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Abstract—Incentive strategy is important in participatory sens-
ing, especially when the budget is limited, to decide how much
and where the samples should be collected. Current auction-
based incentive strategies purchase sensing data with lowest
price requirements to maximize the amount of samples. However,
such methods may lead to inaccurate sensing result after data
interpolation, particularly for participants that are massing in
certain subregions where the low-price sensing data are usually
aggregated. In this paper, we introduce weighted entropy as a
quantitative metric to evaluate the distribution of samples and
find that the distribution of data samples is another important
factor to the accuracy of sensing result. We further propose a
greedy-based incentive strategy which considers both the amount
and distribution of samples in data collection. Simulations with
real datasets confirmed the impact of samples distribution to
data accuracy and demonstrated the efficacy of our proposed
incentive strategy.

I. INTRODUCTION

Participatory sensing employs ordinary citizens to collect

and share sensing data from their surroundings using their mo-

bile phones [1]. It has been widely deployed for environmental

sensing, such as noise [2] and air quality monitoring [3]. Its

advantage is being able to gather widely-spread sensing data

with reduced deployment cost.

Incentive mechanism serves as an important basis for en-

vironmental participatory sensing applications. The general

procedure of incentive mechanism is outlined in Fig.1. The

task publishers request to the central server for sensing data

of certain geographic regions at specific time periods with

incentive budgets. The entire region is divided into a set of

subregions in both spatial and temporal dimensions according

to the granularity requirement of the tasks [4]. In each subre-

gion, mobile users are selected by the central server as sensing

data collector according to the participant selection strategy.

The incentive budget is distributed among the selected mobile

users. When the incentive budget is not adequate for obtaining

data from all the subregions, the missing data will be recon-

structed by interpolation methods [5]. Data reconstruction is

conducted considering the fact that the environmental data in

nearby subregions are usually correlated.

Auction-based approach [6], [7] was firstly proposed as

standard incentive mechanisms to maximize the amount of

data samples collected by participants. Nevertheless, the

auction-based approach suffers from high randomness of price

claims in each subregion. The approach ignores the temporal

and spatial distribution of the samples, which may cause

missing data concentrated in certain subregions and lead to

inaccurate data reconstruction results from interpolation.

Different from existing work, we propose a novel incentive

mechanism that can achieve high data quality considering

the temporal and spatial distribution of the sensing data. It

allocates incentives targeting at minimizing mean error of the

sensing result instead of maximizing the number of samples.

We study the relations among the average data error, the

amount and the distribution of data samples and discover that

both larger amount and more even distribution of collected

samples can improve the accuracy of sensing result. We

formulate incentive allocation as an optimization problem and

propose a greedy algorithm to solve it.

The main contributions of the paper are as follows:

1) We introduce an entropy-based metric to evaluate the

uniformity of sample distribution. The mean error between

the reconstructed data and the ground truth is captured by a

function of the amount and distribution of data samples.

2) We formulate an optimization for incentive allocation

and propose a greedy-based incentive allocation strategy to

minimize the mean error of the sensing data.

3) We demonstrate the procedure and evaluate the perfor-

mance of the proposed incentive allocation mechanism by sim-

ulations using real datasets. The results show that compared

with the reversed auction approach, our approach can improve

data accuracy by 32%, recruit 42% less participants and

provide 72% more incentives to each participant in average.

The rest of the paper is organized as follows. Section 2

describes the related works. Section III describes the appli-

cation scenario and formulates the mean error of the sensing

data. Section IV introduces the entropy metric for measuring

the distribution uniformity of data samples, and discusses the

relations between the mean error and the amount and distribu-

tion of data samples. Sections V and VI present the proposed

incentive allocation strategy and evaluate its performances by

extensive simulations using real datasets. Finally, Section VII

concludes this paper.

II. RELATED WORKS

Lee et al. [6] firstly introduce reversed-auction-based incen-

tive strategy, the basic idea of which is that the participants

collects sensing data and sends data together with their bid
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price to the central server, while the central server selects the

lowest bid participants for data collection. Existing researches

are mainly based on it, e.g. [7] further considers maximizing

the overall coverage of collected samples. However, none of

them have considered the distribution of samples.

Mendez et al. [5] first use data interpolation method in data

complement, for the collected samples may not fully cover

the entire targeted region. The paper further points out that

since in a real participatory sensing system the density of

the measurements are not uniform, the use of incentives is

necessary in order to encourage the users to collect data in

the required locations, and in some way, control the density

of the measurements per area. This inspires us to dig into

controlling the distribution of samples by incentives.

III. SYSTEM MODEL AND NOTATIONS

A typical participatory sensing system for environmental

data collection is shown in Fig.1. It consists of a sensing task

in a targeted region, a central server and a set of mobile users

walking freely in that region. The aim of the sensing task is

to gather sensing data of a specific environmental data type.

The budget of the task is B. Table I shows the list of notations

used in this paper.

According to [5], when the division of subregions are fine-

grained, using one sample per subregion can provide enough

sensing data accuracy for a sensing task. The entire sensing

region and the entire lasting time of the sensing task are

divided into a set R = {r = 1, 2, ..., R} of subregions

according to granularity requirement of task publisher. In each

subregion, only one sample of the targeted environmental

parameter is required.

The procedure of incentive mechanism consists of two

phases: First, in each subregion, all participants send the

central server their bid price claims, and the lowest incentive

requirement (bid claim) in each subregion is denoted as

I = {ir|∀r ∈ R}. Second, a set X ⊆ R of subregions

are selected by the central server. The sum of their incentive

requirements should to be less than or equal to the budget, i.e.∑
∀r∈X ir ≤ B. For each selected subregion, the participant

with the lowest bid price takes a sample, then uploads it to

the central server and gets paid by the central server. In this

paper, we assume that the samples taken by mobile users are

close to the ground truth, which means that the measurement

error of mobile devices is insignificant.

It is worth noting that in real-world scenarios, there may

be no mobile users at all in some subregions, or the entire

task budget is not adequate to cover all the subregions, only

some of the subregions may have sensing results on them.

We use X , i.e. X ⊂ R to represent the subregions that

have data samples, and thus R \ X represents the subregions

without data samples. The sensing result in subregions without

data samples has to be interpolated from data samples in

X . For simplicity, we use a popular and easy-to-implement

interpolation method, inverse distance weighting(IDW) [8], as

an example of the interpolation method in this paper. The

missing data are calculated by a weighted average of the data

TABLE I
LIST OF NOTATIONS

Notation Explanation
R a set of subregions

ir the lowest price on each subregion

B budget constraint

ε mean error of sensing result

X a set of selected subregions. Incentive will be paid to participants on them

gr Ground truth of each subregion r
sr Sensing result of each subregion r by samples or interpolation

ε average error of sensing result compared with ground truth

α(X ) total amount of samples

β(X ) distribution of samples

available at the known points, while the inverse of the distance

to each known point is used as weights.
Let G = {gr|∀r ∈ R} denote the ground truth on all

subregions R. For those subregions with data samples, let S =
{sr|∀r ∈ X} denote the sensing results. Since the samples are

close to the ground truth, we have gr ≈ sr, ∀r ∈ X . For those

subregions without data samples, let S ′ = {s′r|∀r ∈ R \ X}
denote the interpolated results, which can be denoted as Eq.(1)

according to IDW.

s′r1 =
∑
∀r2∈X

dr1r2sr2

/ ∑
∀r2∈X

dr1r2 , ∀r1 ∈ R \ X , (1)

where, dr1r2 represent the distance between subregion r1 and

r2.
We use ε to denote the average error of the sensing results

to ground truth of all subregions R, as the error mainly

accumulates in subregions without data samples, we have:

ε ≈
∑

∀r∈R\X

|gr − s′r|
gr

/|R|, (2)

where |R| represents the total number of subregions.
The aim of this paper is to achieve sensing results of high

accuracy for the task publishers. It can be seen from Eq.(2)

that the average error is related to the subregions with data

samples, S . We will discuss in detailed how the distribution

of S generally influences the mean data error ε in the next

section.

IV. MEAN ERROR AND CORRELATION WITH SAMPLES

Intuitively, the accuracy of the interpolated result is related

to the amount of samples collected. However, a large amount

of data samples does not guarantee better interpolation results.

For example, as shown in Fig.2, different distribution of the

same amount of samples can lead to different mean errors.

We generate 12 × 12 subregions and the ground truth in

each subregion is continuous in the spatial domain. If all data

samples are collected in the middle of the entire region, it will

lead to a less accurate interpolation result (ε = 0.41), as shown

in “Samples Set I”. On the contrary, if the distribution of the

samples is uniform, a better sensing result can be achieved (

ε = 0.17), as shown in “Samples Set II”.
Hence, we consider both the amount and the distribution

of data samples X , denoted by α(X ) and β(X ) respectively.

We introduce how to calculate α(X ) and β(X ) from X in the

following.
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Allocation

Task 
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Participant 
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Targeted Region

The server pays the selected participants to get data samples

Incentive Budget

The lowest incentive request 
in each subregion

Participants send their incentive requests

Fig. 1. The considered participatory sensing scenario showing that the entire targeting area is divided into many subregions according to environmental
data requirement of task publisher. A subset of participants in different subregions are selected to carry out the sensing tasks.

Fig. 2. The impact of distribution of collected data

A. Amount of Samples

As discussed earlier, a set of subregions X are supposed

to be selected and paid. Only one data sample is selected

and paid in each subregion, so that the amount of selected

subregions with samples is equal to the amount of data samples

in the entire region. The amount of samples α(X ) can then

be calculated by the cardicardal of X as:

α(X ) = |X |. (3)

B. Distribution of Samples

A metric β(X ) is needed here to indicate the distribution of

samples, where higher value of β(X ) should be given to better

sample distribution. To evaluate the distribution of samples, we

divide the entire region into several discrete areas. Each area

further consists of several subregions as shown in Fig.3(a).

The metric β(X ) should have the following characteristics:

1) In general, if the collected samples are more uniformly

distributed in the areas, β(X ) should indicate a better distri-

bution;

2) The importance of data in different areas may vary with

the environmental change. For example, Fig.3(b) shows the

reading of noise level in an urban area [5]. The noise level

changes tremendously in area “A1”, while changes steadily in

A subregion r

An area a

Fig. 3. The weight of areas could be different in calculating the sample
distribution metric

area “A2”. If more data are collected in subregion A1, the

results from interpolation will be more accurate. intuitively,

higher weight should be given to areas with more tremendous

environmental change, i.e. area “A1” in Fig.3(b).

Considering the above characteristics, we introduce

weighted entropy to measure the distribution of samples,

β(X ). The entropy of a source alphabet is widely taken as the

measurement of uniformity [9], [10]: a source alphabet with n

symbols has the highest possible entropy when the probability

distribution of the alphabet is uniform. Based on the general

form of entropy, weighted entropy is used in information

theory when the importance of symbols are different [11].

In our case, the entire region is divided into a set A = {a =
1, 2, ...A} of areas. We use Xa, ∀a ∈ A to denote the set of

samples that falls in each area. The probability of a sample

falls in each area is calculated by:

pa(X ) =
|Xa|
|X| , ∀a ∈ A. (4)

Besides, the weight of each area is determined by how

tremendously the environmental data change in different sub-

regions. When the data in an area change steadily, less data

samples are required to obtain accurate sensing results. Thus,

the weight of each area is calculated by the standard deviation
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of data readings in each subregion:

wa =

√√√√∑
∀r∈a

(gr −
∑
∀r∈a gr
|a| )

2

, ∀a ∈ A. (5)

Thus, β(X ) can be calculated by:

β(X ) = −
∑
a∈A

wapa(X ) log pa(X ). (6)

From Eq.6, the calculation of β(X ) consists of two param-

eters, pa and wa. However, the calculation procedure of wa

involves gr, ∀r ∈ R, which is supposed to be unknown till

the incentive allocation procedure is over. In this paper, we

consider the environmental data to be spatially and temporally

correlated following certain pattern from time to time. Thus,

wa, ∀a ∈ A can be obtained from historic sensing results by

using the former collected data as gr. As a result, wa, ∀a ∈ A
can be taken as constant, and β(X ) is only related to the

regional distribution Xa, ∀a ∈ A of X .

C. Relationship of ε, α(X ) and β(X )

The change of environmental data depends on both the loca-

tion and time, so it is hard to predict the precise interpolation

error from the amount α(X ) and distribution β(X ) of samples

collected. For example, for the simulated data in Fig.2, the

distribution of samples is more important than the amount of

samples. For the data that have strong correlation in the spatial

domain, small amount of uniformly distributed samples can

accurately complete the sensing results. On the other hand,

for the noise data in Fig.3, the amount of samples plays a

more important role.

We observe that there is a stable correlation between the

data accuracy and the amount α(X ) and distribution β(X ) of

samples. The interpolation accuracy increases with the amount

of samples and the uniformity of their distribution. To express

this relation, we use a function of ε = f
(
α(X ), β(X )

)
to

correlate ε, α(X ) and β(X ). We use Eq.7 as a basic form of

function f .

ε = f
(
α(X ), β(X )

)

= c1 − c2 ∗ α(X )− c3 ∗ β(X ),
(7)

where c1, c2 and c3 are constants depending on the environ-

mental settings. c2 and c3 denote how α(X ) and β(X ) affect

ε respectively. We use Eq.7 for two reasons: First, in such

form, the changes of ε, α(X ) and β(X ) follow a general

trend. Second, as mentioned above, there are still occasions

that the sensing data change differently as time passes. Eq.7

can capture these variations with a simple form. Based on

the environmental settings, the parameters c1, c2 and c3 can

be obtained by curve fitting using historic sensing results. We

will demonstrate this procedure in Section V.

V. INCENTIVE MECHANISM

The mean data error in Eq.2 can be formulated as the

objective function in the optimization problem related to the

amount and the distribution of samples. According to Eq.7,

we have:

min(ε) = min(c1 − c2 ∗ α(X )− c3 ∗ β(X )). (8)

To minimize the objective function, we have to find a set

of subregions X that can maximize the following objective

function and satisfy the budget constraint:

X ∗ = argmax
X

(α(X ) +
c3
c2

∗ β(X )),

s.t. :
∑
∀r∈X

ir ≤ B .
(9)

We propose an incentive strategy to find the targeted set X
with a greedy algorithm, in which the subregions are selected

iteratively. The improvement of accuracy in each subregion

is measured by the rate of increase in the objective function

in Eq.9 and its incentive request ir. In each iteration, the

most cost-effective subregion will be selected. The proposed

algorithm is given in pseudocode (see Algorithm 1) and the

detailed descriptions are provided below.

Step 1: Initialization
At the beginning of incentive strategy, all price claims from

participants are gathered to form ir, ∀r ∈ R. All subregions

are divided into two sets, the selected set S1 and the unselected

set S2. In this step, all subregions are put in the unselected

set S2, and S1 is set to ∅.

Step 2: Selection of one subregion in each iteration step
For each subregion r in S2, if it is selected and moved from

S2 to S1 to form a new set S1, the change of the objective

function in Eq.9 will be:

α(S1 + r) +
c3
c2

∗ β(S1 + r)− α(S1)− c3
c2

∗ β(S1)

=
1

|R| +
c3
c2

∗ (β(S1 + r)− β(S1))
(10)

In subregion r, the lowest incentive request is ir. If r is

selected, the change of the objective function in Eq.9 per unit

incentive can be calculated by:

1
|R| +

c3
c2

∗ (β(S1 + r)− β(S1))

ir
. (11)

A subregion r that provides the highest efficiency is selected

and moved from S2 to S1 in each step of iteration. Incentive

ir is allocated to the selected subregion r and paid to the

participant with the lowest incentive request to get the data

samples.

Step 3: Looping
Repeat step 2 until the given budget B runs out or all the

subregions are selected.

VI. SIMULATIONS

We conduct extensive simulations using real datasets to

evaluate the performance of the proposed incentive strategy.
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Algorithm 1 The proposed incentive mechanism
Require:

budget B; SubregionsR; Lowest incentive request on each subregion ir, ∀r ∈ R;

Areas divisionA; weight of entropy wa∀a ∈ A
Ensure:

Selected subregion set X∗
;

1: set of unselected subregions S2 = R, set of selected subregions S1 = NULL
2: incentive_left = B
3: while 1 do
4: flag← 0
5: selected_id← 0
6: max_eff← 0
7: for subregions r ∈ S2 do
8: if ir > incentive_left then
9: continue

10: end if
11: compute r’s efficiency Effr in (11)
12: if Effr > max_eff then
13: selected_id← r
14: max_eff← Effr

15: flag← 1
16: end if
17: end for
18: if flag = 0 or selected_id = 0 then
19: break
20: end if
21: S1 ← S1 + selected_id
22: S2 ← S2 − selected_id
23: incentive_left← incentive_left− iselected_id
24: end while
25: Return: final set of selected subregions X∗ = S1.

A. Setup Procedure

We use the environmental sensing data collected by sta-

tionary WSNs as ground truth. The dataset was collected by

LUCE (Lausanne Urban Canopy Experiment) [12] which was

a measurement campaign took place in the EPFL campus.

Besides, we use the trajectory dataset [13] collected in a theme

park to simulate the mobility of participants. The trajectory

dataset contains 41 mobility traces on a particular day. We

take the following steps to setup the experiment:

1) Setup of subregions R and incentive requests ir: The

rectangular sensing field is divided into 4× 4 subregions, the

entire 24 hours of lasting time is divided into 24 time slots,

thus |R| = 16× 24 = 384. We feed the mobility traces of the

41 participants into the sensing field. The incentive request

of each participants is randomly generated between [1, 20].

We calculate ir, ∀r ∈ R according to the trajectories of the

participants and their incentive requests.

2) Calculation of wa, c2 and c3: In the training phase, we

use the temperature data collected on December 1st, 2006 as

training data to get the ground truth gr, ∀r ∈ R. The sensing

field is divided into |A| = 16 area. Each area further contains

2×2×4 subregions. The weight wa of each area is calculated

according to Eq.5. We then generate 40,000 sets of selected

subregions of different amount α(X ) and different distribution

β(X ). For each set, IDW is used to reconstruct the sensing

result for subregions without any samples. We then calculate

the mean error ε using the sensing result after interpolation

and the ground truth of each set according to Eq.2. Finally,

we conduct curve fitting to obtain c1, c2, c3 in Eq.7 using the

40,000 generated sets of α, β and ε.

B. Results

1) The impact of sample distribution to data accuracy:
We calculate the mean data error ε(X ) considering different

amount and distribution of the 40,000 generated sets of X .

Fig.4(a) shows that the distribution of samples significantly

impacts the accuracy of the sensing result. Given the same

amount of samples, the mean error of uniformly distributed

samples can be 92% lower than samples with uneven distri-

bution.

2) Our approach vs. reversed auction: We input all the

40,000 sets of ε(X ), α(X ) and β(X ) into Matlab and use its

curve fitting module to calculate c1, c2, and c3 from Eq.7. The

result is given by:

ε = 0.3777− 0.0642α− 0.1247β (12)

.

From this expression we observe that the sample distribution

plays a more important role than the amount of samples in

this case. Fig.4(b) shows the predicted error based on Eq.12.

Although Fig.4(a) and Fig.4(b) look different, the average

distance between the actual error and the predicted error of

all the 40,000 sets of samples is 0.021, which is rather small

and acceptable.

We use the temperature data collected on December 8st,

2006 as ground truth to compare the performance of our

approach with the reversed auction approach [6]. The mean

error and the amount of selected regions of the two approaches

are plotted in Fig.4(c) and Fig.4(d) varying the incentive

budget B.

From Fig.4(c) we observe that the difference of mean error

between our approach and reversed auction is larger when

the budget is inadequate. When the budget is 20, the error

of reversed auction is 0.248 while the error of our approach

is only 0.193 (32% less). This is because our approach gives

higher incentive to collect data in dispersive subregions, while

the reversed auction approach only selects the subregions with

the lowest incentive requests.

From Fig.4(d) we observe that the amount of selected

subregions are much smaller in our approach compared with

the reversed auction approach. Given a sufficient budget, the

data accuracy of the two approaches are almost the same.

Nevertheless, our approach requires 42% less data samples,

which can reduce the energy consumption of the mobile

devices. It also gives 72% more incentive to each participant

on average, which can encourage mobile users with high

quality data to participate in data collection.

VII. CONCLUSIONS

In this paper, we proposed a novel incentive mechanism

that can achieve higher data accuracy with constrained budget

for participatory sensing. Different from existing incentive

strategies, our approach considers not only the total amount of

samples but also the distribution of samples in data collection.

We studied and formulated the relationship among the mean

IEEE WCNC'14 Track 4 (Services, Applications, and Business)

3365



0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0

0.1

0.2

0.3

 

 

M
ea

n 
E

rro
r

Distribution of samples

 Amount = 0.13
 0.26
 0.39
 0.52
 0.65
 0.78
 0.91

(a) Mean error of different distribution

0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0

0.1

0.2

0.3

 

 

 Amount = 0.13
 0.26
 0.39
 0.52
 0.65
 0.78
 0.91

E
rro

r P
re

di
ct

io
n

Distribution of samples

(b) Curve fitting result

0 200 400 600
0.05

0.10

0.15

0.20

0.25

 

 

M
ea

n 
E

rro
r

Incentive budget 

 Reversed auction
 Our approach

(c) Mean error under different budget

0 200 400 600
0

50

100

 

 

A
m

ou
nt

 o
f s

am
pl

es

Incentive budget

 Reversed auction
 Our approach

(d) Amount of samples under different budget

Fig. 4. Simulation Results

data error, the amount of samples and the distribution of sam-

ples. The minimization of mean data error can be converted

into an optimization problem for incentive allocation in each

subregion. We proposed a greedy incentive allocation algo-

rithm to solve the optimization problem. Extensive simulations

with real datasets demonstrated the efficacy of our proposed

strategy. Our incentive allocation strategy can increase the

data accuracy and the benefits of participants significantly

compared with the existing reversed auction approach.
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