A Scalable Approach to Thread-Level Speculation

J. Gregory Steffan, Christopher B. Colohan, Antonia Zhai, and Todd C. Mowry
Computer Science Department
Carnegie Mellon University
Pittsburgh, PA 15213
{steffan,colohan,zhaia,tgr@cs.cmu.edu

Abstract
While architects understand how to build cost-effective parallel

machines across a wide spectrum of machine sizes (ranging from

within a single chip to large-scale servers), the real challenge is
how to easily creatparallel softwardo effectively exploit all of
this raw performance potential. One promising technique for over-
coming this problem i$hread-Level Speculation (TLS)hich en-
ables the compiler to optimistically create parallel threads despite

uncertainty as to whether those threads are actually independent.
In this paper, we propose and evaluate a design for supporting

TLS that seamlessly scales to any machine size because it is
straightforward extension of writeback invalidation-based cache

coherence (which itself scales both up and down). Our experi- > N X .
(b) P hWh|Ie loop in Figure 1(a) which accesses elements in a hash ta-

mental results demonstrate that our scheme performs well on bot

single-chip multiprocessors and on larger-scale machines where

communication latencies are twenty times larger.

1. Introduction

Machines which can simultaneously execute multiple parallel

threads are becoming increasingly commonplace on a wide vari-

ety of scales. For example, techniques suchimsiltaneous mul-
tithreading[23] (e.g., the Alpha 21464) argingle-chip multipro-
cessind16] (e.g., the Sun MAJC [21] and the IBM Power4 [10])

suggestthat thread-level parallelism may become increasingly im-

memory addresses are difficult (if not impossible) to statically
predict—in part because they often depend on run-time inputs and
behavior—that makes it extremely difficult for the compiler to stat-
ically prove whether or not potential threads are independent. One
architectural technique which may help us overcome this problem
is thread-level speculation

1.1 Thread-Level Speculation

ThreadL evel Speculation TLS) [9, 18, 20] allows the com-
piler to automatically parallelize portions of code in the pres-
gnce of statically ambiguous data dependences, thus extracting
parallelism between whatever dynamic dependences actually ex-

ist at run-time. To illustrate how TLS works, consider the simple

ble. This loop cannot be statically parallelized due to possible
data dependences through the arnagh . While it is possible
that a given iteration will depend on data produced by an imme-
diately preceding iteration, these dependences may in fact be in-
frequent if the hashing function is effective. Hence a mechanism
that could speculatively execute the loop iterations in parallel—
while squashing and reexecuting any iterations which do suffer
dependence violations—could potentially speed up this loop sig-
nificantly, as illustrated in Figure 1(b). Hereraad-after-write
(RAW) data dependence violation is detected betvegsth land
epoch 4 henceepoch 4is squashed and restarted to produce the

portant even within a single chip. Beyond chip boundaries, evencorrect result. This example demonstrates the basic principles of
personal computers are often sold these days in two or four-TLS—it can also be applied to regions of code other than loops.

processor configurations. Finally, high-end machines (e.g., the

SGil Origin [14]) have long exploited parallel processing.
Perhaps the greatest stumbling block to exploiting all of this
raw performance potential is our ability to automatically convert

In this example we assume that the program is running on a
shared-memory multiprocessor, and that some number of proces-
sors (four, in this case) have been allocated to the program by the
operating system. Each of these processors is assigned a unit of

single-threaded programs into parallel programs. Despite the sig-work, or epoch which in this case is a single loop iteration. We

nificant progress which has been made in automatically paralleliz-

ing regular numeric applications, compilers have had little or no
success in automatically parallelizing highisegular numeric or
especiallynon-numeriapplications due to their complex control

timestamp each epoch with apoch numbeto indicate its order-
ing within the original sequential execution of the program. We
say thaepoch Xs “logically-earlier” thanepoch ¥if their epoch
numbers indicate thapoch Xshould have precedezpoch Yin

flow and memory access patterns. In particular, it is the fact that the original sequential execution. Amijolation of the data depen-

Permission to make digital or hard copies of all or part of this work
for personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial
advantage and that copies bear this notice and the full citation on
the first

page. To copy otherwise, to republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee.
ISCA 00 Vancouver, British Columbia Canada

Cagpyright (c) 2000 ACM 1-58113-287-5/00/06-1 $5.00

dences imposed by this original program order is detected at run-
time through our TLS mechanism. Finally, when an epochis guar-
anteed not to have violated any data dependences with logically-
earlier epochs and can therefore commit all of its speculative mod-
ifications, we say that the epoch li®mefree We provide this
guarantee by passingreomefree tokeat the end of each epoch.
Further examples of the use of thread-level speculation, and an ex-
ploration of the interface between TLS hardware and software, can
be found in an earlier publication [19].

Alan Berenbaum
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first
page. To copy otherwise, to republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee.
ISCA 00 Vancouver, British Columbia Canada
Copyright (c) 2000 ACM 1-58113-287-5/00/06-1 $5.00

Alan Berenbaum

Alan Berenbaum
1

(a) Example psuedo-code

while(continue

_condition)

X = hash[indexd];

hashfindex2] = y;

}

{

(b) Execution using thread-level speculation

epoch numbers and integrate the tracking of dependence violations
directly into cache coherence (which may or may not be imple-
mented hierarchically), our speculation occurs along a single flat
speculation leve{described later in Section 2.2), and does not im-
pose any ordering or scheduling constraints on the threads.

1.3 Objectives of This Study

The goal of this study is to design and evaluate a unified
mechanism for supporting thread-level speculation which can han-
dle arbitrary memory access patterns (i.e. not just array refer-

Processorl ~ Processor2 Processor3 Processor4 ences) and which is appropriate for any scale of architecture with
Epoch 1 Epoch 2 Epoch 3 parallel threads, including: simultaneous-multithreaded proces-
= hashi3] hashi1] . Epoch 4 g sors [23], single-chip multiprocessors [16, 21], more traditional
Violation! |~ "asn[33] Thasho] shared-memory multiprocessors of any size [14], and even mul-
hash[10]= —fFasn21] = hash{30] = eshizs] - tiprocessors built using software distributed shared-memory [11].

v
attempt_commit()

Epoch 5

= hash[30]

Y
attempt_commit()

Epoch 6

= hash(o]

attempt_commit()

Epoch 7

l;hash[ﬂ]

attempt_commit()

Epoch 4) Redo

= hash[10]

hash[25] =

| 4
attempt_commit()

Our approach scales (both up and down) to all of these architec-
tures because it is built upon writeback invalidation-based cache
coherence, which itself scales to any of these machines. Our uni-
fied approach to supporting thread-level speculation offers the fol-
lowing advantages. First, we could build a large-scale parallel ma-
chine using either single-chip multiprocessors or simultaneously-
multithreaded processors as the building blocks, and seamlessly

\ \ \
Figure 1. Example of thread-level speculation.

perform thread-level speculation across the entire machine (or any
subset of processors within the machine). Second, once we com-
pile a program to exploit thread-level speculation, it can run di-
rectly on any of these machines without being recompiled. We
demonstrate this in our our experimental results: the same executa-
bles puk andequake) exploit our unified thread-level specula-

. ; . tion mechanism to achieve good speedup not only on a single-chip
;yntctlonal llatnggag_e S Thg N/tu;(I:aIr:_r arci;ltectureh[_?, 1t8] W?S t?i S multiprocessor, but also on multi-chip multiprocessors (where
Irst compiete design and evaluation of an architecture for " inter-chip communication latencies are 20 times larger).

There have since been many other proposals which extend the ba- The remainder of this paper is organized as follows. Section 2

sic idea of thread-level speculation [2, 7, 8, 9, 1.3’ 15,17, 20, 22, describes how invalidation-based cache coherence can be extended
25]. lr.] nearly all of these cases, the target architecture has been o detect data dependence violations, and Section 3 gives a pos-
very tightly coupled machine—e.g., one where all of the threads sible hardware implementation of this scheme. We describe our

are egecute_d V.V'th'n the same chip. These proposals have Oftenexperimental framework in Section 4, evaluate the performance of
exploited this tight coupling to help them track and preserve de- our scheme in Section 5. and conclude in Section 6
pendences between threads. For example, the Stanford Hydra ar- ' '

chitecture [9] uses special write buffers to hold speculative modifi- 2. A Coherence Scheme For Scalable Thread-
cations, combined with a write-through coherence scheme that in-—" Level Speculation

volves snooping these write buffers upon every store. While such
To support thread-level speculation, we must perform the dif-

an approach may be perfectly reasonable within a single chip, it
was not designed to scale to larger systems. ficult task of detecting data dependence violations at run-time,

One exception (prior to this publication) is a proposal by which involves comparing load and store addresses that may have
Zhanget al. [25] for a form of TLS within large-scale NUMA occurred out-of-order with respect to sequential execution. These
multiprocessors. While this approach can potentially scale up to comparisons are relatively straightforward fimstruction-level
large machine sizes, it has only been evaluated with matrix-baseddata speculation (i.e. within a single thread), since there are few
programs, and its success in handling pointer-based codes has ydbad and store addresses to compare.thi@ad-leveldata specu-
to be demonstrated. In addition, it does not appear to be a goodation, however, the task is more complicated since there are many
choice for small-scale machines (e.g., within a single chip). more addresses to compare, and since the relative interleaving of

Concurrent with our study, Cintret al. [5] have proposed us- loads and stores from different threads is not statically known.
ing a hierarchy of MDTs (Memory Disambiguation Tables) to sup- Our solution is to leverage invalidation-based cache coherence.
port TLS across a NUMA multiprocessor comprised of speculative Recall that under invalidation-based cache coherence, a processor
chip multiprocessors. While there are many subtle differences be-must first invalidate other cached copies of a line to get exclusive
tween our respective approaches, perhaps the most striking differ-ownership before it can modify that line. The key insight in our
ence is that their hardware enforces a hierarchical ordering of thescheme is that we can extend these existing invalidation messages
threads, with one level inside each speculativétiprocessor chip to detect data dependence violations by noticing whenever an in-
and another level across chips. In contrast, since we separate orvalidation arrives from dogically-earlierepoch for a line that we
dering from physical location through explicit software-managed havespeculativelyoaded in the past.

1.2 Related Work

Knight was the first to propose hardware support for a form of
thread-level speculation [12]; his work was within the context of

Alan Berenbaum
2

Processor1 (p=g=gx) Processor 2 Time (a) General architectu re
Epoch 5 Epoch 6
become. speculatlve()
@ LOAD a = *p;
©
@ STORE * a=2 / FAIL Physically . .
; eoe o0
p
@ attempt_commit() C;I\\éitees M M PAr%‘t:ESHSSO' . M
L1 Cache L1 Cache Physically
Epoch#=5 Epoch # =6 9 222;2 c oo ¢
Violation? = False Violation? = TRUE =] el @ ix‘te’”a'
Speculatively ctions
~ Loaded?
Speculatively
=T Gy HEs - C1[] - EI] -
SLSM | Jistsm
} Interconnection Network

Invalidation
(Epoch #5) @ Read [N]
@ Request

Figure 2. Using cache coherence to detect a RAW dependence

violation. (b) Simplified architecture

2.1 Ah Example N | GG G G processor G G GG
To illustrate the basic idea behind our scheme, we show an ‘y Actions J]

example of how it detects a read-after-write (RAW) dependence Cache PP Cache

violation. Recall that a given speculative load violates a RAW de- External

pendence if its memory location is subsequently modified by an- Actions

other epoch such that the store should have preceded the load in

the original sequential program. As shown in Figure 2, we aug- C Shared-Memory)

ment the state of each cache line to indicate whether the cache
line has been speculatively loaded (SL) and/or speculatively mod-
ified (SM). For each cache, we also maintain a logical timestamp
(called anepoch numbgmwhich indicates the sequential ordering a generalization of the underlying architecture. There may be
of that epoch with respect to all other epochs, and a flag indicatinga number of processors or perhaps only a single multithreaded

Figure 3. Base architecture for the TLS coherence scheme.

whether a data dependence violation has occurred. processor, followed by an arbitrary number of levels of physi-
Inthe examplegpoch Gperforms a speculative load, sothe cor- cally private caching. The level of interest is the first level where
responding cache line is marked as speculatively loaBpdch 5 invalidation-based cache coherence begins, which we refer to as

then stores to that same cache line, generating an invalidation conthe speculation level We generalize the levels below the spec-
taining its epoch number. When the invalidation is received, three ulation level (i.e. further away from the processors) as an inter-
things must be true for this to be a RAW dependence violation. connection network providing access to main memory with some
First, the target cache line of the invalidation must be present in arbitrary number of levels of caching.

the cache. Second, it must be marked as having been speculatively The amount of detail shown in Figure 3(a) is not necessary
loaded. Third, the epoch number associated with the invalidationfor the purposes of describing our cache coherence scheme. In-
must be from dogically-earlierepoch. Since all three conditions stead, Figure 3(b) shows a simplified model of the underlying ar-
are true in the example, a RAW dependence has been violatedchitecture. The speculation level described above happensto be a

epoch 6is notified by setting theiolation flag As we will show, physically shared cache and is simply referred to from now on as
the full coherence scheme must handle many other cases, but thethe cache”. Above the caches, we have some number of proces-
overall conceptis analogous to this example. sors, and below the caches we have an implementation of cache-

In the sections that follow, we define the new speculative cache coherent shared memory.
line states and the actual cache coherence scheme, including the Although coherence can be recursive, speculation only occurs

actions which must occur when an epoch becohwesefreeor is at the speculation level. Above the speculation level (i.e. closer to
notified that a violation has occurred. We begin by describing the the processors), we maintain speculative state and buffer specula-
underlying architecture assumed by the coherence scheme. tive modifications. Below the speculation level (i.e. further from

. . the processors), we simply propagate speculative coherence ac-
2.2 Underlying Architecture tions and enforce inclusion.
The goal of our coherence scheme is to be both general and
scalable to any size of machine. We want the coherence mech2.3 Overview of Our Scheme
anism to be applicable to any combination of single-threaded or The remainder of this section describes the important details
multithreaded processors within a shared-memory multiprocessorof our coherence scheme, which requires the following key ele-
(i.e. not restricted simply to single-chip multiprocessors, etc.). ments: (i) a notion of whether a cache line has been speculatively
For simplicity, we assume that the shared-memory architec- loaded and/or speculatively modified; (ii) a guarantee that a spec-
ture supports an invalidation-based cache coherence scheme whendative cache line will not be propagated to regular memory, and
all hierarchies enforce the inclusion property. Figure 3(a) shows that speculation will fail if a speculative cache line is replaced; and

Alan Berenbaum
3

(a) Cache line states (c) Responsesto processor events

inti LoadSp:Read=Shared,
| State | Description o e ared
I Invalid L oad: Read=Excl
E Exclusive Load: Read=Shared
S Shared
D Dirty
SpE | Speculative (SM and/or SL) and exclusiye
SpS | Speculative (SM and/or SL) and shared
LoadSp,
(b) Coherence messages StoreSp:UpgradeSp=Shared
[Message [Description | StoreSp:UpgradeSp=Excl
Read Read a cache line. SioreSp ReadExSp=Exdl
ReadEx Read-exclusive: return a copy of the cache L oadSp:Read=Excl
line with exclusive access. L oadSp, StoreSp
Upgrade Upgrade-request: gain exclusive access to
a cache line that is already present.
Inv Invalidation. (d) Responsesto external coherence events
Writeback Supply cache line and relinquish ownership.
Flush Supply cache line but maintain ownership. Inv
NotifyShared | Notify that the cache line is now shared.
ReadExSp Read-exclusive-speculative: return cache
line, possibly with exclusive access.
UpgradeSp Upgrade-request-speculative: request exclugive
accessto a cache line that is already present.
InvSp Invalidation-speculative: only invalidate | -
cache line if from a logically-earlier epoch. nvSp=Later
Condition Description
=Shared The request has returned shared access. InvSp=L ater, _
=Excl The request has returned exclusive access. NotifyShared InvSp=Earlier, Inv
=Later The requestis from a logically-later epoch.
=Earlier The requestis from a logically-earlier epoch. InvSp=Earlier, Inv

Figure 4. Our coherence scheme for supporting thread-level speculation.

(iii) an ordering of all speculative memory references (provided by For speculation to succeed, any cache line with a speculative
epoch numbers and tih@mefree tokeénFollowing the description state must remain in the cache until the corresponding epoch be-
of our baseline scheme, we will discuss some additional supportcomeshomefree Speculative modifications may not be propa-
that can potentially improve its performance. gated to the rest of the memory hierarchy, and cache lines that
. have been speculatively loaded must be tracked in order to detect
2.4 Cache Line States whether data dependence violations have occurred. If a specula-
A cache line in a basic invalidation-based coherence schemetive cache line must be replaced, then this is treated as a viola-
can be in one of the following state@valid (1), exclusive(E), tion causing speculation to fail and the epoch is re-executed—note
shared(S), or dirty (D). Theinvalid state indicates that the cache that this will affect performance but neither correctness nor for-
lineis no Ionger valid and should not be used. $haredstate de- ward progress. Previous work has shown that a 16KB, 2_Way set-
notes that the cache line is potentially cached in some other cacheassociative cache along with a four-entry victim cache is sufficient

while theexclusivestate indicates that this is the only cached copy. to avoid nearly all failed speculation due to replacement [20].
Thedirty state denotes that the cache line has been modified and

mgst be written b_ack to memory. When a processor atte_mpts t_02_5 Coherence Messages

write to a cache line, exclusive access must first be obtained—if

the line is not already in thexclusivestate, invalidations must be To support thread-level speculation, we also add the three
sent to all other caches which contain a copy of the line, thereby new speculative coherence messages shown in Figurerég):
invalidating these copies. exclusive-speculative invalidation-speculative and upgrade-

To detect data dependences and to buffer speculative mem+equest-speculativd’ hese new speculative messages behave sim-
ory modifications, we extend the standard set of cache line stateslarly to their non-speculative counterparts except for two impor-
as shown in Figure 4(a). For each cache line, we need to tracktant distinctions. First, the epoch number of the requester is piggy-
whether it has beespeculatively loade(5L) and/orspeculatively backed along with the messages so that the receiver can determine
modified(SM), in addition to exclusiveness. Rather than enumer- the logical ordering between the requester and itself. Second, the
ating all possible permutations 81, SM and exclusiveness, we speculative messages are only hints and do not compel a cache to
instead summarize by having two speculative statpsculative- relinquish its copy of the line (whether or not it does is indicated
exclusivgSpE andspeculative-share(&p3. by an acknowledgment message).

Alan Berenbaum
4

2.6 Baseline Coherence Scheme ment this ordering by waiting for and passing timmefree token

Our coherence scheme for supporting TLS is summarized by at the end of each epoch. When themefree tokearrives, we
the two state transition diagrams shown in Figures 4(c) and 4(d). know that alllogically-earlier epochs have completely performed
The former shows transitions in response to processtati all speculative memory operations, and that any pending incom-
events (i.e. speculative and non-speculative loads and stores), antilg coherence messages have been processed—hence memory is
the latter shows transitions in response to coherence message@onsistent. At this point, the epoch is guaranteed not to suffer

from the external memory system. any further dependence violations with respect to logically-earlier
Let us first briefly summarize standard invalidation-based epochs, and therefore can commit its speculative modifications.

cache coherence. If a load suffers a miss, we issigadto the Upon receiving thehomefree tokenany line which has only

memory system; if a store misses, we issuead-exclusive If been speculatively loaded immediately makes one of the following

a store hits and the cache line is in tteared(S) state, we issue state transitions: either frospeculative-exclusiy&pE to exclu-

an upgrade-requesb obtain exclusive access. Note thatd- sive(E), or else fromspeculative-share(5p$ to shared(S). We

exclusiveandupgrade-requeshessages are only seiawninto will describe in the next section how these operations can be im-

the memory hierarchy by the cache; when the underlying coher-plemented efficiently.

ence mechanism receives such a message, it generatssta- For each line in thespeculative-sharedSp$ state that has

tion message (which only travelgto the cache from the memory been speculatively modified (i.e. ti#&M flag is set), we must
hierarchy) for each cache containing a copy of the line to enforce issue arupgrade-requestio acquire exclusive ownership. Once
exclusiveness. Having summarized standard coherence, we novit is owned exclusively, the line may transition to tHaty (D)
describe a few highlights of how we extend it to support TLS. state—effectively committing the speculative modifications to reg-
- ular memory. Maintaining the notion of exclusivenessis therefore
2.6.1 Some Highlights of Our Coherence Scheme _important since a speculatively modified line that is exclusive (i.e.
When a speculative memory reference is issued, we transi-gpEwith SMset) can commit its results immediately simply by
tion to thespeculative-exclusiy8pB or speculative-shargGp3 transitioning directly to thelirty (D) state.
state as appropriate. For a speculative load we selilag, and It would obviously take far too long to scan the entire cache for
for a speculative store we set tBéflag. all speculatively modified and shared lines—ultimately this would
When a speculative load misses, we issue a normal read t0gg|ay passing theomefree tokeand hurt the performance of our
the memory system. In contrast, when a speculative store missesgcheme. Instead, we propose that the addresses of such lines be
we issue aead-exclusive-speculatigentaining the currentepoch 54ded to amwnership required buffORB) whenever a line be-
number. When a speculative store hits and the cache line is in thg;gmes both speculatively modified and shared. Hence whenever
shared(S) state, we issue anpgrade-request-speculativenich the homefree tokearrives, we can simply generate apgrade-

also contains the current epoch number. ~ requesfor each entry in the ORB, and pass tiemefree tokean
When a cache line has been speculatively loaded (i.e. it is in (4 the next epoch once they have all completed.

either theSpEor SpSstate with theSL flag set), it is susceptible])

to a read-after-write (RAW) dependence violation. If a normal 2.6.3 When Speculation Fails

invalidationarrives for that line, then clearly the speculation fails. When speculation fails for a given epoch, any specula-
In contrast, if aninvalidation-speculativarrives, then a violation tively modified lines must be invalidated, and any speculatively
only occurs if it is from dogically-earlierepoch. loaded lines make one of the following state transitions: either

When a cache line idirty, the cache owns the only up-to-date from speculative-exclusivéSpE) to exclusive(E), or else from
copy of the cache line and must preserve it. When a speculativespeculative-share®p$ to sharedS). In the next section, we will
store accessedghirty cache line, we generatdlashto ensurethat describe how these operations can also be implemented efficiently.
the only up-to-date copy of the cache line is not corrupted with L
speculative modifications. For simplicity, we also generdtash 2.7 Performance Optimizations
when a speculative load accessedirty cache line (we describe We now present several methods for improving the perfor-
later in Section 2.7 how this case can be optimized). mance of our baseline coherence scheme.

A goal of this version of the coherence scheme is to avoid slow- .]
ing down non-speculative threads to the extent possible. Hencemorwarding Data Between Epochs: Often regions that we
a cache line in a non-speculative state is not invalidated when anwould like to parallelize contain predictable data dependences be-
invalidation-speculativarrives from the external memory system. tween epochs. We can avoid violations due to these dependences
For example, a line in thehared(S) state remains in that state by inserting wait-signal synchroniz_ation. After producing the fi-
whenever arinvalidation-speculativés received. Alternatively, ~ hal value of a variable, an epoch signals the logically-next epoch
the cache line could be relinquished to give exclusiveness to thethat it is safe to consume that value. Our coherence scheme can
speculative thread, possibly eliminating the need for that specula-P€ extended to support value forwarding through regular memory
tive thread to obtain ownership when it becorhesnefree Since by allowing an epoch to make non-speculative memory accesses
the superior choice is unclear without concrete data, we comparewhile it is still speculative. Hence an epoch can performoa-
the performance of both approaches later in Section 5.4. speculative store whose value will be propagated to the logically-

. next epoch without causing a dependence violation.
2.6.2 When Speculation Succeeds

Our scheme depends on ensuring that epochs commit theirDirty and Speculatively Loaded State: As described for
speculative modifications to memory in logical order. We imple- the baseline scheme, when a speculative load or store accesses a

Alan Berenbaum
5

dirty cache line we generateflash ensuring that the only up-to- same program are unordered with respect to each other. We im-
date copy of a cache line is not corrupted with speculative modifi- plement this by having each epoch number consist of two parts:
cations. Since a speculative load cannot corrupt the cache line, ita thread identifier (TID) and a sequence number. If the TIDs
is safe to delay writing the line back until a speculative store oc- from two epoch numbers do not match exactly, then the epochs
curs. This minor optimization is supported with the gidd of the areunordered If the TIDs do match, then the signed difference
dirty and speculatively loadestate DSpL), which indicatesthata between the sequence numbers is computed to determine logical
cache line is both dirty and speculatively loaded. Since it is trivial ordering. (Signed differences preserve the relative ordering when
to add support for this state, we include it in the baseline schemethe sequence numbers wrap around.)
that we evaluate later in Section 5. The second issue is that we would like this comparison of

)) . epoch numbers to be performed quickly. At the same time, we
Suspending Violations: Recall that if a speculatively ac- would like to have the flexibility to have large epoch numbers
cessed line is replaced, speculation must fail because we can NPe.g., 32 or even 64 bits), since this simplifies TLS code gener-
longer track dependence violations. In our baseline scheme, if5tion when there is aggressive control speculation [19]. Rather
an epoch is about to evict a speculative line from the cache, weyygp frequently computing the signed differences between large
simply let it proceed and signal a dependence violation. (Sincesequence numbers, we instea@computehe relative ordering
one epochis always guaranteed to be non-speculative, this schemgetween the current epoch and other currently-active epochs, and
will not deadlock.) Alternatively, we coulsuspendhe epochun- se the resultingpgically-later maskto perform simple bit-level
til it becomeshomefree at which point we can safely allow the comparisons (as discussed later in Section 3.4).
replacement to occur since the line is no longer speculative. The third issue is storage overhead. Rather than storing large
epoch numbers in each cache line tag, we instead exploit the

Support for Multiple Writers: If two epochs speculatively logically-later masko store epoch numbers just once per chip.

modify the same cache line, there are two ways to resolve the sit-
uation. One option is to simply squash the logically-later epoch, 3.2 Implementation of Speculative State

;as IS thﬁ case rf]or our bg_sellt?e_scheme. Alterrfla':wely, vk\]/e FOUId e:jl- We encodethe speculative cache line states given in Figure 4(a)
ow bc_)t epoc s.to modify their own copies o _t € cacheline an using five bits as shown in Figure 5(a). Three bits are used to en-
combine them with the real copy of the cache line as they commit, code basic coherence staxclusive(Ex), dirty (Di), andvalid

asis donein a n1t_1ple-wr_|ter c_oherence protocol 3, 4]. (Va). Two bits—speculatively loade¢SL) andspeculatively mod-

,TO suppqrt mitiple ert_ers In our (_:oherenpe schem_e—thus al- ified (SM—differentiate speculative from non-speculative states.
I_owmg mgltlple speculaiively mo_dlfled copies of a smgia(_:he Figure 5(b) shows the state encoding which is designedto have the
!lne t_o e>_<|st—we nee_d the following two pew.fea_tu.re_s. First, an following two useful properties. First, when an epoch becomes
mvglldatlon-s_pecuIatlvanll onIy_cau_se a V|olat!on if it is from a homefreg we can transition from the appropriate speculative to
Ioglcally-(_aarller epoch_and the I|_n_e is spgculatlvely loaded:; _thls al- non-speculative states simply by retse theSMandSLbits. Sec-
lows mu!tlple speculatively mod!fled copies of the saraehe Iln_e . ond, when a violation occurs, we want to invalidate the cache line
o c_o-exnst_. Second, we must dlfferentlau_a bet_wegn normal invali- if it has been speculatively modified; this can be accomplished by
dations (trlggered _by remote 5‘0“."5) and invalidations used only tOsetting itsvalid (Va) bit to the ANDof its Va bit with the comple-
gnforce the |nc!u5|on property (trlgge_red _by r_eplac_ementfs de(_aperment of itsSMbit (i.e.Va= Va& ! SM).
in the cache hierarchy). A normal invalidation will not invali-
date a speculative cache line that is only speculatively modified
hence thehomefreeepoch can commit a speculatively modified
cache line to memory without invalidating logically-later epochs
that have speculatively modified the same cache line.

~ Figure 5(c) illustrates how the speculative state can be ar-
‘ranged. Notice that only a small number of bits are associated
with each cache line, and that only one copy of an epoch number
is needed. Th&LandSMbit columns are implemented such that
they can be flash-reset by a single control signal. $hkbits are
: also wired appropriately to their correspondMabits such that
3. Implementlng Our Scheme they can be simultaneously invalidated when an epoch is squashed.
We now describe a potential implementation of our coherence 5o associated with the speculative state are an epoch number, an
scheme. We begin with a hardware implementation of epoch num-qwnership required buffer (ORB), the addresses of the cancel and

bers. We then give an encoding for cache line states, and describgjolation routines, and a violation flag which indicates whether a
the organization of epoch state information. Finally, we describe yjg|ation has occurred.

how to allow multiple speculative writers and how tgoport spec-
ulation in a shared cache. 3.3 Allowing Multiple Writers

As mentioned earlier in Section 2.7, it may be advantageousto
allow multiple epochsto speculatively modify the sazaehe line.
Supporting a mitiple writer scheme requires the ability to merge
artial modifications to a line with a previous copy of the line; this

3.1 Epoch Numbers

In previous sections, we have mentioned tepbch numbers
are used to determine the relative ordering between epochs. In
the cohe_rence scheme, an epqch number is assomat_ed with ever turn requires the ability to identify any partial modifications.
speculatively-accessed cache line and every speculative coherencs

i The impl ati ¢ h b t add ne possibility is to replicate th®Mcolumn of bits so that there
action. The Implementafion of €poch NUMDErS MUSL addTess Sevy, o 4q manysM columns as there are words (or even bytes) in
eral issues. First, epoch numbers must represpattial ordering

(rather than total ordering) since epochs from independent pro- ! The cancel and violation routines are used to manage unwanted and
grams or even from independent chains of speculation within the violated epochs respectively. See [19] for more details.

Alan Berenbaum
6

(a) Cache line state bits

[Bit | Description |
Va | valid
Di dirty
Ex | exclusive
SL | speculatively loaded
SM | speculatively modified

(b) State encoding

Speculative
Context

(c) Hardware support

Speculative
Context

-
H Epoch Number H

-
‘ I
|

Epoch Number

Cancel Handler ||
Address |

Cancel Handler ||
Address |

|

|

I[™ Violation Handler

I Address I

Address I

\‘ Violation Flag M
\

L]
‘ Violation Handler ‘

Violation Flag

| Logically-Later Mask |

| Logically-Later Mask |

[State]

SL[SM [Ex [Di [Va |

OO-00] !

OO0 : Cache Line State

|
| SL SM | | SL sSM | SMI0..N-1] Ex Di Va Tags Data
' X (X X X0 | o e] 1 | |
E 0 |0 T [0 |1 | Lo !
e Y P R R
D 0 [0 X |1 |1 ; L | ; HEE P e ”H.\H.H.\
DSpL | 1 X [1 [1
R B e - HBH ' BHH 'H:HHEIE |
) T T 1 1 [ORB 1009 ORB [
T 1 [1 |1 |1 } C |
SpS [L |0 0 |0 |1 | L |
0 1 0 1 1 I T I I I
T |1 0 | 1T |1 Loy ! ‘_77}7777)
Figure 5. Encoding of cache line states.
Original Cache Line needs to be marked apeculatively loadedSL) when an epoch
SMIONA reads a location that it has not previously overwritten (i.e. the load
[-N-AJjojojojo is exposed1]). The fine-grain SMbits allow us to distinguish
baa[A[B|C|D exposed loads, and therefore can help avoid false violations.
/ \ 3.4 Support for Speculation in a Shared Cache
Epochii Epoch i+1 . . . L
We would like to support mitiple speculative contexts within a
SMO-N-A]| 1] 002 SMO-N-A]] 1101 shared cache for three reasons. First, we want to maintain specula-
Daw |E|B Daa|G|B|H|D tive state across OS-level context switches so that we can support

C{;

Combined Copy

SM[0..N-1] | 0

0

0

0

Data | G

B

H

=

Figure 6. Support for combining cache lines.

a cache line, as shown in Figure 5(c). We will call thése-

grain SMbits. When a write occurs, the appropri&te! bit is set.

If a write occurs which is of lower granularity than ti$M bits

can resolve, we must conservatively set 8iebit for that cache
line since we can no longer perform a combine operation on this oiher epoch attempts to speculatively modify that same line. This
cache line—stting theSL bit ensures that a violation is raised if a
logically-earlier epoch writes the same cache line.

Figure 6 shows an example of how we combine a speculatively |f we run out of associative entries, then replication fails and we
modified version of a cache line with a non-speculative one. Two must instead suspend or violate the logically-latest epoch owning
epochs speculatively modify the same cache line simultaneously,a cache line in the associative set. Suspending an epoch in this
setting thefine-grain SMbit for each location modified. A specu-
latively modified cache line is comtted by updating the current
non-speculative version with only the words for which firee-
grain SMbits are set. In the example, both epochs have modified pj, andvabits for each cache line are shared between all specula-
the first location. Sincepoch i+1is logically-later, its value®
takes precedence ovepoch i'svalue E).

Because dependence violations are normally tracked at a cachef them is necessary per cache line (shared by all speculative con-
line granularity, another potential performance problenfalse
violations—i.e. where disjoint portions of a line were read and single SMbit per speculative context indicates which speculative
written. To help reduce this problem, we observe that a line only context owns the cache line, and is simply computed a©tRef

TLS in a multiprogramming environment. Seal, we can use
multiple speculative contexts to allow a single processor to exe-
cute another epoch when the current one is suspended (i.e. during
a suspending violation). Finally, multiple speculative contexts al-
low TLS to work with simultaneous multithreadin@MT) [23].

TLS in a shared cache allows epochs from the same program
to access the same cache lines with two exceptions: (i) two epochs
may not modify the same cache line, and (ii) an epoch may not
read the modifications of a logically-later epoch. We can enforce
these constraints either by suspending or violating the appropri-
ate epochs, or else through cache line replication. With the latter
approach, a speculatively modified line is replicated whenever an-

replicated copy is obtained from the external memory system, and
both copies are keptin the same associative set of the shared cache.

case must be implemented carefully to avoid deadlock.
Figure 5(c) shows hardware support for shared-cache specula-
tion where we implement several speculative contexts. Exe

tive contexts, but each speculative context has its SlvandSM
bits. If fine-grain SMbits are implemented, then only one group

texts), since only one epoch may modify a given cache line. The

Alan Berenbaum
7

all of thefine-grain Shbits. Table 1. Simulation parameters.

To determine whether a speculative access requires replication, | Pipeline Parameters |
we must compare the epoch number and speculative state bits with Issue Width _ 4

ther speculative contexts. Since epoch number comparisons ma Functional Units _] 2 nt, 2 PP, 1 Mem, 1 Branch
0 P T p . p . y Reorder Buffer Size 32
be slow, we want to use a bit mask which can compare against Integer Muftiply 12 cycles
all speculative contexts in one quick operation. We maintain a Integer Divide 76 cycles
logically-later maskfor each speculative context (shown in Fig- ’F*:L%tic;:”teger 151c§yc(|:lees
ure 5(c)) that indicates which speculative contexts contain epochs FP Square Root 20 cycles
that are logically-later, thus allowing us to quickly make the com- AlTOther FP 2cycles

parisons using simple bit operations [19]. Branch Prediction GShare (16K, 8 history bits)

| Memory Parameters |

3.5 Preserving Correctness

Cache Line Size 32B

In addition to data dependences, there are a few otherissues re- | Instruction Cache 32KB, 4-way set-assod

in rrectn nder TLS. Fir lation m Data Cache 32KB, 2-way set-assoc, 2 banks

Iat.ed to preserving correct .ess u de. S St, speculatio ust Unified Secondary Cache 2MB, 4-way set-assoc, 4 bankis
fail whenever any speculative state is lost (e.g., the replacement [—wissHandlers B for data, 2 forinsts
of a speculatively-accessed cache line, the overflow of the ORB, Crossbar Interconnect 8B per cycle per bank
etc.). Second, as with other forms of speculation, a speculative gﬂégmtézrgf'gzcﬁfe”‘?yto 10cycles
thread should not |mme_d|ately invoke an exception if it derefer— Minimum Miss Latency to 75 cydies

ences a bad pointer, divides by zero, etc.; instead, it must wait un- Local Memory '

til it becomeshomefredo confirm that the exception really should Main Memory Bandwidth 1 access per 20 cycles
h K I df h . b . Third. if Intra-Chip Communication Latency 10 cycles
ave taken place, and for the exception to be precise. ird, i Tnter-Chip Communication Latency 200 cycles

an epoch relies on polling to detect failed speculation and it con-
tains a loop, a poll must be inserted inside the loop to avoid infinite o o)
looping. Finally, system calls generally cannot be performed spec- 1 LS Primitives, and are added to the applications ugegASM
ulatively without special support. We will explore this issue more Stateéments. To produce this code, we are using a set of tools based
aggressively in future work; for now, we simply stall a speculative On the SUIF compiler system. These tools, which are notyet com-
thread if it attempts to perform a system call until inismefree plete, help analyze the dependence patterns in the code, insert TLS
primitives into loops, perform loop unkfmg, and insert synchro-
4. Experimental Eramework r_lizgtio_n code. The choice of loops to parallelize and other op-
)] timizations (described below) were made by hand, although we
We evaluate our coherence protocol through detailed simula-pjan to have a fully-automatic compiler soon. We only parallelize
tion. Our simulator models 4-way issue, out-of-order, superscalarregions of code that are not provably parallel (by a compiler).
processors similar to the MIPS R10000 [24]. Register renaming, Taple 2 shows the applications used in this stubyk is an
the reorder buffer, branch prediction, instruction fetching, branch- implementation of the bucket sort algoritheompress95 per-
ing penalties, and the memory hierarchy (including bandwidth and t5ms data compression and decompressigoake uses sparse
contention) are all modeled, and are parameterized as shown in Tap atrix computation to simulate an earthquake: oy per-
ble 1. We simulate all applications to completion. forms various algorithms on images. Thak application has
Our baseline architecture has four tightly-coupled, single- peen reduced to its kernel, removing the data set generation and
threaded processors, each with their own primary data and instrucerification code—the other applications are run in their entirety.
tion caches. These are connected by a crossbar to a 4-bank, unifiefior compress95 , certain loop-carried dependences occur fre-
secondary cache. Our simulatorimplements the coherence schemgently enough that we either hoist them outside of the loop or

defined in Section 2 using the hardware support described in Secg|ge explicitly forward them using wait-signal synchronization.
tion 3. To faithfully simulate the coherence traffic of our scheme,

we model 8 bytes of overhead for coherence messagesthat contai Experimenta| Results
epoch numbers. Because epoch numbers are compared lazily (and We now present the results of our simulation studies. To quan-

in parallel with cache accesses), they have no impact on memorytify the effectiveness of our supportfor TLS, we explore the impact

acc%ss Ia_teml:y. d . del K | . ofvarious aspects of our design on the performance of the four ap-
e simulated execution model makes several assUmplionS,icaiions Our initial sets of experiments are for a single-chip

with respect to the management of epochs and spec_ulatlve_thread ultiprocessor, and later (in Section 5.5) we evaluate larger-scale
Epochs are assigned to processors in a round-robin fashion, anqnachines that cross chip boundaries.
each epoch must spawn the next epoch through the use of a
lightweight fork instruction. For our baseline architecture, we as- 5.1 Performance of the Baseline Scheme
sume that a fork takes 10 cycles, and this same delay applies to Table 3 summarizes the performance of each application on
synchronizing two epochs when forwarding occurs. Violations are our baseline architecture, which is a four-processor single-chip
detected through piing, so an epoch runs to completion before multiprocessor that implements our baseline coherence scheme.
checking if a violation has occurred. When an epoch suffers a Throughout this paper, all speedups (and other statistics relative
violation, we also squash all logically-later epochs. to a single processor) are with respect to ¢higinal executable

We are simulating real MIPS binaries which contain TLS in- (i.e. without any TLS instructions or overheads) running on a sin-
structions. Unused coprocessor instruction encodings are used fogle processor. Hence our speedupsadrsolute speedu@sd not

Alan Berenbaum
8

Table 2. Applications and their speculatively parallelized regions.

Speculative Region Unrolling | Avg. Insts. | Parallel
Suite Application Input Data Set (srcfile:line, loop type) Factor per Epoch | Coverage
NAS-Parallel | buk 4MB buk.f:111, do loop 8 81.0 22.8%
buk.f:123, do loop 8 135.0 33.8%
Spec95 compress95 test [test.in] compress.c:480, while loof 1 196.7 24.6%
compress.c:706, while looj 1 240.4 22.7%
ijpeg test jccolor.c:138, for loop 32 1467.9 8.2%
[specmun.ppm] jedetmgr.c:214, for loop 1 80.8 2.2%
quality 10 jidctint.c:171, for loop 1 84.0 5.0%
smoothingfactor 10 jidctint.c:276, for loop 1 100.3 6.7%
Spec2000 | equake test [inp.in] quake.c:1195, for loop 1 29255 39.3%

Table 3. Performance impact of TLS on our baseline architecture
(a four-processor single-chip multiprocessor).

(a) Execution Time

Overall Region| Parallel | Program °

Application Speedup Coverage| Speedup, E

buk 2.26 56.6% | 1.6

compress95 1.27 47.3% 1.12 @

equake 1.77 39.3% 1.21 B

iipeg 1.94 22.1% 1.08 3 .
self-relative spedups. As we see in Table 3, we achieve speedups TR Rk T campressts equake ey
on the regions of code that we parallelized ranging from 27% to
126%. The overall program speedups are limited bydbeer- (b) Aggregate Cycles

age(i.e. the fraction of the original execution time that was paral-
lelized), and they range from 8% to 46%. To simplify our discus-
sion, we will focus only on the speculatively parallelized regions
of code throughout the remainder of this section.

Figure 7 shows how performance varies across a number of
different processors from two different perspectives. Figure 7(a)
showsexecution timeormalized to the original (i.e. non-TLS) se-
quential execution. (Note that tlieprocessobars in Figure 7 are
this original executable, rather than the TLS executable running &

800

rmalized Aggregate Cycles in Regions

on a single processor.) Figure 7(b) shaggregate cyclesvhich H

is simply the normalized number of cycles multiplied by the num- s

ber of processors. Ideally, treggregate cycles/ould remain at buk compress95 equake iipeg

100% if we achieved linear _speedup; inlizait increases as the Figure 7. Performance of our TLS scheme on a single-chip mul-

processors become less efficient. tiprocessor. Part (a) shows normalized execution time, and
The bars in Figure 7 are broken down into seven segments ex-part (b) is scaled to the number of processors multiplied by the

plaining what happened during all potential graduation Sldtae number of cycles. The number of processors in our baseline

. . architecture is four, as indicated by the *.
top three segments represent slots where instructions do not grad- 4

uate for the following TLS-related reasons: waiting to begin a new
epoch gpawn); waiting for synchronization for a forwarded loca-
tion (syng; and waiting to become homefreleofmefreg The re-

Looking at the single-processor results, we see It and
equake are limited by memory performance (since they have

Maining seqments represent reqular executionbiissseamentis large dcachemiss segments), while the other applications are
9s€g P 9 g more computationally intensive and have relatively lalgesy

the number of slots where instructions graduate ditechemiss : .
) ; - and istall segments. As we increase the number of proces-
segment is the number of non-graduating slots attributed to data . . . :
. . . . : sors and begin to speculatively execute in parallel, we achieve
cache misses; and thstall segment is all other slots where in- . S . .
i . speedup in all cases. All applications with the exception of
structions do not graduate. Finally, tithe segment represents :) o e
; . ompress95 experience an increase in time spent waiting for
slots where a processor has nothing to execute. It is somewha;

. - I he lightweight fork §pawr), since we fork epochs in sequential
easier to directly compare these categories in Figure 7(b), Whereorder. Forcompress95 , this overhead is hidden by synchroniza-

an increase in the size of a segment means that a problem is get: L) .
. . . . ion (synch) for forwarded values, which increases quickly with
ting worse. Also note that time wasted on failed speculation can

the number of processors.

contribute to any one of these segments. R . .
y g As we see in Figure 7(alpuk continues to enjoy speedups up

2The number of graduation slots is the product of (i) the issue width (4 through eight processors. For the other three cases, however, per-
in this case), (i) the number of cycles, and (iii) the number of processors. formance levels off and starts to degrade prior to eight processors.

Alan Berenbaum
9

Table 4. TLS overhead statistics for our baseline architecture (a
four-processor single-chip multiprocessor).

T —
g o
Dynamic | Misses ORB Statistics T]
Instr. to Other Avg. Flush Size (entries) > replacement
Application Overhead| Caches | Latency(cycles)| Avg. | Max. ° o invalidation
buk 53% | 34.41% 13.95 238] 9 g
compress95 30.6% 3.02% 0.04 0.01 8 s 1 speculative invalidation
equake 3.7% 1.67% 0.13 0.04 12 “
iipeg 7.0% 65.00% 1.06 017 | 5
2008
The most dramatic case iipeg , where performance degrades 0.140) © ©2662) (0.0001)
sharply beyond four processors for the following reasons: (i) some buk compress95 equake iipeg

of the speculative regions ijpeg contain only four epochs (af- i __
ter loop unrolling); and (i) an unfortunate mapping conflictin the F'rg‘ég?ssg; E;izﬁggwgrcﬁ‘;te%?ﬂfees ‘E‘rfh;"orzti'g”gf ?/irénlecl)tlijc:n?l:g
cache causes many violations due to replacements. In generaﬁpochS committed is shown below each bar.

the more epochs one attempts to execute in parallel, the greater

the likelihood of dependence violations. Fortunately, there are ap-
plications which scale well to eight processors and beyond using ,

TLS, as we will see later in Section 5.5. ;

im:

5.1.1 Overheads of Thread-Level Speculation

We now investigate the overheads of our baseline scheme in s
greater detail using the statistics in Table 4. The first columnin &
this table shows the TLS instruction overhead as a percentage oft
the original dynamic instructions. This instruction overhead is sig-
nificant forcompress95 (over 30%) due to the large amount of s pmw s emEa susmEe swemmw
data forwarding and the relatively small size of each epoch. The
instruction overheads are much smaller (7% or less) for the re-Figure 9. Impact of varying communication latency (in cycles).
maining applications. The baseline architecture has a communication latency of 10

A second potential source of overhead with TLS is decreased®Y9les: as indicated by the *.
cache loclity due to data being distributed across multiple proces-
sors. The second column in Table 4 shows the percentage of cach@ions, which vary across the applications. Below each bar, we
misses with TLS on four processors where the data was found inshow the ratio of the number of violations to the number of epochs
another processor’s cache. This rough indication of cache local-committed. (Note that this ratio can be greater than one, since an
ity suggests that in two caseluk andijpeg), there may be epoch can suffer multiple violations prior to committing.) The vi-
significant room for improvement through more ifigeent data olations are broken down into the following three categories: (i)
placement and thread scheduling. those due to the replacement of speculatively-accessed lines from

The ORB presents a third potential source of overhead. Re-the cache; (i) those due to normal invalidations, which correspond
call that the ORB maintains a list of addresses of speculatively- to logically-earlier epochs flushing the given address from their
modified cache lines that are in tapeculative-share(Bpg state. ~ ORB at commit time; and (iii) those due &peculativenvalida-
When thehomefree tokemrrives, we must issue and complete tions, which correspond to another epoch speculatively modifying
upgrade requests to obtain exclusive ownership of these linesa line that the given epoch had speculatively loaded earlier. As
(thereby committing their results to memory) prior to passing the We see in Figure 8compress95 does not suffer any violations
homefree token on to the nekigically-later epoch. In addition, (in part due to the use of explicit data forwarding), and the few
speculation fails if the ORB overflows. For these reasons, we hopeViolations that occurijpeg are due to cache replacements. Vi-
that the average number of ORB entries per epoch remains smallolations occur far more frequently iouk andequake , where
As we see in Table 4, the average number of ORB entries is inthey are caused primarily by either normal or speculative invali-
fact small: less than 2.5 fdsuk, and less than 0.2 for the other dations. Given the choice, speculative invalidations are preferable
three cases. This translates into an average ORB flush latency opver normal ones because they help reduce then size of the ORB
roughly fourteen cycles fdsuk , and roughly one cycle or less for ~ and give earlier notification of violations.
the other cases. Despibelk 's fourteen cycle ORB flush latency, In summary, the overheads of TLS remain small enough that
it still speeds up quite well. To further mitigate the impact of this we still enjoy significant performance gains. We now focus on
latency on performance, we could design the hardware to beginother aspects of our design.
flushing the ORB as soon as themefree tokemrrives (in our L
experiments, we take the less aggressive approach of also waiting®-2 IMmpact of Communication Latency
until the epoch finishes before flushing the ORB). The rightmost Figure 9 shows the impact of varying the communication la-
column in Table 4 shows that a twelve-entry ORB is sufficient to tency within the single-chip multiprocessor from five to thirty cy-
eliminate the possibility of ORB overflow for these applications. cles (in the baseline architecture, it is ten cycles). As we see in

Finally, Figure 8 shows a breakdown of the causes of viola- Figure 9,buk andequake are insensitive to communication la-

gion Execution Ti

50,

Normal

10

Alan Berenbaum
10

100.0 1000 998 100.0 1000 1000

spawn

sync

homefree

idle

istall

dcache_miss

busy

Normalized Region Execution Time

Base Spl
equake

Base Spl
buk

Base Spl
compress95

Base Spl
1jpeg

Normalized Region Execution Time

13

528

W s

sync
[homefree
[ide

[istan

[| dcache_miss

. busy

386

H

408

1x1 1x2 1x4 1x8
Single Node

2x2 2x4 2x8 4x2 4x4
2 Nodes 4 Nodes

1x1 1x2 1x4 1x8
Single Node

2x2 2x4 2x8
2 Nodes

4x2 4x4
4 Nodes

buk equake

Figure 11. Region performance of buk and equake on a va-
riety of multiprocessor architectures (NXM means N nodes of
M processors).

Figure 10. Benefit of allowing speculative invalidations to inval-
idate non-speculative cache lines (Sp) vs our baseline coher-
ence scheme (Base.

m- achieve significantly better performance if e allow specula-
tive invalidations of non-speculative lines since this reduces the
average number of ORB entries, and hence the latency of flush-

tencies within this range because their performance is mostly li
ited by data cache capacity misses rather than inter-epoch commu

nication. Compress95 andijpeg are more latency-sensitive: ¢ ! Y
ing the ORB and passing tHemefree token These additional

they suffer from increased synchronization and thread spawning o . '
times, respectively. Given the region and program speedups in Ta-SP€edups of roughly 10% within the parallelized regionsuk
translate into overall program speedups of 53% (vs.

ble 3, we observe that all of these applications would still enjoy @ndiipeg

speedups with higher communication latencies than the ten cyclet6%) and 10% (vs. 8%), respectively. Hence allowing speculative
assumed in our baseline architecture. invalidations to invalidate non-speculative lines is clearly a worth-

while enhancementto our baseline scheme.

5.3 Support for Multiple Writers 5.5 Scaling Beyond Chip Boundaries

As discussed earlier in Sections 2.7 and 3.3, a potential en- Having demonstrated the effectiveness of our TLS scheme on
hancementof our baseline coherence scheme s to allow for mUlti-sing|e_Chip mu|tiprocessor51 we now evaluate how well it scales
ple writers to the same cache line. We simulated suchléipteu to larger-scalemulti-chipmultiprocessors, wheeach node in the
writer scheme, and found that it offered no performance benefit system is itself a single-chip multiprocessor. Figure 11 shows the
for any of our four applications. While this is hardly sufficient performance obuk andequake across a range of these multi-
evidence to claim a negative result, we can offer the following node architectures. Starting with single-node performance, notice
insights into why our applications did not require multiple writer that both of these applications speed up well within a single chip,
support i.e. write-after-write (WAW) dependence violationsrarely ajthoughequake shows diminishing returns with eight proces-
occurred). Inbuk andequake , we see fairly random access pat- sors. (Note that these results differ slightly from those given ear-
terns for many of the stores; these cases are nota problem since thiger in Section 5.1, since we are now simulating an extra level of
likelihood of successive epochs storing to the same cache line isinterconnection in the memory hierarchy.)
low. The case that we did see that can be pathologically bad (€.9., Now consider the multirode architectures, where the commu-
in ijpeg) is when each loop iteration stores the next sequential pication latency between nodes is twenty times larger than that
element in an array. Fortunately this case is easy to identify andthin a node (i.e. 200 vs. 10 cycles). As we see in Figure 11, both
fix: we simply unroll (or strip-mine) the loop body such that each puk andequake speed up well on many of these muitide ar-
epoch gets a block of iterations that perform all of the sequen- chitectures. Given a fixed total number of processors, there are
tial stores to a given cache line. In other words, we bigek- both advantages and disadvantages to splitting those processors
cyclicrather tharcyclic (aka “round-robin”) scheduling, whichis across multiplenodes. One advantage is that the total amount of
a common technique for avoiding the analogous problefalsé secondary cache storage increases (since there is a fixed amount
sharingin traditional Shared'memory multiprocessors. Since |00p per ch|p)’ this is the reason Why both tAe4 and4x2 Conﬁgura_
unrolling (or strip-mining) is also attractive in TLS for the sake tjons are faster than th&x8 configuration forequake . On the
of creating larger epochs to help reduce the relative communica-other hand, an obvious disadvantage is that having more nodes
tion overhead, this may be a valuable technique for machines thatincreases the average cost of inter-processor communication; for
support TLS but not mitiple writers. this reason, th@x4 and 4x2 configurations are botslowerthan
. S . the 1x8configuration forbuk .
5.4 SpeCUIat'.Ve Invalidation of Non-Speculative Overall, we observe that the best performance for each applica-

Cache Lines tion was achieved on a muliiede architecture2x8for buk, and

As discussed earlier in Section 2.6.1, one design choice is2x4for equake . These region speedups of 331% and 164% for
whether a speculative invalidation can invalidate a cache line in abuk andequake , respectively, translate into program speedups
non-speculative state. Recall that our baseline scheme did not alef 75% and 39%. These results demonstrate that our mechanisms
low this, with the goal of not impeding the progress dfcanefree for flushing the ORB and passing the homefree token are scalable,
epoch. However, as we see in Figure 10, bmtk andijpeg and do not limit the scope of our TLS scheme.

11

Alan Berenbaum
11

6. Conclusions

(71

We have presented a cache coherence scheme that supports
thread-level speculation on a wide range of different parallel archi-

tectures, from single-chip multiprocessors or simultaneously mul-

tithreaded processors up to large-scale machines which might use

single-chip multiprocessors as their building blocks. Our exper-

imental results demonstrate that our baseline TLS scheme offers
absolute program speedups ranging from 8% to 46% on a four-
processor single-chip multiprocessor, and that two of the appli- (10]
cations we studied achieve even larger speedups (up to 75%) on
multi-chip architectures. We observe that the overheads of our[11]
scheme are reasonably small—in particular, the ORB mechanism
used to commit speculative modifications at the end of an epoch

is not a performance bottleneck, and only a relatively small ORB

(e.g., twelve entries) is necessary.

[12]

We make two observations regarding the applications we stud-

ied. First, we notice that some applications are sensitive to com-
munication latency and are likely to perform well only in a tightly-

coupled environment (e.gcompress andijpeg), while others
are also suitable for larger-scale multiprocessors witiyer com-
munication latencies (e.ghuk andequake). Second, we ob-
serve that the applications benefit from Tis8hout special sup-

port for multiple speculative writers, in parebause we can use

[13]

[14]

loop unrolling to avoid problems with false dependence violations. [15]
Our scheme does not require a large amount of new hardware;

in fact, we are currently implementing a purely software-based

version of our scheme within a software DSM system. As parallel [1g]

architectures become increasingly commonplace in the future on

a wide variety of scales, we expect that thread-level speculation

will become an increasingly important technique for helping com- [17]

pilers automatically create parallel programs to exploit all of this

processing potential.

7. Acknowledgments

(18]

This research is supported by a grant from NASA. Todd C.

Mowry is partially supported by an Alfred P. Sloan Research Fel-

lowship.

References

[1] A.V.Aho, R. Sethi, and J. D. UllmanCompilers: Principles, Tech-
niques and ToolsAddison Wesley, 1986.

[2]
In MICRO-31, December 1998.

C. Amza, S. Dwarkadas A.L. Cox, and W. Zwaenepoel.

(3]

H. Akkary and M. Driscoll. A Dynamic Multithreading Processor.

Soft-

[19]

[20]

[21]

[22]

ware DSM Protocols that Adapt between Single Writer and Multi-
ple Writer. InProceedings of the Third High Performance Computer

Architecture Conferenc@ages 261-271, February 1997.

[4] J.B. Carter, J.K. Bennett, and W. Zwaenepoel. Techniques for re- [23]
ducing consistency-related information in distributed shared memory

systems.ACM Transactions on Computer Systeti3(3):205-243,
August 1995.

[5]
sors. InProceedings of ISCA 23une 2000.
[6]

namic Reordering of Memory ReferencelEEE Transactions on
Computers45(5), May 1996.

M. Cintra, J. F. Manthez, and J. Torrellas. Architectural Support for
Scalable Speculative Parallelization in Shared-Memory Multiproces-

M. Franklin and G. S. Sohi. ARB: A Hardware Mechanism for Dy-

[24]

[25]

12

S. Gopal, T. Vijaykumar, J. Smith, and G. Sohi. Speculative Version-
ing Cache. IrProceedings of the Fourth International Symposium on
High-Performance Computer Architectyféebruary 1998.

] M. Gupta and R. Nim. Techniques for Speculative Run-Time Paral-

lelization of Loops. INSupercomputing '98November 1998.

] L. Hammond, M. Wlley, and K. Oukotun. Data Speculation Support

for a Chip Multiprocessor. IProceedings of ASPLOS-V|Dctober
1998.

J. Kahle. Power4: A Dual-CPU Processor Chillicroprocessor
Forum '99, October 1999.

P. Keleher, A. L. Cox, S. Dwarkadas, and W. Zwaenepoel. Tread-
Marks: Distributed Shared Memory on Standard Workstations and
Operating Systems. Proceedings of the Winter Usenix Conference
January 1994.

T. Knight. An Architecture for Mostly Functional Languages. In
Proceedings of the ACM Lisp and Functional Programming Confer-
ence pages 500-519, August 1986.

V. Krishnan and J. Torrellas. The Need for Fast Communication in
Hardware-Based Speculative Chip Multiprocessorsnternational
Conference on Parallel Architectures and Compilation Techniques
(PACT) October 1999.

J. Laudon and D. Lenoski. The SGI Origin: A ccNUMA Highly
Scalable Server. IRroceedings of the 24th ISCpages 241-251,
June 1997.

P. Marcuello and A. Gonzlez. Clustered Speculative Multithreaded
Processors. IRroc. of the ACM Int. Conf. on Supercomputidgne
1999.

K. Olukotun, B. A. Nayfeh, L. Hammond, K. Wilson, and K. Chang.
The Case for a Single-Chip Multiprocessor. MRroceedings of
ASPLOS-VIIOctober 1996.

J. Oplinger, D. Heine, and M. S. Lam. In Search of Speculative
Thread-Level Parallelism. IRroceedings of the 1999 International
Conference on Parallel Architectures and Compilation Techniques
(PACT'99) October 1999.

G. S. Sohi, S. Breach, and T. N. Vijaykumar. Mscalar Processors.
In Proceedings of ISCA 2pages 414-425, June 1995.

J. G. Steffan, C. B. Colohan, and T. C. Mowry. Architectural Sup-
port for Thread-Level Data Speculation. Technical Report CMU-CS-
97-188, School of Computer Science, Carnegie Mellon University,
November 1997.

J. G. Steffan and T. C. Mowry. The Potential for Using Thread-
Level Data Speculation to Facilitate Automatic Parallellization.
In Proceedings of the Fourth International Symposium on High-
Performance Computer Architectyféebruary 1998.

M. Tremblay. MAJC: Microprocessor Architecture for Java Com-
puting. HotChips '99 August 1999.

J.-Y. Tsai, J. Huang, C. Amlo, D.J. Lilja, and P.-C. Yew. The Su-
perthreaded Processor ArchitectufeEE Transactions on Comput-
ers, Special Issue on Multithreaded Architectya®(9), September
1999.

D. M. Tullsen, S. J. Eggers, and H. M. Levy. Simultaneous Multi-
threading: Maximizing On-Chip Parallelism. Rroceedings of ISCA
22, pages 392-403, June 1995.

K. Yeager. The MIPS R10000 superscalar microprocesdfE
Micro, April 1996.

Y. Zhang, L. Rauchwerger, and J. Torrellas. Hardware for Specula-
tive Parallelization of Partially-Parallel Loops in DSM Mproces-
sors. InFifth International Symposium on High-Performance Com-
puter Architecture (HPCA)pages 135-141, January 1999.

Alan Berenbaum
12

