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Abstract—Air pollution has become one of the most pressing
environmental issues in many countries, including China. Fine-
grained PM2.5 particulate data can prevent people from long
time exposure and advance scientific research. However, existing
monitoring systems with PM2.5 stationary sensors are expensive,
which can only provide pollution data at sparse locations. In
this paper we demonstrate for the first time that camera on
smartphones can be used for low-cost and fine-grained PM2.5
monitoring in participatory sensing. We propose a Learning-
Based method to extract air quality related features from images
taken by smartphones. These image features will be used to
build the haze model that can estimate PM2.5 concentration
depending on the reference sensors. We conducted extensive
experiments over six months with two datasets to demonstrate
the performance of the proposed solution using different models
of smartphones. We believe that our findings will give profound
impact in many research fields, including mobile sensing, activity
scheduling, haze data collection and analysis.

I. INTRODUCTION

Air pollution has been a serious concern in many developing
countries such as China. Various types of pollution have
increased as the country becomes more industrialized, which
has caused widespread environmental and health problems.
Measurements in January 2013 showed that the density of
particulate matter smaller than 2.5 micrometres was literally
off the chart − higher than the maximum 755 µg/m3 that was
measurable by the sensors in Beijing.

Real-time air quality monitoring is very useful for scientists
and citizens to control air pollution and protect human health
[1]. In the past decade, many studies highlighted the impact of
ambient airborne particulate matter (PM), especially PM2.5,
as a critical pollutant leading to different cardiopulmonary
diseases and lung cancer. Providing real-time PM2.5 mea-
surements can help people to schedule their daily routines to
avoid exposure to airborne carcinogens.

However, existing PM2.5 monitoring systems often fail
to provide fine-grained measurements in large area due to
the high hardware cost. Take Beijing as an example, only
22 stationary sensors are deployed to collect PM2.5 data
(see Fig.1). Considering Beijing with an area of 4,055,000
acres, the sparse distribution of sensors can provide only
coarse measurements in the city. Nevertheless, deploying large
amount of sensors is not feasible, since high quality PM2.5
sensors cost tens of thousands of dollars and are hard to be
maintained.

Since stationary PM2.5 sensors are expensive, we have
been thinking of utilizing low quality portable sensors carried

Fig. 1: Air quality measurement stations in Beijing

Fig. 2: Photos taken in Beijing from Jan to Jul 2014

by mobile users. One issue is that existing smartphones are not
equipped with pollution sensors. Although external PM2.5
sensors can be considered, they are costly, inaccurate, and
inconvenient to bring around. In the meantime, many people
take photos and publish them through social network these
days. We observe that the photos taken at the same place
may look quite differently depending on the air quality of
the day (see Fig.2 as an example). This inspires us to exploit
the potential of using smartphone photos to estimate PM2.5
concentration around the city.

In this paper, we propose a novel approach to infer PM2.5
concentration from photos taken by smartphones. Based on
lightweight image processing techniques, a participatory sens-
ing system for air pollution monitoring can be built without
any additional hardware to the smartphones. We investigate
the relationship between the haze model [2] and the image,
in which relevant features are extracted to estimate the haze
model. Based on the haze model, we further deduce the
PM2.5 concentration according to the physics models [3].
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Fig. 3: System architecture

Fig. 4: Data flow of the system

Our participatory sensing system enables mobile users to take
photos, estimate PM2.5 concentration, and share their results
with other people in the city.

The main contribution of this paper is threefold:
1) To the best of our knowledge, we are the first to propose

and develop a participatory sensing system that enables mobile
users to estimate PM2.5 concentration from photos taken
by their smartphones. It provides a low-cost and fine-grained
solution for monitoring PM2.5 concentration in wide area
utilizing the sensing and computing capability of the mobiles.

2) We propose a Learning-Based (LB) method to estimate
PM2.5 concentration. The LB method can infer PM2.5 con-
centration accurately utilizing readings from nearby reference
sensors to train the prediction model.

3) We collected 2 datasets using different smartphones in
different places with each dataset containing 3-month pho-
tos and corresponding PM2.5 readings in Beijing. We also
implemented the PM2.5 participatory sensing system, and
conducted extensive experiments on the datasets to evaluate its
accuracy with different smartphones in different places. The
experiment results demonstrated that our system can achieve
nearly 90% accuracy in PM2.5 estimation compared with the
ground truth.

The rest of this paper is organized as follows: Section II
presents the related work. Section III describes the design
of our participatory sensing system for PM2.5 estimation.
Section IV introduces the image features that are relevant to
the haze model and PM2.5 estimation. Section V describe
our proposed LB method for PM2.5 estimation. Section VI
explains the implementation and results of the experiments.
Section VII concludes this paper with future work.

II. RELATED WORK

Pollution monitoring has been widely studied in wireless
sensor networks. For example, AirCloud [4] has been pro-
posed as a PM2.5 monitoring system using particulate matter
monitors to infer PM2.5 concentration. With the popularity
of mobile phones, participatory sensing is considered to be a
novel approach for urban sensing [5], [6]. Several projects have
utilized mobile phones with other external sensors to monitor
air pollution, such as carbon monoxide (CO), nitrogen dioxide
(NO2), and ozone (O3) [7], [8]. Mobile phones with external
sensors can capture fine-grained air quality in the city, but they
are costly and bulky for ordinary users.

As camera becomes a standard component on smartphone,
different approaches have been proposed to measure atmo-
spheric visibility from images. For example, Kim et al. [9]
used HSI color difference to estimate the visibility of the
scene. In addition, spatial contrast, frequency contrast and dark
channel have been explored to estimate visibility and light ex-
tinction [10], [11]. The above work used high resolution digital
cameras to capture images at fixed locations. Nevertheless, the
impact and feasibility of using cameras on smartphones for
visibility estimation remains to be further explored. S. Poduri
et al. [12] used sky luminance to estimate air turbidity using
mobile phones. The users are asked to select a small area
of the sky. Then, the air quality is estimated by comparing
the intensity of the selected sky area with the sky luminance
model. However, this approach suffers badly from the low
sensibility of the camera and does not work on a cloudy day.

III. PM2.5 PARTICIPATORY SENSING SYSTEM

Figure 3 shows the network architecture of the proposed
PM2.5 participatory sensing system. It consists of a number
of mobile devices and a server in the cloud. Stationary PM2.5
sensors will also be connected to the server, so that their
readings can be used to train the prediction model and thereby
increasing data accuracy. The mobile users take photos using
their mobile devices equipped with cameras, which will be
used later for PM2.5 estimation. The mobile devices can
communicate with the server through 3G or Wifi. The server
collects the estimated PM2.5 results from the participants,
and uses data fusion methods to create a map of PM2.5
measurements in the city.

Figure 4 shows the detailed data flow of the system. The
basic flow of PM2.5 estimation includes the following steps:
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1) Data Collection: Original data such as photos, orienta-
tion data and GPS locations are collected by the mobile
devices.

2) Feature Extraction: Image features such as spatial con-
trast, HSI color difference and dark channel of the im-
ages are extracted from the original photos using image
processing techniques. We will discuss how to extract
those features in Section IV. We explore lightweight fea-
ture extraction techniques that can be carried out locally
on the mobiles to reduce communication overhead.

3) Modelling: The mobile client communicates with the
server to obtain PM2.5 readings from the nearest s-
tationary sensor and build up the PM2.5 estimation
model. A Learning-Based (LB) method is proposed to
estimates PM2.5 concentration using a series of photos
and readings from nearby stationary PM2.5 sensor for
training the model.

4) PM2.5 Estimation and Upload: Based on the PM2.5
estimation model and the extracted features, PM2.5
estimation can be carried out on the mobile client. The
estimated PM2.5 readings are then uploaded to the
server. The server aggregates all the uploaded PM2.5
estimations and creates a fine-grained PM2.5 map of
the city for visualization.

IV. PRELIMINARY

We exploit the possibility of estimating PM2.5 concen-
tration through participatory sensing with smartphone photos.
This relies on the image quality and the processing techniques
for feature extraction on smartphones. We use Mf to denote
the PM2.5 concentration estimated by a smartphone. Three
key image features, including the spatial contrast, the dark
channel, and the HSI color difference, are extracted from the
photos. Here, we first explain how these image features are
related to the haze model, and then show how to use these
features to estimate PM2.5 concentration.

A. How to Estimate PM2.5 from Haze Model?

Haze is an atmospheric phenomenon where dust, smoke and
other dry particulates (e.g. PM2.5) obscure the clarity of the
sky, which may make image blurry and brownish. The level of
degradation of the image can be used to build the haze model,
and then to estimate the PM2.5 concentration.

In theory, the relationship between the image and the
meteorological parameters of the haze model can be expressed
by an optical model [13] with

I(x) = J(x)t(x) +A(1− t(x)), (1)

where x is the 2D spatial position of the image, J(x) is
scene irradiance, and A represents the global atmospheric
light. I(x) is the observed image irradiance. Note that the
image irradiance is not the final image intensity that we get
from the photo, since different cameras will apply different
non-linear mappings from the observed image irradiance to
the image intensity in each pixel [14]. t(x) is an important
meteorological parameter called transmission, which indicates

how much light can pass through the atmosphere. t(x) ranges
from 0 to 1, which can be expressed by

t(x) = e−βd(x), (2)

where β is the light extinction and d(x) is the scene depth
that shows the distance between the object in the image and
the mobile user.

Since PM2.5 particulate is a major contributor to light
extinction [3], we plan to estimate the PM2.5 concentration,
Mf , based on the light extinction, β, using the theoretical
model proposed by [3].

β ≈ pMf , (3)

t(x) = e−pd(x)Mf , (4)

where p is a constant and set to 3.75 in urban area in the
theoretical model. Note that some special weather conditions
like rain, snow, fog may introduce random spatial and temporal
variations in images and hence must be dealt with differently
from clear weathers [2]. In this work, the PM2.5 estimation
algorithm only works under more common weathers (e.g.
sunny, cloudy) in Beijing.

We will use both Eq. (1) and Eq. (4) to estimate the PM2.5
concentration. They are applied in different ways according to
the types of image features.

B. Image Features

We explore the following three image features that are
mostly relevant to the haze model. These include the spatial
contract (Fsc), the dark channel (Fdc), and the HSI color
difference of the sky (Fhsi). These features will be use to
estimate the PM2.5 concentration, Mf .

1) Spatial Contrast (Fsc): The degradation of image caused
by haze can be observed from the decrease of image contrast.
As shown in Fig. 2, distant objects in images with haze lose
acuity. The magnitude of the image gradient can be used
to define the image contrast Fsc [10]. For a small block of
an image, we can assume that the depth d(x), the global
atmospheric light A, and the concentration of the particles
Mf are constant. We take gradient magnitude on both sides
in Eq. (1).

Fsc = |∇xI(x)| = |∇x(J(x)t(x) +A(1− t(x)))|
= t(x)|∇x(J(x))|
= e−pd(x)Mf |∇x(J(x))|.

(5)

By taking log on both sides in Eq. (5) and rearranging the
equation, we get

Mf = − 1

pd(x)
ln(Fsc) +

1

pd(x)
ln(|∇xJ(x)|), (6)

where Mf and ln(Fsc) are linear. In this work, we apply the
Sobel filter fsobel on I(x) to measure the gradient magnitude
of the image. Then, we have

Fsc = fsobel(I(x)). (7)
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2) Dark Channel (Fdc): The dark channel feature, recently
proposed by He [13], has been widely used in haze removal.
It is based on the assumption that there is at least one
color channel including pixels with very low or close to zero
intensity in most of the non-sky blocks of the image. The dark
channel of an image is defined by

Jdark(x) = min
y∈Ω(x)

{
min

c∈{r,g,b}
Jc(y)

}
, (8)

where Jc is one color channel of the scene radiance J and
Ω(x) is a small block around the pixel x. From the equation,
we can see that the dark channel value of a given pixel is the
minimum intensity of the three color channels of the image
block around it. From He’s observation, the dark channel of a
haze-free image should be zero. It is also called dark channel
prior, which has the property of

Jdark → 0. (9)

By applying dark channel prior to Eq. (1), we can get the
estimated transmission t̃(x) of the image by

t̃(x) = 1− min
y∈Ω(x)

{
min
c

Ic(y)

Ac

}
, (10)

where Ac is the estimated global atmospheric light. Ac is
picked from the highest intensity of the image, such as the
brightest 0.1 percent of the pixels in the dark channel. From
Eq. (4), we find that there is an exponential relationship
between the estimated t̃(x) and the PM2.5 concentration.
Thus, we choose t̃(x) as an image feature, denoted by Fdc,
and obtain

Mf = − 1

pd(x)
ln(Fdc). (11)

3) HSI Color Difference of Sky (Fhsi): The above two
features both make use of the non-sky area to estimate PM2.5
concentration. In fact, the sky area of an image can also be
used for PM2.5 estimation. The HSI color difference of sky
taken under different weather changes with the visibility and
the hazy conditions (as shown in Fig.2). It has been proven
that the HSI color difference has an exponential relation with
the light extinction [12], which can be modelled by

β = aeb∆D, (12)

where a and b are coefficients of the model, and ∆D is the
HSI color difference. If we take a sky image on a clear (haze-
free) day as a reference, the HSI color difference of a target
sky image is

Fhsi = ∆D =

√
(∆H)

2
+ (∆S)

2
+ (∆I)

2
, (13)

where ∆H , ∆S, ∆I are the hue, saturation, intensity differ-
ence between the target and the reference [12]. From Eq. (3)
and Eq. (12), we can then obtain

Mf =
a

p
ebFhsi . (14)

Fig. 5: Framework of client side for the LB approach

V. THE LB APPROACH

An overview of the Learning-Based (LB) approach is
shown in Fig. 5. The mobile user is required to take a
sequence of photos, Its=

{
I1
ts, I

2
ts, I

3
ts, · · · , Imts

}
, at the same

place for m days (see example in Fig. 2) to build a prediction
model using the PM2.5 data, Pts=

{
P 1
ts, P

2
ts, P

3
ts, · · · , Pmts

}
,

measured by the nearest PM2.5 station as ground truth.
By running image feature extraction and supervised learning
algorithm on the client side, we can establish a prediction
model ModelLB for one place using Its and Pts. Afterwards,
given a new photo I taken at the same place, we can acquire
the estimated PM2.5 concentration, Mf , using the prediction
model as

Mf = ModelLB (I, Its, Pts) . (15)

A. Image Preprocessing
Image preprocessing is needed before feature extraction

for two reasons. First, data filtering is required to exclude
invalid photos which may cause significant errors in the
estimation result. For example, a photo taken in rain or snow
can not be used to estimate PM2.5 concentration since it
generates random interference to the haze model [2]. We will
ignore photos taken in poor weather conditions. To accomplish
this, local weather data will be obtained from the Internet.
Second, as mentioned above, I(x) in Eq. (1) is the observed
image irradiance of pixel x. However, the imaging system of
smartphone camera often applies a non-linear mapping of the
observed image irradiance to the brightness of each pixel.
This transformation is called the camera response function
[14], which needs to be learned in order to recover the
image irradiance. We adopt a radiometric calibration method
proposed by [15], which uses a single image to estimate
camera response function based on linear RGB distribution
at color edges.

B. Feature Extraction
We use the three image features, Fsc, Fdc and Fhsi, de-

scribed in Section IV to estimate the PM2.5 concentration.
Note that we need only one of these features to perform
PM2.5 estimation.

C. PM2.5 Estimation
Both the ground truth PM2.5 data, Pts, and the features

extracted from Its will be used to train the prediction model,
ModelLB . By employing robust linear least square regression
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TABLE I: Details of the datasets

Data sources Dataset 1 Dataset 2
Location Scene 1: campus T3 Building Scene 2: BTV building

Orientation west west
Cameras Samsung S3 , HTC G14 digital camera

Capture time 14:00 8:00
Time span 2/27/2014 - 5/13/2014 10/1/2013 - 1/30/2014
Image size 1152 × 2048 560 × 600
Data size 100 100

on the features, Fsc and Fdc, we can learn the coefficients
in Eq. (6) and Eq. (11). Similarly, by applying non-linear
least square regression on feature Fhsi, we can obtain the
coefficients in Eq. (14). After that, we can use the extracted
features to estimate PM2.5 concentration. Take feature Fsc as
an example, we can estimate parameters w0 and w1 according
to Eq. (6), i.e. Mf = w1 ln(Fsc)−w0. For a given Fsc value,
we can then calculate the estimated Mf value.

It is worth mentioning that not all areas in the image are
effective for PM2.5 concentration. For example, objects that
are too far or too close using features Fsc and Fdc, or ground
objects using feature Fhsi may lead to significant errors in
PM2.5 estimation. Therefore, we develop a sliding window
approach to determine the best area of the image that gives the
highest correlation between the image features and the PM2.5
concentration. Then, we use only the feature value in the best
area to estimate PM2.5 concentration.

From our experiment, we found that Fdc is much more
effective than Fsc and Fhsi. We will show the accuracy of
these image features for PM2.5 estimation in Section VI.
Following this finding, we make use of the Fdc feature to
perform PM2.5 estimation in the LB approach.

VI. EXPERIMENTS

In this section, we implement the PM2.5 participatory
sensing system and conduct extensive experiments to evaluate
its performance. First, we describe the datasets and evaluation
metrics that we used in our experiments. Then, we present the
experiment results and analysis of the LB approach.

A. Experiment Settings

1) Datasets: We evaluate our system using two sets of
images collected at different locations. We use the PM2.5
readings published by different PM2.5 monitor stations in
Beijing [16], [17] as ground truth.

a) Image Data: The image data consists of 200 photos
taken over 6 months in Beijing as summarized in Table I.
Most of the weather conditions in photos are sunny or cloudy,
which are the most common weathers in Beijing. Datasets 1 is
collected by ourselves at different buildings and orientations in
campus, which is close to S8 station (see Fig.1). The photos
were captured by ourselves using two different smartphone
models (Samsung S3 and HTC G14) at the same time everyday
for nearly three months. In order to evaluate our approach at
a different location, dataset 2 is also used in our experiment.
It contains a set of images collected by Y. Zou [18] over four
months in the BTV building, which is near to S22 station (see
Fig.1).

b) Ground Truth Data: The PM2.5 readings reported
by the stations in Beijing are used as the ground truth to train
the prediction model and evaluate the estimation results in the
LB approach.

2) Evaluation Metrics: We use the coefficient of determina-
tion (R2) between the estimated PM2.5 concentration and the
ground truth data to evaluate the accuracy of the estimation.
Let p′i and pi be the ith estimated PM2.5 value and the
corresponding ground truth PM2.5 data in the testing set.
R2 can be calculated by

R2= 1−

n∑
i=1

(p′i − pi)
2

n∑
i=1

(pi − p̄)2
, (16)

where n is the size of the testing set and p̄ is the mean
of ground truth data in the testing set, and R2 ranges from
0 to 1. Higher R2 value indicates higher accuracy of our
prediction model. In addition, we calculate the mean absolute
error (MAE) between the estimated PM2.5 concentration and
the ground truth by

MAE =
1

n

n∑
i=1

|p′i − pi|. (17)

B. PM2.5 Estimation Accuracy

Table II summarizes the experimental results of R2 and
MAE for the three image features, including spatial contrast
(Fsc), dark channel (Fdc), and HSI color difference (Fhsi).
We observe that Fdc achieves the highest R2 and the lowest
MAE compared with the other two features. It performs the
best in all scenes regardless of the types of mobile phones in
our experiment. In contrast, Fhsi has the worst performance
among the three features. We find that it suffers seriously from
the cloud in the sky. This phenomenon leads to significant error
in the HSI color difference and results in poor performance
of the prediction model.

Fig. 6 compares the estimated PM2.5 concentration with
the ground truth in Scene 1 (using smartphones) and Scene
2 (using digital camera). We find that the PM2.5 estimation
result is closer to the ground truth in Scene 1 than in Scene 2.
This may be due to the low resolution of the camera in dataset
2. We also notice that the estimated PM2.5 values using HTC
G14 are often slightly higher than the ground truth in Scene
1. On the contrary, the estimated PM2.5 concentration values
using digital camera are often underestimated compared with
the ground truth in Scene 2. We believe that this is due to
an offset error from image processing, such as inaccuracy of
radiometric calibration in the preprocessing step.

Next, we investigate the accuracy of PM2.5 estimation
varying the size of training set, m. Intuitively, the larger m
is, the more accurate our prediction model and the longer the
training time. Fig. 7 shows the performance of our prediction
model in the LB approach varying m from 3 to 20. When
m increases, R2 increases and MAE decreases with less
fluctuation. R2 tends to be stabilized when m is greater than
15. This result implies that half-month of training data is
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(a) Scene 1 using Samsung S3 (b) Scene 1 using HTC G14 (c) Scene 2 using digital camera

Fig. 6: PM2.5 estimation results using feature Fdc in the LB approach

enough to build the prediction model accurately for PM2.5
estimation. From this result, we choose m to be 15 in our
system.

TABLE II: Summary of performance evaluation for the LB
approach

Features
Scene 1 Scene 2

HTC G14 Samsung S3 Digital Camera
MAE R2 MAE R2 MAE R2

Fsc 27.18 0.8463 27.06 0.8014 31.06 0.6662
Fdc 17.73 0.8689 14.54 0.8982 22.23 0.8361
Fhsi 33.52 0.7155 30.56 0.6996 32.23 0.6801

(a) R2 in Scene 1 using HTC
G14

(b) MAE in Scene 1 using HTC
G14

(c) R2 in Scene 1 using Sam-
sung S3

(d) MAE in Scene 1 using Sam-
sung S3

Fig. 7: Performance of the LB approach varying m

VII. CONCLUSIONS AND FUTURE WORK

In this paper, we proposed for the first time a feasible
solution for PM2.5 monitoring using camera on smartphones
through participatory sensing. It utilizes images taken by
mobile users in the city to provide real-time and fine-grained
PM2.5 concentration estimation at low cost. We designed and
implemented the PM2.5 monitoring system in a distributed
fashion leveraged the computation capability of the smart-
phones. The LB approach is proposed to estimate PM2.5
using a series of user’s photos. We have conducted extensive
experiments using different models of smartphones in different
places for six months. The experiment results demonstrated
that our system can achieve close to 90% accuracy in PM2.5
estimation compared with the ground truth.

For future work, we will open our system to the public
and conduct more experiments in different cities. We would
also like to investigate the impact of different weathers and
seasons in the system, since our system can not work when

it rains or snows. Other factors like PM10 or fog need to be
further investigated in PM2.5 estimation. In addition, we plan
to explore incentive mechanism [19] to motivate participants
take photos everyday in the LB approach, as well as privacy
protection mechanism [6] and energy-preserving methods [20]
to improve our system.
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