.

68 Computer

instruction is decoded, the processor sets a flag on the
destination register. Subsequent instructions that
depend on this result will stall during operand access.
The inherent nature of asynchronous communication
protocols makes it straightforward to stall the instruc-
tion: Because the communication protocol requires an
acknowledgment before the instruction can continue,
the register suspends any acknowledgment until the
flag is removed. Asynchronous systems require no
additional hardware or blank instructions.

Branching
Branch instructions alter program flow. Processors

typically predict the outcome of branch instructions to
continue instruction processing. A misprediction
incurs a branch penalty, which is the number of pro-
cessing cycles needed for the processor to recover from
the mispredicted branch. Designers can use one of five
techniques to reduce pipeline branch penalties: lock-
ing the pipeline, predict not-taken, predict taken, a
branch prediction algorithm, or delay slots.1

Generally speaking, synchronous and asynchronous
processors handle branches similarly, with compara-
ble implementation complexity. Both processors can
use these techniques.

When a processor encounters a branch instruction,
it predicts the direction of the branch and then fetches
and executes additional instructions in the direction of
the prediction. If the prediction turns out to be incor-
rect, the processor must identify which instructions in
the pipeline are associated with the wrong prediction.

In a synchronous system the branch delay is fixed
and known, so the processor simply invalidates all
pipeline stages that contain instructions beyond the
mispredicted branch. In an asynchronous system,
processors do not know how many instructions were
fetched after the mispredicted branch and therefore
cannot distinguish invalid from valid instructions.

One technique to solve this problem is to include a
bit with each instruction that represents a color.2 All
instructions in the pipeline have the same color until
a branch instruction is encountered, at which point a
color bit is toggled and subsequent instructions have
a different color. If the branch direction is mispre-
dicted, instructions of the wrong color are effectively
removed from the pipeline.

Exception or interrupt handling
Exceptions and interrupts are a fact of processor

life. Hardware interrupts occur at random with inter-
nal control operations of the processor and, therefore,
pose a metastability problem for both synchronous
and asynchronous processors.

Typically, the metastability is nearly eliminated for
hardware interrupts in synchronous systems through
a series of flip-flops that the global clock regulates. The
possibility for metastability, however, is never entirely
eliminated from synchronous systems. In fact, the sta-
tistical possibility increases with clock frequency.

An asynchronous processor arbitrates between the
hardware interrupts and the instruction fetch proce-
dure. In general, asynchronous systems arbitrate
between any two uncorrelated signals. Arbitration—
resolving the signals—is a common procedure in asyn-
chronous systems and has specialized circuits for
performing the function. Thus, asynchronous proces-
sors inherently eliminate problems with metastability
caused by hardware interrupts or any other unsyn-
chronized signals.

ASYNCHRONOUS PROCESSORS
To spur more research in asynchronous processing,

we reviewed six distinctly different asynchronous
processors—all that existed at the time we surveyed
them, actually—and report our findings here. We
wanted to see the performance the processors had

Instructions Fetch Execute

Program
counter ALU Memory

Data buses

Registers

Figure 1. The Caltech
Asynchronous Proces-
sor structure.

.

achieved or, in a couple cases where the processor had
not yet been fabricated, to see what the potential per-
formance might be.

CAP—Caltech Asynchronous Processor
The earliest known asynchronous processor, CAP,

was designed in the late 1980s by Alain Martin’s
group at the California Institute of Technology.3 CAP
was never intended to be a formal processor design. It
was intended for circuit design experimentation and
for development of method testing based on program
transformations. Initially, Martin and his colleagues
designed the individual processor functions as eight
concurrent programs: Program execution thus enabled
functional testing. The programs were then individu-
ally compiled to model electronic circuits and inter-
connected to form the processor.

Figure 1 shows the processor’s basic structure,
which resembles a limited pipeline approach. CAP
uses a four-phase communication protocol with dual-
rail data transfer (each data bit is represented by two
wires). This arrangement works efficiently with
dynamic logic families.

The designers estimated performance of 15 MIPS
(the processor was not fabricated when we surveyed
it). The performance analysis method (estimation of
critical path) did not include the potential benefits of
interleaving ALU and memory instructions; nor the
effects of branching, cache misses, and other inter-
rupts; nor the delay that is created by additional cir-
cuit loading from omitted (yet necessary) functionality.
More recently, Martin’s group has built a gallium
arsenide version of the basic CAP architecture,
exhibiting 100-MIPS performance.4

FAM—Fully Asynchronous Microprocessor
Developed in the early 1990s by Kyoung Rok Cho

from the Korean Institute of Science and Technology
and Kazum Okura and Kunijiro Asada from the
Tokyo Institute of Technology, FAM models a
load/store, four-stage pipelined RISC architecture,5

shown in Figure 2. FAM uses a four-phase communi-
cation protocol with dual-rail data transfer.

FAM, like CAP, is experimental. Though the proces-
sor contains a 32-bit data path and thirty-two 32-bit
general registers, the processor’s capability is severely
limited by having only 18 available instructions. This
effort nonetheless demonstrates a method to design
asynchronous data and control paths.

FAM’s pipeline stages are instruction fetch, mem-
ory, instruction decode, and instruction execution.
Note that the fourth stage includes both the ALU and
the register file: In many RISC architectures, the ALU
and the register file are accessed separately. FAM uses
a combined instruction and data cache; therefore, the
external cache memory is accessed by both the first

stage, for instruction acquisition, and the fourth
stage, for load/store instruction completion. Thus,
the processor requires arbitration to resolve any
memory conflicts that may occur between the two
stages.

The FAM design employs both computation and
interconnection blocks.5 An interconnection block sep-
arates each pipeline stage or computation block
and provides intermediate storage to decouple the
computation blocks, which simplifies their control.

Figure 2. The
pipelined architecture
of the Fully Asynchro-
nous Microprocessor.

November 1997 69

Incrementor PC

Arbiter

Memory

Decoder

Execute

Interconnection block

Interconnection block

Interconnection block

.

70 Computer

FAM development focused on 2-AND logic,6 which
uses at most two transistors in series to both set and
reset the flip-flops, depicting the system state. Of these
two transistors, one is always controlled by a system
input and the other, by a flip-flop internal to the sys-
tem. The advantage of 2-AND logic is that it is faster
and more compact than C-elements, gate-level com-
ponents for synchronizing two events.5

The designers calculated an estimated (as the FAM
was not fabricated) 300 MIPS from the average instruc-
tion execution time. For this MIPS rating to be truly
relevant, “real” programs must execute with an equal
distribution of instructions (and even then the FAM
provides only 18 instructions) and must avoid stalls
from load latencies, branching, interrupts, and so forth.
Still, the reported average instruction cycle time of 3.5
ns is noteworthy, even for the 0.5-mm CMOS process
technology. In addition, the FAM demonstrates what
could be an optimal organization for an asynchronous
processor: computation blocks that make use of fast
dynamic logic separated by static interconnection
blocks implemented with 2-AND logic.

NSR—Nonsynchronous RISC
NSR, developed by Erik Brunvand at the University

of Utah in 1993, is basically a collection of self-timed
blocks.7 In the NSR, shown in Figure 3, the processor
essentially comprises five concurrent blocks, analo-
gous to the standard synchronous pipeline functions
of instruction fetch, decode, execute, memory access,
and “write-back” or register file. Also, the NSR has
added FIFO queues between the concurrent blocks
(not shown) to minimize stalls caused by slower
instructions.

Unlike the CAP and the FAM, the NSR uses a two-
phase communication protocol and a bounded-delay
data transmission, a method that adds delay elements
to the control path as needed to ensure validity in the
data path.

Using this protocol, each processor stage or con-
current block accepts data for processing and passes
the result to the next stage by way of the FIFO.

Potentially, the FIFOs could greatly increase the penal-
ties associated with memory access, branching, and
so on; however, the instructions will pass through only
those stages required for completion.

Like CAP and FAM, NSR is experimental. For
example, NSR implements only 16 load/store-type
instructions and contains only sixteen 16-bit registers.
A prototype NSR was implemented with Actel field-
programmable gate arrays (FPGAs). To permit test-
ing, each processor stage or block includes a switch
that can block an outgoing request. Since other stages
never see the request, no acknowledge signals are sent
and the stage is effectively blocked.

With the FPGA implementation, the designer
reported a performance of 1.3 MIPS, based on best-
case operating speed. Since FPGAs are inherently
slower than standard CMOS logic circuits, it is diffi-
cult to compare the FAM performance with that of
other processors, but a 10-times performance increase
(or more) for a full-custom CMOS implementation
would not be unreasonable.

CFPP—Counterflow Pipeline Processor
The CFPP was developed in 1994 at Sun Micro-

systems by Ivan Sutherland, Robert Sproull, and
Charles Molnar.8 In this architecture, as instructions
flow through the pipeline in one direction, the instruc-
tions generate data that flows through the pipeline in
the opposite direction. This particular CFPP was not
fabricated.

The CFPP’s basic structure places the program
counter at one end of a multiple-stage pipeline and the
register file at the other. The processor inserts instruc-
tion packets, consisting of the opcode, source and
destination register bindings, and possibly the corre-
sponding program counter value, into the pipeline
stage next to the program counter. The packets then
proceed toward the register file. The processor reads
the source operands and inserts them into the pipeline
stage adjacent to the register file before they proceed
toward the program counter.

In general, each stage of the pipeline is identical,

Figure 3. Nonsynchro-
nous RISC architec-
ture.

Register
file

Instruction
fetch

Instruction
decode

Instruction
execution

Memory
access

Instruction
memory

Data
memory

Data
address

Register
addressInstruction

Data

Instruction

Results

Address

Data

.

capable of executing any instruction. The only
requirement is that the instruction packet must first
rendezvous with its source operands as they flow oppo-
site each other. After completion, the instruction con-
tinues to flow toward the register file, in which the
processor posts the result. In addition, it inserts the
result into the opposite-flowing result pipeline. Now
a dependent instruction that might follow will not have
to wait to receive its source operands after they have
been posted to the register file. Instead, it will receive
the source operands from the results pipeline, possibly
before the register file is even updated. This architec-
ture, therefore, naturally provides register renaming.

It handles interrupts and wrongly predicted
branches by inserting an identifier into the results
pipeline. Instructions that precede the identifier will
continue to flow toward the register file and post their
results as desired. All instructions following the iden-
tifier, however, are marked invalid and prevented from
altering the register file. When the identifier reaches
the program counter, the processor either enters an
interrupt routine or loads the correct branch destina-
tion into the program counter, depending on the action
required. In theory, the architecture supports precise
interrupts and can recover easily from erroneous
branch predictions.

In practice, the CFPP stages are not identical and
cannot execute all possible instructions. Therefore an
unexecuted instruction must be prevented from pass-
ing beyond the last stage capable of executing it. Also,
the CFPP may use auxiliary stages or “sidings” to exe-
cute instructions with long computation delays. Results
from these long-latency instructions are recovered later.

Figure 4 shows a sample CFPP configuration.
No optimal CFPP configuration yet exists. Fur-

thermore, because the CFPP was not fabricated when
we surveyed it, we can discuss the CFPP’s performance
only in qualitative terms. One advantage cited by the
designers is the pipeline’s regular structure, which facil-
itates layout. However, both the sidings and the fact
that not all stages are identical seem to prohibit any
regularity. Figure 4 shows a long, 12-stage pipeline
between the program counter and the register file. After
including the sidings, building the CFPP may require
an exorbitant amount of physical area.

The CFPP architecture does provide register renam-
ing, data forwarding, and a simple, efficient imple-
mentation for handling interrupts and branching.
Unfortunately, the mechanism that provides these fea-
tures may also cripple the CFPP’s performance. For
example, suppose a dependent memory instruction
follows an add instruction. In the basic, identical-stage
configuration, the compiler would not have to resched-
ule independent instructions between these two
instructions. Simply, after the add completes, the
results would be sent backward to the awaiting store

instruction, which is assumed to be close behind in the
pipeline. However, this instruction stream would stall
the processor significantly in the configuration shown
in Figure 4. The store instruction would be halted
in the fourth stage of the processor while the add con-
tinues to propagate to the ninth stage. Some time later,
the results of add are delivered to the 11th stage.

The processor now has six empty stages between
the Add Recover stage and the Memory Launch stage.

November 1997 71

Memory recover

Register file

Add recover

Multiply recover

A
d

d
er

D
at

a
ca

ch
e

In
st

ru
ct

io
n

 f
lo

w
 u

p

R
es

u
lt

s
fl

o
w

 d
o

w
n

D
at

a
m

em
o

ry
 (

m
ai

n
)

M
u

lt
ip

lie
r

Add launch

Multiply launch

General execution

Data cache recover

General execution

Memory launch

Decode

Instruction
cache recover

Instruction
fetch launch

Program counters

In
st

ru
ct

io
n

ca
ch

e

Figure 4. A Counter-
flow Pipeline
Processor with
auxiliary sidings to
handle long-latency
instructions.

.

72 Computer

Furthermore, when results from add enter the pipe-
line, they must propagate through these six stages to
reach the awaiting store instruction. Meanwhile, the
processor has been stalled behind store while add
propagates to the Add Launch stage, executes, and
the results propagate back through six stages to the
Memory Launch stage. Arbitration is required
between each stage, further slowing the results prop-
agation. The compiler can attempt to reschedule inde-
pendent instructions between these two instructions,
but statistically, it is unlikely that the compiler will
locate even two independent instructions.1

Dynamic scheduling may provide additional
instructions; however, the complexity of detecting
WAW and WAR data hazards in both the register file
and the large results pipeline is likely to diminish
throughput.

Strip—A Self-Timed RISC Processor
The Strip architecture is unique in that it is essen-

tially a synchronous processor with an adjustable
clock, thanks to its dynamic clocking communication
protocol. Developed by Mark Dean and based on the
synchronous Stanford MIPS-X processor,9 it has five
pipeline stages: instruction fetch, register fetch and
instruction decode, ALU execution, data memory
access, and the register write-back. Strip uses
bounded-delay data transmission.

Because the clock period is determined by the current
clock cycle’s slowest critical path, every pipeline stage
and functional unit must be optimized. This contrasts
with the clock cycle of a synchronous or globally clocked
implementation, which is determined by the slowest
operation, currently active or not, that ever takes place.

The dynamic clock generator’s design is crucial to
Strip’s performance and functionality: Increase clock
delay too much and you degrade performance; increase
it too little and you generate computation errors. To
accomplish dynamic clocking, Strip uses a set of track-
ing cells, a C-element, and a simple pulse generator.
Each tracking cell approximates the propagation delay
of a particular critical path—it is key to identifying

dominant critical paths. The tracking cells attain accu-
rate tracking and optimal performance by incorporat-
ing the same types of gates, signal wires, and loading
that is present in the corresponding critical path.9

At the beginning of each clock cycle, the processor
triggers the tracking cells and immediately forces those
tracking cells not required for the current clock cycle
to their next state. Thus, the clock cycle depends on
only active critical paths. Each tracking cell provides
an input to a common C-element. Once all tracking
cells complete, the C-element transitions to the next
state. This transition restarts the tracking cells and
activates the pulse generator. Figure 5 shows the
dynamic clocking structure.

Though the Strip follows a synchronous design
methodology, it can, like asynchronous processors,
still benefit from favorable environmental conditions
such as temperature and voltage.

External interfacing is performed by the bus inter-
face unit. Although the Strip architecture communi-
cates internally with a global dynamic clock, the
external interface operates on a four-phase, dual-rail
protocol. It has been implemented in this manner to
support efficient communication with devices of dif-
ferent operating speeds.

In the Strip architecture, an instruction cannot
change the processor’s state until the write-back stage.
Therefore, the Strip architecture supports precise inter-
rupts. When an interrupt occurs, pipeline instructions
are not allowed to complete, regardless of where the
interrupt occurred. Furthermore, the program counter
is immediately set to zero to begin the exception han-
dling, and the processor saves the addresses of the reg-
ister fetch and instruction decode, ALU, and data
memory access stages. Recovering from the interrupt
requires restarting the instructions that occupied these
three stages.

In addition to dynamic clocking, Strip’s overall per-
formance depends on memory access time. By remov-
ing the memory access time from the critical logic path,
the true benefit of dynamic clocking can be realized.
Otherwise, the instruction memory access would

Figure 5. Dynamic
clocking structure of
the Strip processor.

Tracking cell A

Tracking cell B

Tracking cell C

External interface
tracking cell

C-
element

Pulse
generator

Select inputs

Dynamic
clock
generator

Functional units

Clock buffers

Clock
distribution

network

Local buffer

Select
control

Latch

Local
load

always be the dominant critical path. If one critical path
is always dominant, then dynamic clocking provides
little improvement over a synchronous architecture.

To minimize the memory access latency, this proces-
sor places small memory buffers in each of the instruc-
tion and data memory paths. Each buffer holds 256
bytes and is reported to have one-half the access
latency of the 8-KByte first-level cache. Obviously, a
buffer of only 256 bytes will have a high miss rate,
which nullifies reduced latency. The processor cir-
cumvents the high miss rate, however, by implement-
ing predictive prefetching from the first-level cache.
With predictive prefetching, the designers determined
a miss rate of 12.75 percent.

Overall, predictive prefetching produced the same
memory performance as a pipelined cache scheme, but
predictive prefetching does not increase the load and
branch penalty.

The designers determined the processor’s perfor-

mance through Spice analysis of the dynamic clocking
structure, and they determined overall system perfor-
mance by simulating the clock cycle created by indi-
vidual tracking cells. They combined these cycle times
with the percentage of clock cycles during which the
particular critical path is dominant.

The end result is a weighted average that describes
the effective clock frequency. For a 2-µm CMOS
process, the designers reported a 63-MHz effective
clock frequency and a 62.5-MIPS performance rat-
ing, based on measuring average instruction speed.

Amulet1
The Amulet1 processor, shown in Figure 6,2 is the

first fully functional asynchronous processor and thus
is the most fully developed of those we surveyed.
Amulet1 is a code-compatible asynchronous version
of the Advanced RISC Machine (ARM) processor
developed by Steve Furber and his colleagues at the

Figure 6. Amulet1
processor organiza-
tion.

November 1997 73

Instruction
decode

Address out

Registers

Multiplier

ALU

PC pipe

Shifter

Immediate
extractor

Instruction
pipeData inData out

Address interface

Register bank

Execute unit

Data
interface

74 Computer

University of Manchester. It uses a two-phase com-
munication protocol, with bounded-delay data trans-
mission.

The RISC-like processor comprises the address
interface, register bank, execution unit, and data inter-
face. In addition, the processor supports two levels of
interrupts and supports the exceptions generated by a
virtual memory system.

Because Amulet1’s asynchronous nature prohibits a
known correlation between the current program
counter value and that of the instruction entering the
execution stage, the Amulet1 processor keeps a record
of the program counter values in a FIFO structure,
called a pc pipe. As each instruction enters the execute
unit, the pc pipe contains the program counter value
for that instruction at the top of the FIFO. If needed,
this value is transferred along with the instruction to
the execute unit. Otherwise, the value is discarded.

The register bank consists of 30 general-purpose,
32-bit-wide registers. Only 16 are accessible at one
time; the 15th register contains the program counter.
The register bank provides two read ports and one
write port. The Amulet1 eliminates register hazards
with a mechanism called a lock FIFO. Each word of
the FIFO stores the register destination of a pending
write. Since the Amulet1 completes all instructions in
order, the FIFO structure maintains the proper order
of multiple outstanding writes. An operand can be
tested for “pending write” by examining the lock
FIFO. RAW data hazards are eliminated.

The execution unit has three stages. For nonmulti-
ply instructions, the asynchronous operation of

pipeline stages lets operands simply pass through the
multiplier stage, with none of the complex bypassing
required in synchronous designs. When a multiply
instruction is encountered, however, the multiplier will
produce the partial product and carries, which are
added in the ALU stage.

Though the multiply stage will terminate execution
as soon as the input operands allow, the stage may be
active for several cycles, thereby stalling subsequent
instructions. The final execution unit (ALU) stage exe-
cutes all remaining logic and arithmetic functions.

Lastly, both the execution unit and the data inter-
face write results to the “write bus,” but because the
units are not synchronized with each other, the proces-
sor arbitrates access to the write bus.

The register bank and execute unit utilize dynamic
logic to reduce physical size and transistor count.2

Because of charge leakage present in the dynamic
structures, a latch between each stage stores the result.
The intermediate latches serve as an output latch of
one stage for storing the result and as the input latch
of the subsequent stage. Because of charge leakage,
the output latch of a stage must be empty before
the computation begins. Also, the input stage must
maintain the data throughout the computation.
Consequently, every active stage requires control of
both the input and output latches. At best, only half
of the pipeline can be active at any one time.

The designers measured the Amulet1’s performance
at 9K Dhrystones. The Dhrystone test suite, which
approximates real programs, is a better, more realis-
tic test measurement than a simplistic MIPS rating.

Table 1. Qualitative performance comparison of five asynchronous processors.
Number of Analysis Estimated

Processor Architecture Protocol Technology Logic family transistors method performance

CAP Concurrent 4-phase/ 2-µm CMOS Standard CMOS 20,000 Estimation 15 MIPS
processes dual-rail of critical path

FAM 4-stage 4-phase/ 0.5-µm CMOS 2-AND logic/ 71,000 Average instruction speed 300 MIPS
pipeline dual-rail DCVSL*

NSR 5-stage 2-phase/ Actel FPGAs Standard NA Best-case speed 1.3 MIPS
pipeline bounded-delay CMOS

Strip 5-stage Dynamic 2-µm CMOS Standard NA Average instruction speed 62.5 MIPS
pipeline clock CMOS

Amulet1 6-stage 2-phase/ 1-µm CMOS Standard 58,374 Worst-case 9K Dhrystones
pipeline bounded-delay CMOS/DCVSL benchmark speed

*DCVSL: dynamic cascade voltage switch logic

COMPARISON
Table 1 compares the performance of five of the

processors we surveyed. We did not include CFPP
because, as a proposed architecture, no simulations
were performed. At the time of our survey, however,
it had created quite a stir in the asynchronous com-
munity.

All the processors employ a pipelined architecture
to some degree. Ignoring the Strip processor, which
implements dynamic clocking, the communication
protocol is evenly split between two-phase/bounded-
delay schemes and four-phase/dual-rail schemes.
Except for the NSR processor, all processors were
implemented with CMOS; however, the line geome-
tries, which directly influence circuit speed, varied
from 0.5 to 2 microns. The variations in the imple-
mented functionality and analysis method prohibited
a direct quantitative performance comparison, so we
discuss performance in qualitative terms. Of the five,
only Amulet1 was fully functional.

We focus chiefly on the FAM, NSR, and Amulet1.
Though the CAP proved that an asynchronous proces-
sor was possible, the underlying architecture has no
real potential. Although simulations show that the
Strip processor will operate twice as fast as an equiv-
alent synchronous processor where both are built with
the same technology,9 the architecture is susceptible
to global clock skew problems and doesn’t offer any
savings with power dissipation.

Of the FAM, NSR, and Amulet1, only the FAM
uses a four-phase communication protocol, yet its
reported propagation delay of only 3.5 ns far exceeds
the performance of the other two processors.
Admittedly, the FAM is an incomplete design and it
has the advantage of 0.5-micron line geometries; how-
ever, it challenges the perception that four-phase is
inherently slower than two-phase. One reason that
four-phase is not inherently slower is that a “bubble”
must exist for data to move through an asynchronous
pipeline. For a four-phase system, the request and
acknowledge signals returning to the inactive state is
analogous to the creation of this bubble. Furthermore,
two-phase control structures are largely implemented
with C-elements and exclusive-OR gates, both of
which are slower than the AND and OR gates mak-
ing up the four-phase control structures.

The NSR, FAM, and Amulet1 configurations are
similar because of the FIFO structures existing
between computation blocks. The FAM and Amulet1
have only a single register between computation
blocks, which can be regarded as a FIFO of depth one.
The NSR utilizes the FIFO structures to avoid stalling
the entire pipeline by just a single slow instruction. By
incorporating the FIFOs between the pipeline stages,
the NSR continues to process instructions, storing
intermediate results in the FIFOs until the slow

instruction can be completed. The NSR architecture
avoids the excessive branch penalties and load laten-
cies that would otherwise be created by the FIFOs.

The FAM and Amulet1 use the FIFO for a slightly
different reason. Both utilize dynamic logic for com-
putation blocks and require the register to store data
while the computation block is precharged in prepa-
ration for the next calculation. The major difference
is that the dynamic logic, used by the Amulet1 proces-
sor, suffers from charge leakage.2

The Amulet1 requires that the output latch, where
the calculation will be stored, be empty before the
computation begins. This method removes any risk
that the result may become invalid due to charge leak-
age before it is loaded into the output latch.

In contrast, the FAM uses a dynamic logic family
that does not suffer from charge leakage. Though the
elimination of the charge leakage likely increases the
gate delay, the control logic and the fact that the com-
putation can begin before the output latch is empty
allow the FAM to expedite processing.

A slow instruction in the Amulet1, such as a mul-
tiply instruction or a data cache miss, stalls two
pipeline stages (the stage with the slow instruction and
the preceding stage, which is waiting for the output
latch that is currently occupied by the slow instruc-
tion). If the Amulet1 applied the NSR’s FIFO strat-
egy, it could avoid this pipeline stall, at least until the
FIFO became full. Unlike the NSR, however, the
Amulet1’s application of this method would produce
excessive branch penalties and load latencies.

The FAM architecture is essentially a compromise
between the NSR and Amulet1. The FAM lets all com-
putation stages be active yet it contains an identical
number of latches between computation stages as the
Amulet1. Thus, a slow instruction in the FAM pipeline
will still allow some useful work to complete in pre-
ceding stages of the pipeline without increasing the
branch penalty or load latency.

N ewer processors built since we concluded our
survey are the Titac10 and Fred,11 which had its
roots in the NSR. For more information on

Titac, see http://www.hal.rcast.u-tokyo.ac.jp/titac2/
index.html. To read more about Fred, see http://www.
cs.utah.edu/~willrich/async/mypapers.html.

The growing interest in this field is encouraging.
Several universities are actively investigating new
asynchronous architectures, and both Sun Microsys-
tems and Intel have started asynchronous research
groups. Progress has been slow thus far, as asynchro-
nous processors have significant obstacles to over-
come. Nonetheless, as an example, Amulet1’s latest
successor, Amulet 2e, has achieved 66K Dhrystones
with a 0.5-micron process. This represents a 30 per-
cent improvement over Amulet1 after factoring in

November 1997 75

Several
universities are
investigating
new
asynchronous
architectures,
and both Sun
Microsystems
and Intel
have started
asynchronous
research groups.

76 Computer

process effects. To read about Amulet, see http://www.
cs.man.ac.uk/amulet/index.html.

Though asynchronous processors may not match
the performance of synchronous processors now, the
condition generating the research into asynchronous
processors will grow more prevalent as device geome-
tries continue to shrink. In the meantime, processors
may follow a locally synchronous, globally asyn-
chronous approach where individual functional units
use a local clock signal but are asynchronous with
other functional units on the circuit die. The problem
with clock distribution is thereby minimized while the
processor retains the advantages of a synchronous sys-
tem. One possible approach may perform instruction
encoding and issue asynchronously, but the instruc-
tions themselves will be distributed to synchronous
execution units.

In general, asynchronous methodology may be ben-
eficial to those functions that are simplistic to do
sequentially but complex to do in parallel. Asynchro-
nous methodology can exploit the simplicity provided
by sequential computation while attaining perfor-
mance benefits by beginning the next computation as
soon as the previous one is completed, instead of hav-
ing to wait for the next clock pulse. Data hazard detec-
tion in a superscalar processor is a possible application;
another is decoding variable-length data words, such
as those found with Huffman decoding. ❖

Acknowledgment
We thank Erik Brunvand for his comments and

assistance.

References
1. J.L. Hennessy and D.A. Patterson, Computer Architec-

ture: A Quantitative Approach, Morgan Kaufmann, San
Francisco, Calif., 1990.

2. N.C. Paver, The Design and Implementation of an Asyn-
chronous Microprocessor, doctoral dissertation, Dept.
of Computer Science, Univ. of Manchester, 1994.

3. A.J. Martin et al., The Design of an Asynchronous
Microprocessor, Tech. Report Caltech-CS-TR-89-2, Cal-
ifornia Inst. of Technology, Pasadena, Calif., 1989.

4. J.A. Tierno et al., “A 100 MIPS GaAs Asynchronous
Microprocessor,” IEEE Design and Test of Computers,
Summer 1994, pp. 43-49.

5. K.-R. Cho, K. Okura, and K. Asada, “Design of a 32-
bit Fully Asynchronous Microprocessor (FAM),” Proc.
35th Midwest Symp. Circuits and Systems, IEEE Press,
Piscataway, N.J., 1992, pp. 1,500-1,503.

6. K.-Rok Cho and K. Asada, “VLSI Oriented Design
Method of Asynchronous Sequential Circuits Based on

One-Hot State Code and Two-Transistor AND Logic,”
Proc. Int’l Symp. Computers and Systems, IEEE Press,
Piscataway, N.J., 1991, pp. 1,793-1,796.

7. E. Brunvand, “The NSR Processor,” Proc. 26th Hawaii
Int’l Conf. System Sciences, Vol. 1, T.N. Mudge, V.
Milutinovic, and L. Hunter, eds., IEEE Press, Piscataway,
N.J., 1993, pp. 428-435.

8. R.F. Sproull, I.E. Sutherland, and C.A. Molnar, Coun-
terflow Pipeline Processor Architecture, Tech. Report
SMLI TR-94-25, Sun Microsystems Laboratories,
Mountain View, Calif., Apr. 1994.

9. M.E. Dean, STRIP: A Self-Timed RISC Processor, Tech.
Report CSL-TR-92-543, Stanford Univ., Stanford, Calif.,
July 1992.

10. T. Nanya et al., “TITAC: Design of a Quasi-Delay-Insen-
sitive Microprocessor,” IEEE Design and Test of Com-
puters, Summer 1994, pp. 50-53.

11. W.F. Richardson and E. Brunvand, “Fred: An Architec-
ture for a Self-Timed Decoupled Computer,” Proc. Sec-
ond Int’l Symp. Advanced Research in Asynchronous
Circuits and Systems, IEEE Press, Piscataway, N.J., 1996,
pp. 60-68.

Tony Werner is a researcher in the Semiconductor
Research Laboratory in the R&D Division of Hitachi
America Ltd. His research interests include RISC
architecture, dynamic instruction scheduling, and
asynchronous logic design. Werner received a BS in
computer engineering from the University of Illinois
at Urbana-Champaign and an MS in electrical engi-
neering from the University of Arizona. He is a PhD
candidate in curriculum at the University of Califor-
nia, Davis.

Venkatesh Akella is an assistant professor of electrical
and computer engineering at the University of Cali-
fornia, Davis. His research interests are self-timed
logic, computer architecture, and software engineer-
ing. He received an MS in electrical and computer
engineering from the Indian Institute of Science at
Bangalore and a PhD in computer science from the
University of Utah. He received the National Science
Foundation Research Initiation Award in 1993 and
the Faculty Early Career Development (CAREER)
award in 1997.

Contact Werner at Semiconductor Research Labora-
tory, Hitachi America Ltd., Research and Develop-
ment Division, 201 E. Tasman Dr., San Jose, CA
95134; twerner@halsrl.com. Akella can be reached at
Asynchronous Systems Research Group, Dept. of
Electrical and Computer Eng., University of Califor-
nia, Davis, CA, 95616; akella@eecs. ucdavis.edu

November 1997 77

