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Abstract—In this paper, the multidimensional output Gaus-
sian process (GP) is applied to model urban environmental data
collected by sensor networks. Measurements from sensors at
different locations are correlated. Moreover, we observe that
the pollution level in urban area is highly coupled with human
activities and shows periodic patterns accordingly. Based on
these observations, we discuss the design of mean and kernel
functions with two approaches: (1) composed kernel and max-
imum likelihood estimation of hyper-parameters; (2) Wiener-
Khinchin theorem based approximation of sample covariances.
To validate the models, the accuracy of interpolations given by
different approaches are compared. The experimental results
show that, for the application of interpolation, the dependent
GP with the approximated sample covariances as kernels can
provide better performance than the independent GP model
with composed kernels.
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I. INTRODUCTION

The global urbanization in recent decades has brought

more than half of the global population into cities, and

therefore produced many mega-cities worldwide. Urban en-

vironment pollution (especially air pollution) is one of the

major challenges for sustainable growth of our society. The

main air pollutants include carbon monoxide (CO), nitrogen

dioxide (NO2), and particulate matters (PM). According to

reports from World Health Organization (WHO) [1], long-

term exposure in highly polluted air environment leads to

several health risks, and consequently produces significant

economic costs for both individual citizen and the entire

society. Therefore, air quality information is important for

people who live in urban areas.

Many research projects have been conducted on develop-

ing urban environment monitoring systems [2, 3]. From the

quality of service (QoS) perspective, challenges of designing

sensor networks for urban environment monitoring exist

in two major aspects: data accuracy and service coverage.

The data accuracy is mostly determined by the quality

of sensing devices. For instance, the performance of low-

cost electrochemical sensors can be unstable (e.g., drift

of sensitivity) when the operating condition varies. The

challenge of service coverage appears when the energy and

density of sensor network are constrained, and therefore

available observations are often sparse in both time and

space. Interpolation [4] is a common approach to improve

the sensor network’s coverage. Most of data processing

methods require probabilistic models of the interested dy-

namics, which motivates our study in the this paper.

Gaussian process (GP) is a frequently used non-parametric

model in analysis of time series data. A GP is uniquely

defined by its mean and kernel functions. By carefully

designing the mean and kernel functions, we are able to

encode properties of the interested dynamics into the model.

Moreover, the multidimensional output GP (or dependent

GPs [5]) is capable of modelling the correlations between

measurements from different locations. The generality and

flexibility of GP makes it a powerful tool in time series

analysis [6]. In this work, we apply GP to model air

pollution data collected by sensor networks in urban area.

First, the multidimensional output GP model is defined for

sensor network data. Second, we present a kernel function

design approach based on the Wiener-Khinchin theorem.

Comparing to the likelihood based method, the Wiener-

Khinchin theorem based method can be totally automatic

and more computationally efficient.

The rest of this paper is organized as the following.

In section II, we review the related work for sensor data

modelling. A general GP model for sensor network data is

presented in section III. Next, in section IV, we discuss the

hidden periodic pattern in interested dynamics and different

approaches of designing mean and kernel functions. Exper-

imental results are shown in section V. Finally we conclude

this paper in section VI.

II. RELATED WORK

The data collected by different nodes in a sensor network

are often correlated in both time and space domains. These

correlations can be used as the side information when

processing sensor network data. Such idea has been explored

in the following previous works.
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Deshpande et al. [7] proposed a Bayesian probabilistic

model for data acquisition in sensor network, aiming to ex-

tend the lifetime of sensors by reducing the communication

and data acquisition costs. Since then the model-driven data

acquisition has become a popular approach in studies of

sensor network. Raza et al. [8] examines this methodology

and shows that the model driven approach does save the

energy, conditioning on coordinated operations of sensor

network. Thus, the critical task is to find a good probabilistic

data model which characterizes the interested dynamics.
Gaussian process (GP) has been used widely in different

applications [9]. There are two key aspects of modelling

sensor network data with GP. Firstly, the GP model is

required to encode both temporal and spatial correlations of

sensor network data. One way of achieving this is to view

the measurements from different nodes as dependent (or

coupled) GPs [5]. In such cases, not only the auto-covariance

but also the cross-covariance functions are calculated in the

multidimensional output GP model. Secondly, appropriate

mean and kernel functions must be designed for measure-

ments from each sensor node (or pair of sensors in case

of cross-covariance), because measurements from different

sensors might have various patterns. Wilson summaries

commonly used basic kernels as well as the method of

constructing new kernels in his doctoral dissertation [10].

The evidence for designing kernel in the GP is usually

the sample covariance and estimated power spectrum. In

[11], the spectral mixture (SM) kernels is designed based on

Gaussian mixture approximation of power spectrum density.
This paper distinguishes itself from the previous works in

the following aspects. First, we introduce a general frame-

work for sensor network data modelling based on multidi-

mensional output GP. The temporal and spatial correlations

of data are encoded in the multidimensional GP model

simultaneously. Second, we focus on cases where the data

collected by sensor network shows strong periodic patterns.

We compare the traditional likelihood based kernel function

design approach with the Wiener-Khinchin theorem based

approach, and show that the latter case is more efficient to

capture the hidden patterns and adapt to the training data.

III. SYSTEM MODEL

A. The Multidimensional Output GP

Let Xt =
[
x1
t . . . xN

t

]T
be the N -dimensional output

of a GP at the input of time stamp t:

Xt ∼ GP (m(t),k(t, t′)), (1)

where m(t) =
[
mx1(t) . . . mxN (t)

]T
is the vector of

mean functions, and the matrix k(t, t′) is given by⎡
⎢⎢⎢⎣
kx1,x1(t, t′) kx1,x2(t, t′) . . . kx1,xN (t, t′)
kx2,x1(t, t′) kx2,x2(t, t′) . . . kx2,xN (t, t′)

...
...

. . .
...

kxN ,x1(t, t′) kxN ,x2(t, t′) . . . kxN ,xN (t, t′)

⎤
⎥⎥⎥⎦ . (2)

(a) Locations of sensors. (b) Correlation matrix.

Figure 1: An example of sensor network for urban air quality

monitoring and the scaled correlation matrix at Δt = 0.

The diagonal elements kxi,xi(t, t′) (i ∈ {1, . . . , N}) are

the auto-covariance functions; the non-diagonal elements

kxi,xj (t, t′) (i, j ∈ {1, . . . , N} and i �= j) are the cross-

covariances.

The model in Eq. (1) is also referred as N dependent (or

coupled) GPs [5]. In real-life scenarios, an output xi
t might

be coupled with a subset of the remaining outputs, resulting

in several elements in k(t, t′) close to matrices of zeros. In

the extreme case, an arbitrary dimension of outputs xi
t is

only dependent on itself. The matrix k(t, t′) will therefore

become diagonal and the coupled GP models becomes N
independent one-dimensional output GPs.

B. Urban Sensor Network

Considering the planning of urban infrastructures (e.g.,

road systems) and different functions of districts of cities,

such as residential and industrial, the correlations between

sensors’ outputs are more complicate than the a function of

spatial distance. For example, two air pollution sensors de-

ployed at interchanges of city highway system might provide

highly correlated measurements, although their geographical

distance can be relatively large; while measurements from

other nodes, such as the ones deployed in the recreation area,

can be less correlated with the roadside sensors. An example

of deployment of air quality monitoring stations is showed

in Fig. 1a.

Denoting the measurements from N sensors as Xt =[
x1
t . . . xN

t

]T
, the sensor data can be modelled as a N

dimensional output GP in Eq. (1). The auto-covariances of

measurements from a node i is characterized by the kernel

kxi
t,x

i
t
(t, t′). The cross-covariance of measurements from

node i and node j is presented by the kernel kxi,xj (t, t′).
Fig. 1b illustrates the covariance matrix in Eq. (2) evaluated

at zero time difference and scaled to [0, 1]. The diagonal ele-

ments are auto-covariance functions evaluated with zero lag,

resulting in maximum values. The non-diagonal elements

present various level of correlation. For example, nodes 3

and 4 have highest correlation among all pairs of sensors.
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The mean function m(t) and kernel matrix k(t, t′) are

obtained from the historical data of the sensor network

(will be discussed in Section IV). Based on today’s wireless

communication and cloud computing technologies, it is

feasible to collect data from the sensor network and update

the GP model in a real time manner.

C. Joint Data Reconstruction

The urban sensor network for environmental monitoring

usually has long sampling periods, especially in the case

of battery powered sensor network where energy efficiency

must be considered. Therefore, to reconstruct the sensory

data from measurements with low sampling rate is an

important task.

In the following example, assume that measurements xi
t

and xj
t from node i and j are available with a vector of

inputs t, we are interested in inferring values of outputs xi
t′

at unobserved inputs t′ from node i. The joint probability

of observations and unknown values, p(xi
t,x

j
t,x

i
t′), is a

Gaussian distribution

N (

⎡
⎣mi(t)
mj(t)
mi(t

′)

⎤
⎦ ,

⎡
⎣Kii(t, t) Kij(t, t) Kii(t, t

′)
Kji(t, t) Kjj(t, t) Kji(t, t

′)
Kii(t

′, t) Kij(t
′, t) Kii(t

′, t′)

⎤
⎦), (3)

and the conditional probability of unknown value is therefore

given by

p(xi
t′ |xi

t,x
j
t) ∼ N (μt′|t,Σt′|t), (4)

where μt′|t in Eq. (5) is the mean of estimation and Σt′|t
in Eq. (6) is the covariance matrix. And x̂i

t′ = μt′|t is the

estimated value of unknown output xi
t′ .

IV. PERIODIC PATTERNS AND KERNEL DESIGN

A. Discover the Periodic Patterns

Before starting the discussion of designing mean and

kernel functions for the GP, we looked into a sequence of

the measurements1, which are illustrated in Fig. 2. In this

example, node 1 (solid blue) is a station deployed on top

of a building’s roof, measuring the background air quality;

node 2 (dot red) is a station deployed on roadside in city

centre, measuring the local air quality.

The time series illustrated in Fig. 2 has two properties.

First, the value of this time series at any time stamp is

a random number with a distribution (mean and variance).

Hence the time series is stochastic process. Second, the time

series shows periodic patterns. At least 3 periodic patterns

can be discovered from the data showed in Fig. 2:

• Weekly pattern: the existence of weekly periodicity

cane be observed in the figure. The NO2 concentration

is lower during weekends and higher during weekdays.

• Daily pattern: consider 24 hours as a period, the NO2

concentration is lower at night and higher during day-

time.

1The data set is available at this website: http://slb.nu/elvf/

• Rush-hour pattern: hourly NO2 measurements within a

working day have two peaks, one is around 8:00 and

the other is around 17:00. This is due to the large traffic

volume and therefore high emission from vehicles.

In light of those three observations, next we discuss the

design of mean and kernel functions for the GP model.

B. Design of Mean Function

Let’s consider a time series with the periodic pattern of pe-

riod Tp. Assume that a sequence of training data which con-

tains Np periods {xn∗Tp+t|n = 1, . . . , Np, t = 1, . . . , Tp}
are available, the mean function of GP is designed to be

mx(kTp + t) =
1

Np

Np−1∑
n=0

xn∗Tp+t, ∀ k ∈ Z, (7)

where t ∈ {1, . . . , Tp} are the time indexes within one

period and k is the number of period. Equation (7) is

usually referred as the sample average estimator for the

mean function. The sample average is the minimum variance

unbiased (MVU) estimator for mean values of Gaussian

distribution [12]. In the example of NO2 measurements,

we separate the data set into weekdays and weekends, and

then apply Eq. (7) to calculate the averaged hourly NO2

measurements with Tp = 24 hours, which are illustrated in

Fig. 3.

Compared to the hourly average NO2 concentration dur-

ing weekends, the process during weekdays shows the

“double-peak” pattern, which is a reflection of rush-hours

during a working day.

C. Design of Kernel Function

The kernel function kxi,xj (t, t′) characterizes the correla-

tion of time series samples with distance Δt = t−t′. In case

of i = j, the kernel is also referred to the auto-covariance;

in case i �= j, the kernel represents the cross-covariance. We

discuss two approaches in the following: (1) likelihood based

approach, and (2) Wiener-Khinchin theorem based approach.

1) Likelihood Based Approach: The commonly used ap-

proach of kernel design is to first select a type of kernel,

and then determine the value of hyper-parameters in the

selected format via maximum likelihood estimation (MLE).

This approach is briefly reported in the following. We refer

readers to [9] for the details.

Assume that the stochastic process shows M periodic

patterns with periods {ω1, . . . , ωM}, a composed kernel [11]

can be designed as

M∑
m=1

α2
m exp[

− sin2(πωm(t− t′))
2θ2m

] + α2
0 exp[

−(t− t′)2

2θ20
],

(8)

which is a superposition of M basic periodic kernels of

different periodicities and a squared-exponential kernel.

459



μt′|t = mi(t
′) +

[
Kii(t

′, t)
Kij(t

′, t)

]T [
Kii(t, t) Kij(t, t)
Kji(t, t) Kjj(t, t)

]−1 [
xi
t −mi(t)

xj
t −mj(t)

]
, (5)

Σt′|t = Kii(t
′, t′)−

[
Kii(t

′, t)
Kij(t

′, t)

]T [
Kii(t, t) Kij(t, t)
Kji(t, t) Kjj(t, t)

]−1 [
Kii(t, t

′)
Kji(t, t

′)

]
. (6)

Figure 2: NO2 measurements from 2 stations in 4 weeks.

Figure 3: Sample average of hourly NO2 measurements from

node 1 and 2 during weekdays and weekends.

Next, to determine the value of parameters H =
{α0 . . . αM , θ0 . . . θM}, we write the likelihood of hyper-

parameters H given training data X (a sequence of mea-

surements from N sensors):

L(H|X) = −1

2
[(X−M)TK−1

H (X−M)+N ln 2π+ln |KH|],
(9)

where M is the matrix of mean values for N sensors over the

same time period as training data, and KH is the covariance

matrix which is a function of hyper-parameters H.

The maximum likelihood estimation of the hyper-

parameters, ĤML, is therefore obtained via solving the

following optimization problem:

ĤML = argmax
Ĥ

L(Ĥ|X), (10)

which can be solved by gradient based algorithms. However,

it is non-trivial and time-consuming to obtain the global

optimum due to the non-convexity of the likelihood function

and the large number of variables.

(a) Cross-covariance (b) Cross-spectrum

Figure 4: Frequency components a, b, c, and d are 1.157×
10−5, 1.653× 10−6, 2.315× 10−5, and 3.472× 10−5 (all

in Hz), corresponding to 1 day, 1 week, 12 and 8 hours

periodicities.

2) Wiener-Khinchin Theorem Based Approach: The

Wiener-Khinchin theorem states that the auto-correlation and

the power spectrum density (PSD) (or the cross-correlation

and the cross-spectrum) of stochastic processes are a pair of

Fourier transform. Based on this theorem, we introduce the

Wiener-Khinchin theorem based approach in the following.

Assume that a set of historical data x = {xi
t, x

j
t |t =

1, . . . , T} are available and the length of data set T is longer

than the maximum period, we first calculate the sample

covariance

cov(Δt) =
1

T

T∑
t=1

(xi
t+Δt − E[xi

t])(x
j
t − E[xj

t ]), (11)

where Δt = −T +1 . . . T −1 are the lags. In case of i = j,

Eq. (11) is the auto-covariance for node i; otherwise it is

the cross-covariance between nodes i and j.

Next, we apply discrete time Fourier transform (DTFT)

to the sample covariances, resulting to the estimated PSD of

the stochastic process:

R̂(f) =

∫ ∞

−∞
cov(Δt)e−j2πfΔtdf. (12)

Note that since the covariance is time-discrete, therefore the

estimated PSD function R̂xx(f) is periodic with period of

fs (the sampling frequency). We sample the first period of

estimated PSD (f ∈ [− fs
2 ,

fs
2 ]) to 2T −1 frequency-discrete

numbers

R̂(k
fs
2T

), ∀k = {−T + 1, . . . , T − 1}. (13)
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Finally the analytical expression of the estimated covariance

function can be obtained via inverse discrete Fourier trans-

form (IDFT) on the sampled estimated PSD

ˆcov(Δt) =
1

2T − 1

T−1∑
k=−T+1

R̂(k
fs
2T

)ej2πk
fs
2T Δt

= A0 +
T−1∑
k=1

2Akcos(2πk
fs
2T

Δt),

(14)

where Ak = R̂(k fs
2T )/(2T − 1), ∀k ∈ {0, . . . , T − 1}. The

estimated covariance function is then used as the kernel

function for GP

k(Δt) = ˆcov(Δt). (15)

The proposed Wiener-Khinchin theorem based approach

of designing kernel function has advantages from both the-

oretical and computational perspective. First, comparing to

the manually selected type of kernel function, the spectrum

based kernel is a better approximation of the true kernel.

In fact, Eq. (14) is a projection of the sample covariance

onto a space spanned by orthonormal basis (trigonometric

functions). Secondly, the spectrum based approach can be

implemented with fast Fourier transform (FFT), which is

computationally efficient.

The cross-covariance and cross-spectrum of measure-

ments from node 1 and 2 are shown in Fig. 4. From the

power spectrum (Fig. 4b) we recognize 4 major periodic

components of 1 week, 24 hours, 12 hours, and 8 hours

periodicities, respectively. To apply the likelihood based ap-

proach, one might design a composed kernel by summing up

a SE kernel and four periodic kernels, such as Eq. (8), where

ω1 = 1.653× 106, ω2 = 1.157× 105, ω3 = 2.315× 105,

and ω4 = 3.472× 105 (all in seconds). Hence there will

be 10 hyper-parameters in one kernel function. Consider

a multi-dimensional output GP, the number of variables in

solving the MLE is very large, which makes the optimization

problem (10) non-trivial and time-consuming to solve.

V. EXPERIMENTAL RESULTS

Given a set of observations from the sensor networks,

one can infer the values at unobserved time stamps. This

task is referred as temporal interpolation. In this section, we

use interpolation as an application to examine our model.

The data set is downloaded from the hourly database of the
Stockholm - Uppsala County Air Quality Management As-
sociation. 10 air quality monitoring stations are operated in

the association, measuring the concentration of air pollutants

such as NO2, O3, CO, and PM10. The hourly aggregated

NO2 data in 2014 is selected as an example.

We take the measurements from 2 nodes with most

significant correlations as an illustration. Each node provides

hourly aggregated NO2 measurements (24 samples per day).

To test our model, we first down-sample the measurements,

(a) Independent GPs.

(b) Dependent GPs.

Figure 5: A comparison between the model of independent

GPs (5a), and the model of coupled GPs (5b). The true

value (red circle), observation (blue cross), interpolation

(blue solid), and 95% confidence interval (grey dash) are

shown in each figure.

then interpolate missing values, and finally compare the

interpolated values with the true values and calculate the root

mean square error (RMSE):

√
1
T

∑T
t=1(x̂t − xt)2, where T

is the length of data to be interpolated, xt is the true value,

and x̂t is the interpolated value at time stamp t.

A. Comparison Between Independent and Dependent GP

We begin with a comparison between the independent GP

model and the dependent GP model. In the independent

GP model, the cross-covariance matrices (Kij(t, t) and

Kji(t, t) in (5) and (6)) are replaced by matrices zeros.

In the coupled GP model, the cross-covariance matrices are

calculated with kernel functions kxi,xj (t, t′) and kxj ,xi(t, t′).
In this comparison, we down-sample the measurements

from node 1 to Ts = 2 hour (12 samples per day), and

measurements from node 2 to Ts = 5 hour (5 samples

per day), then use both independent GP and dependent GP

model to reconstruct the missing values. The results are

shown in Fig. 5. We see that by coupling measurements

from nodes 1 and 2, the RMSE of interpolation on node 2’s

measurements is significantly reduced from 7.1 to 3.6, while

the RMSE for node 1’s interpolation is slightly increased

from 1.4 to 1.8.

B. Experiment on One-Year Data

Next we conduct an experiment on the performance of dif-

ferent GP models on the one-year hourly NO2 measurements

from nodes 3 and 4 showed in Fig. 1a. The covariance matrix
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Figure 6: A comparison of cumulative distribution functions

of RMSEs given by 3 experiment cases.

illustrated in Fig. 1b implies strong correlation (0.8 ∼ 0.9)

between the measurements of those two nodes. Therefore,

we coupled the measurements from those two nodes as a

dependent GP and perform joint data reconstruction after

down-sampling the original hourly data to sampling period

of 6 hours. In this experiment, we use the most recent 4-

week historical data as train data to learn the mean and

kernel functions, then perform the interpolation on one day’s

measurements and calculate the RMSE. This validation is

repeated on a year’s NO2 measurements with three test

cases:

• Case 1: independent GP model with composed kernel

(SE + PE) in Eq. (8).

• Case 2: independent GP model with spectrum based

kernel in Eq. (14).

• Case 3: dependent GP model with spectrum based

kernel in Eq. (14).

The cumulative distribution function of RMSEs of three

cases are illustrated in Fig. 6. The statistical results validate

that the dependent GP model with spectrum based kernel

achieves better performance comparing to other 2 cases.

VI. CONCLUSIONS

In this paper, we present a general framework for sensor

network data modelling with multidimensional Gaussian

process. Measurements from different sensors are correlated

with various significances, which are characterized by the

matrix of kernels (auto-covariances and cross-covariances).

On top of commonly applied MLE method, we introduce a

kernel design approach based on Wiener-Khinchin theorem.

Experiments are conducted on the proposed GP model for

sensor networks with the data set of NO2 measurements in

urban area. Results show that, comparing to the independent

GP model, dependent GP model has better performance in

terms of the accuracy for data reconstruction.

ACKNOWLEDGMENT

This work has been supported by the Vinnova GreenIoT

project (2015-00347) in Sweden, the National Natural Sci-

ence Foundation of China (No.61370197 and 61271041),

and the China Scholarship Council. These supports are

gratefully acknowledged.

REFERENCES

[1] “Economic cost of the health impact of air pollution

in europe: Clean air, health and wealth,” World Health

Organization, Reginal Office for Europe, 2015.

[2] K. Hu, V. Sivaraman, B. G. Luxan, and A. Rahman,

“Design and evaluation of a metropolitan air pollution

sensing system,” IEEE Sensors Journal, vol. 16, no. 5,

pp. 1448–1459, March 2016.

[3] X. Liu, Z. Song, E. Ngai, J. Ma, and W. Wang,

“Pm2:5 monitoring using images from smartphones

in participatory sensing,” in 2015 IEEE Conference
on Computer Communications Workshops (INFOCOM
WKSHPS), April 2015, pp. 630–635.

[4] J. Cortes, “Distributed kriged kalman filter for spatial

estimation,” IEEE Transactions on Automatic Control,
vol. 54, no. 12, pp. 2816–2827, Dec 2009.

[5] P. Boyle and M. Frean, “Dependent gaussian pro-

cesses,” in Advances in neural information processing
systems, 2004, pp. 217–224.

[6] R. H. Shumway and D. S. Stoffer, Time series analysis
and its applications: with R examples, 3rd ed. New

York: Springer, 2011.

[7] A. Deshpande, C. Guestrin, S. R. Madden, J. M. Heller-

stein, and W. Hong, “Model-driven data acquisition

in sensor networks,” in Proceedings of the Thirtieth
International Conference on Very Large Data Bases -
Volume 30, ser. VLDB ’04. VLDB Endowment, 2004,

pp. 588–599.

[8] U. Raza, A. Camerra, A. L. Murphy, T. Palpanas, and

G. P. Picco, “What does model-driven data acquisition

really achieve in wireless sensor networks?” in Perva-
sive Computing and Communications (PerCom), 2012
IEEE International Conference on, March 2012, pp.

85–94.

[9] C. E. Rasmussen and C. K. I. Williams, Gaussian
processes for machine learning. Cambridge, Mass:

MIT Press, 2006;2005;.

[10] A. G. Wilson, “Covariance kernels for fast automatic

pattern discovery and extrapolation with gaussian pro-

cesses,” Ph.D. dissertation, PhD thesis, University of

Cambridge, 2014.

[11] A. G. Wilson and R. Prescott Adams, “Gaussian Pro-

cess Kernels for Pattern Discovery and Extrapolation,”

ArXiv e-prints, Feb. 2013.

[12] S. M. Kay, Fundamentals of statistical signal process-
ing: Vol. 1, Estimation theory. Upper Saddle River,

N.J: Prentice Hall PTR, 1993.

462


