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Abstract— Environmental monitoring is one of the most pop-
ular applications in wireless sensor networks. Although it is
important to obtain a continuous record of the environment,
users may gain enough information without receiving every
routine sensor measurement. Reducing unnecessary traffic allows
better utilization of the network resources. However, it is uneasy
to decide on when and what kind of traffic to reduce in a
dynamically changing environment. In this paper, we study
the problem of information-aware traffic reduction for wireless
sensor networks. We propose a two-step information-aware traffic
reduction algorithm to address this problem. First, we provide a
distributed and real-time algorithm for sensors to classify their
measurements and report them selectively based on the impor-
tance of information. Then, we propose a bandwidth allocation
algorithm to assign different forwarding probabilities to packets
considering both the information quality and the network load.
Our algorithm can be implemented and integrated easily with
existing routing protocols to maximize the quality of information
to the users, while reducing the amount of network traffic. We
evaluate our approach based on the real sensing measurements
to demonstrate the quality of information achieved. Simulations
are also conducted to evaluate the performance of our proposed
scheme in a larger network.

I. INTRODUCTION

Wireless sensor network (WSN) is usually a set of small
sensing devices with limited communication range. They mon-
itor the environment by reporting sensing measurements to the
sink(s) with multihop wireless communications. Sensors may
perform sensing continuously which result in a steady volume
of data towards the sinks. While routine data are essential for
reporting the normal measurements on the environment, not
all measurements are necessary to provide enough information
to the users. Some measurements may be redundant if there
is only a steady change of temperature in the environment.
The network bandwidth can be reserved to report more critical
unusual events which require faster delivery or “better QoS”.
For example, a sudden increase of temperature detected by the
sensors in a forest may need a fast delivery for high priority
packets with better quality of service in terms of shorter delay,
higher bandwidth, etc.

A number of approaches have been proposed to provide
QoS for sensor networks which reduce network congestion by
checking the traffic level of neighboring nodes and controlling
the transmission rate [1], [2], [3]. The above mechanisms
inform the source nodes with feedback messages to reduce
the data rate. However, The feedback messages may increase
the network overhead. Also, they seldom consider the quality

of information eventually obtained by the users after reducing
the network traffic.

We study information-aware traffic reduction for wireless
sensor networks in this work. Our major goal is to reduce the
routine data traffic in the network, while providing satisfactory
quality of information to the users. We focus on general
environmental monitoring applications which collect sensing
data continuously over a long period of time and aim at
providing better quality of information and shorter packet
delay. The major challenges include extracting important data
from a series of measurements in real time and maximizing
the information obtained by the end users given the limited
network capacity. In addition, the algorithm should be dis-
tributed, lightweight and suitable for the fast-changing sensing
environment as well as the dynamic network load.

Our approach wisely selects important data to report to the
sink. Sensors control the packet rates according to the informa-
tion that the packets carry and the current network traffic level
in order to provide both high quality of information and good
quality of service. Information-aware traffic reduction allows
better utilization of the network capacity by reducing the
relatively less important traffic and reserving better resources
for the high priority data. Our algorithm can be integrated
easily with existing QoS routing algorithms to provide better
QoS and more valuable information to the end users.

The remainder of the paper is organized as follows. In
Section II, we describe some related work in the area. In
Section III, we give the network model and formulation of
the information-aware traffic reduction problem. We present
our information-aware data selection and reconstruction al-
gorithms in Section IV. We then present our adaptive traffic
reduction algorithm and its integration with the QoS-aware
routing algorithm in Section V. Section VI summarizes the
simulation results that we have obtained, and we conclude the
paper in Section VII.

II. RELATED WORK

A number of congestion control algorithms have been pro-
posed for wireless sensor networks [2], [4], [5]. Wan et al. [1]
propose an energy efficient congestion control scheme for sen-
sor networks called CODA (COngestion Detection and Avoid-
ance), which includes receiver-based congestion detection,
open-loop hop-by-hop backpressure, and closed-loop multi-
source regulation. Hull et al. [3] examine three techniques to
mitigate congestion in WSN, which includes hop-by-hop flow
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control, rate limiting source traffic, and prioritized medium
access control (MAC). Ee et al. [2] propose a distributed
algorithm for congestion control and fairness in many-to-one
routing, which measures the average transmission rate, then
divides and assigns the average to downstream nodes equally.
Although the above work can mitigate network congestion,
they do not consider the quality of information achieved by
the end users when suppressing the traffic. Moreover, most of
the existing work require feedback from sensor nodes which
result in extra overhead in the network. Our information-aware
traffic reduction approach focuses on the quality of information
achieved by the users. It is distributed and lightweight since
all decisions are taken locally by the nodes, and it requires no
feedback messages from the congested nodes.

Some related work on adaptive samplings have also been
proposed to decrease the energy consumption of sensors and
prolong the network lifetime. Gedik et al. [6] suggest to
collect data using a dynamically changing subset of nodes
as samplers, whereas the values of the nonsampler nodes
are predicted through a probabilistic model. Similarly, Willett
et al. [7] achieve adaptive sampling by selecting activating
sensors with the backcasted information from the fusion center.
Apart from the spatial approaches, somes adaptive sampling
approaches on the temporal domain have been considered.
Kho et al. [8] propose a decentralized algorithm to minimize
the uncertainty of sensing data, subject to the constraint of
a limited number of samples taken per node. Different from
adaptive sampling, our approach focuses on data delivery from
the sources to the sink. Our information-aware traffic reduction
algorithm can be applied after various sampling schemes to
adapt to the network traffic without the risks of missing any
unusual events.

Apart from the above, Bisdikian [9] introduces the general
term “Quality of Information (QoI)” which measures attributes
like timeliness, accuracy, reliability, completeness, relevance
when detecting events and making decision in WSN. We are
inspired by this concept and we consider QoI as the accuracy
and relevance of data to the users in this work. Accuracy
accounts for whether the data received by the users can
describe the environment correctly. Relevance concerns about
whether valuable information of high interest are delivered
to the users. Zaheki et al. [10] also propose an quality of
information aware framework for fault detection and event
detection which suggests to use QoI as a performance metric
associated with the end result produced by a sensor network.
We share a similar idea of combining network quality of
service with the quality and integrity of sensor data sources
here, but we focus on data delivery and traffic reduction in
this paper.

III. INFORMATION-AWARE TRAFFIC REDUCTION

A. Network Model

In many applications, sensors take readings from the envi-
ronment regularly and then forward the data to the sinks. It
is common in many environmental monitoring applications to
have two kinds of data, namely (1) routine data, which reports

the steadily change of the environment throughout long period
of time, and (2) unusual events of particular interest will occur
unexpectedly, and the information related to such events will
require fast transmission to the sink(s) [11], [12].

We consider a network with sensors distributed over some
open or built areas. The sensor nodes take measurements
and forward packets containing their measurements toward
one or more sink nodes. We define ∆t as the time interval
that sensors take measurements from the environment. The
value may depend on the capability of the sensor and the
frequency required to capture the unusual events in a specific
application. Let x0, x1, x2, ...xN be the sensor readings at time
t0, t1, t2, ...tN , where tk = k∆t. The sensor measurement xk

may fall in a range [a, b]. To distinguish the routine data and
significant events, each sensor keeps an expected weighted
moving average St on the measurement as:

St = (1− α)St−1 + αxt−1. (1)

It then calculates the sensor measurement deviation, Devt,
as an estimation of how much xt typically deviates from St.

Devt = (1− β)Devt−1 + β‖xt − St‖; (2)

Since sensor nodes have limited wireless communication
range, multi-hop routing is generally required to forward the
data to the sinks. Network congestion may occur if the traffic
load is too heavy in the network which may delay the delivery
of the sensing data. This can be avoided by controlling the
traffic rate in the network. The nodes may drop some of the
packets selectively based on the importance of information w
in the packets. Intuitively, the information is more important
and valuable if the reported data deviates more from the
predicted value St, hence, we select w = ‖xt − St‖. The
importance of information can be further divided into multiple
levels, wi, where i = 1, 2, · · · , m.

B. Problem Formulation

Each sensor monitors the incoming data rate λin =∑m
i=1 λi, where m is the maximum level of importance among

the data and λi is incoming rate of data with importance level
i at a node. Then, the sensor forwards the packets selectively
according to wi, while maximizing the information delivered.
There is a maximum affordable traffic rate µ in a node, such
that λin ≤ µ. Information-aware traffic reduction can be
formulated as a fractional knapsack problem [13] as follows.
Objective
Maximize ∑

∀i

wiµi (3)

Subject to
∑

∀i

µi ≤ µ, (4)

0 ≤ µi ≤ λi, (5)
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where wi, λi, µi and µ are positive scalars. Assume without
loss of generality that

w1 ≥ w2 ≥ ... ≥ wm, (6)

which represent the importance of information at different
levels.

The data rate allocated by the sensor to the data with im-
portance level wi is denoted by µi, where µi = λipi and pi is
the transmission probability of the corresponding packets. The
objective is to maximize the information gain while keeping
the data rate in a node smaller than the maximum affordable
level. The fractional knapsack problem is solvable by a greedy
algorithm, provided that the value per weight of each items can
be achieved and sorted [13]. The packets in the network can be
modelled as the items with equal weight which have different
values. The weight in our problem can be considered as the
network load for carrying the packet. The value is measured
as the importance of data contained in the packet. Unlike the
traditional fractional knapsack problem in which the items are
fixed, the incoming packet rates and the value of packets are
dynamically changing in sensor networks. We hence require
a real-time and distributed algorithm for sensors to judge the
importance of the measurements and select the important data
to report. We also provide a bandwidth allocation algorithm
for sensors to calculate the probability to forward the packets
based on the quality of information and the network load.

IV. TRAFFIC REDUCTION AT SOURCE NODES

A. Selective Transmission at Sources

In many environmental monitoring applications, the sam-
pling rate of sensors is set to the minimum value that allows
users to detect the unusual events or observe the change of the
environment. Consider a temperature monitoring application
in a glacier, the scientists may want to keep a record of
temperature with every change less than 0.5◦C, but they do
not need a record of small changes as precise as 0.2◦C. They
can then set the expected change on the data values between
0.2 and 0.5 in their application. Under this requirement, the
data reporting rate can be greatly reduced if the temperature
changes only steadily. For example, some data with changes
smaller than 0.2 may not be reported.

We then propose a real-time algorithm for selective trans-
mission at the source nodes as shown in Algorithm 1. Each
sensor takes measurements and calculates St and Devt every
time interval ∆t. It then classifies the data as high priority
data H if the difference between the current measurement
and the estimated measurement is greater than a threshold,
i.e. ‖xt − St‖ ≥ ε. This indicates that there is an unusual
event occurred. For all the remaining routine data, they are
marked as low priority L. Each sensor also keeps track of
the sensor measurement deviation Devt. If Devt is greater
than the concerned threshold δ, then the data will be reported.
Otherwise, these routine data will be reported only every Rt

time intervals, which is measured by a counter Ct. Note that
the value Rt is initialized as 1 at the beginning, then it will

increase gradually if Devt is constantly small. However, it will
be set to 1 again if Devt > δ.

Reducing the retransmission rate at sources can reserve
more network resources to provide better quality of service for
more important data. The missing routine data between two
reported measurements can be reconstructed by interpolation,
e.g. linear interpolation, at the sink.

Algorithm 1 Adaptive data transmission at sources
for each time unit ∆t do

Take measurement xt;
St = (1− α)St−1 + αxt−1;
Devt = (1− β)Devt−1 + β‖xt − St‖;
if ‖xt − St‖ ≥ ε then

Mark data as H;
Report the data;
Rt = 1;
Ct = 0;

else
Mark data as L;
if Devt > δ then

Report the data;
Rt = 1;
Ct = 0;

else
if Ct == Rt then

Report the data;
Ct = 0;
if Devt < δ/2 then

Rt++;
end if

else
Ct + +;

end if
end if

end if
end for

B. Reconstructing Missing Routine Data
The skipped routine data can be reconstructed at the sink by

linear interpolation for its effectiveness and efficiency, though
other interpolation mechanisms can also be applied. Given
a set of k data points, i.e. (x0, t0), (x1, t1), (x2, t2), ... ,
(xk−1, tk−1), (xk+1, tk+1), where the data at tk is missing.
The missing data xk, where tk−1 < tk < tk+1, can be
obtained by the reported data xk−1 and xk+1 as

xk = xk−1 +
tk − tk−1

tk+1 − tk−1
(xk+1 − xk−1), (7)

The absolute error ξk of the reconstructed data at time tk
can be measured as

ξk = ‖rk − xk‖, (8)

where rk is the real sensing measurement from the environ-
ment at time tk.

The accuracy of the reconstructed data from a sensor over
time t can be measured by the mean absolute error (MAE)
and the root mean square error (RMSE) as

MAE =
∑N

t=1 ‖rt − xt‖
N

(9)
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and

RMSE =

√∑N
t=1 ‖rt − xt‖2

N
. (10)

MAE and RMSE can be used together to diagnose the
variation in the errors of a set of reconstructed data. The MAE
is a linear score which means that all the individual differences
are weighted equally on average. On the other hand, RMSE is
a quadratic scoring rule which measures the average magnitude
of the error.

V. TRAFFIC REDUCTION ALONG INTERMEDIATE NODES

We propose an information-aware traffic reduction algo-
rithm to reduce the routing data traffic along the intermediate
nodes, while providing satisfactory quality of information to
the users. We integrate the algorithm with an existing QoS-
aware Random Re-Routing (RRR) algorithm [11], [12] to
provide quality of service in the delivery of unusual events
and routine data.

A. QoS-Aware Random Re-Routing for Routine Data

RRR is designed to provide differentiated QoS for an
environment with unusual event data and routine data in sensor
networks which shares the same settings as the environmental
monitoring applications in our work. Although RRR is selected
here, our traffic reduction algorithm can actually integrate with
other existing routing algorithms easily.

In RRR, each node j observes the level of arriving traffic of
unusual events λH . If this rate λH does not exceed a threshold
θH , then the node forwards all packets it receives along
their preferred (e.g. shortest or best QoS) path towards their
destinations. Obviously the preferred path may be determined
by criteria such as the minimum delay, greatest security, lowest
power consumption, smallest loss, etc. However, if λH ≥ θH ,
then the preferred path will be reserved for forwarding the
unusual event packets and only the secondary paths will be
used for the routine data packets.

More specifically, each node j ranks its neighboring nodes
j1, ..., jn so that j1 is located closest to the sink in number of
hops, and jn is the one which is the farthest away. Then, node
j forwards unusual event packets to neighbors j1, ..., jq , and
forwards all routine data packets to the remaining neighbors
jq+1, ..., jn. This algorithm allocates the best route for trans-
mitting important event data, while routine data are pushed
aside to the remaining routes to achieve quality of service
[11], [12].

B. Traffic Reduction on Routine Data

Our information-aware traffic reduction algorithm works
closely with the routing scheme. Similar to RRR, traffic
reduction at intermediate nodes applies only when the network
traffic level is heavy. The mechanism can relieve network
congestion by reducing less important routine data, while
preserving high quality of information to users.

Moreover, outine data packets travel through longer sec-
ondary paths in RRR to reserve better QoS paths for unusual

events. The prolonged paths may increase the packet travel
delay of the routine data which can reduced by controlling
the traffic rate of the packets. Dropping some routine data
packets can keep the average network traffic level nearly the
same in randomized routing.

When an unusual event packet arrives, a node always
forwards the packet to the next hop. On the contrary, a node
forwards a routine data packet with only a probability pi. pi

can be obtained by our bandwidth allocation algorithm (see
Algorithm 2). Each node monitors the incoming data rates and
runs this algorithm periodically or when there is a significant
change in the incoming data rates. A node will forward as
much as possible of the packets contain the most important
information. If there is still enough network capacity, it takes
as much as possible of the next most important packets. The
process continues until the network capacity is fully utilized.

Algorithm 2 Bandwidth allocation algorithm
for all i do

pi = 0;
end for
µ′ = µ;
i = 1;
while µ′ > 0 do

if µ′ ≥ λi then
pi = 1;
µ′ = µ′ − λi

else
pi = µ′/λi;
µ′ = 0;

end if
i + +;

end while

This mechanism reduces the traffic of the less important
routine data and shortens the average packet travel delay, but
it still preserves a high quality of information to the users. Note
that pi represents the probability that a packet is forwarded to
the next hop. This value is affected by both the importance of
the packet and the network traffic level of the node. It may be
different from node to node and changing dynamically.

VI. PERFORMANCE EVALUATION

A. Quality of Information

We evaluate the quality of information achieved with the
real sensing data collected from the SensorScope network [14],
which is deployed on the Plaine Morte glacier for monitoring
the temperature, humidity, wind speed and direction. There
are 13 sensors in the network and a sink located at the center.
We simulate our information-aware traffic reduction algorithm
based on the sensor measurements of the surface temperature.
The absolute errors between the real sensing data and the
reconstructed sensing data from our algorithm are evaluated.

Figure 1 shows the data collected by a sensor, together
with the data points reported by our adaptive transmission
algorithm at ε = 1.0 and δ = 0.5. Some data points are
skipped in our algorithm to reduce the traffic. From the figure,
the surface temperature is changing quite steadily, except there
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is an unusual event occurred at 1870s. The missing data
points will be reconstructed when they are received at the
sink. The resulting data are shown in Figures 2 and 3. Due
to the limited space, only the results in t = 1000 − 1300s
and t = 1800 − 1950s are shown. We compare our adaptive
transmission algorithm with the static transmission algorithm
which reports one out of every three data at regular time
interval. The two algorithms report almost the same number of
data to the sink for fair comparison. The absolute error of the
reconstructed data are presented in Figures 4 and 5. Figure
4 shows that the absolute error in adaptive transmission is
smaller than 0.7◦C constantly, while the absolute error in static
transmission may go up to 1.4◦C. It indicates that adaptive
transmission can provide better quality of information and less
error than static transmission, though the two algorithms are
reporting at the same data rate on average. The reason is that
the regular dropping of data samples in static transmission may
miss some important information, while adaptive transmission
only skip the relatively less important data. This is even more
obvious at t = 1870s in Figure 5 when an unusual event occurs
with a sudden increase of the temperature. Static transmission
misses several data points of the unusual event which leads
to great absolute errors. The mean absolute error of adaptive
transmission and static transmission are 0.136◦C and 0.152◦C
respectively. Their corresponding root mean square error are
0.065◦C and 0.171◦C. The results demonstrate that adaptive
transmission can achieve lower mean absolute error than static
transmission and avoid errors with large magnitude.

We further evaluate the quality of information with selective
forwarding. We consider a sensor which requires two-hop
communication to the sink. Some packets are dropped by
the intermediate nodes in routing due to network congestion.
Again, we calculate the absolute error and root mean square
error in both adaptive transmission and static transmission.
The average absolute error of adaptive transmission and static
transmission which are 0.202◦C and 0.377◦C. Their corre-
sponding root mean square error are 0.335◦C and 0.535◦C.
The results indicate that adaptive transmission can achieve
more accurate data, and hence better quality of information,
than static transmission. It is because the packets are classified
and marked according to their information value in adaptive
transmission and only less important data are dropped by
the intermediate nodes. On the contrary, some important data
may be dropped in static transmission to relieve network
congestion, so some valuable information may be lost and the
reconstructed data may not be so accurate. Hence, the absolute
errors in static transmission are not as low as those in adaptive
transmission.

B. Packet Travel Delay

Next, we conduct simulations using the ns-2 tool [15] to
evaluate our traffic reduction algorithm in a larger network.
The simulation parameters are summarized in Table I. They
are selected so as to be compatible with other studies of WSNs
[16], [17], [18].

The simulations we have conducted focus on a WSN which

TABLE I
SIMULATION PARAMETERS

Network area 400m*400m
Number of sensor 400
Sensor distribution Uniform random
Location of Sink Center of area
Radio range 40m
MAC layer IEEE 802.11
Unusual event sources 4
Routine data sources probability pL 0.1
Routine data dropping probability pd

Data rate of unusual events λH 5pkt/s
Data rate of routine data λL 1pkt/s

collects and reports significant events and routine data to the
sink. Any of the sensors has a probability pL to be the source
of routine data and generates data independently of the other
nodes. Under normal conditions the sensors report routine data
to the sink at a low data rate. Unusual events are assumed to
occur infrequently, and in the simulations we have included
four nodes which simulate the sources of such events and
generate a high traffic rate.

The network considered has a total of 400 nodes and a
sink. The node positions are all randomly distributed within a
400m x 400m square (m=metres). The communication range
of a node is 40 meters, and the sink is located at the center of
the square with coordinate (200, 200). The routine data packet
rate is 1 pkt/s with pL = 0.1, while the unusual event traffic
rate is 5 pkt/s at 4 nodes in the network.

We evaluate the packet travel delay in RRR with traf-
fic reduction on routine data. Traffic starts at 0s with
no unusual events, followed by four unusual events to
occur at 40s. The sources of unusual events are lo-
cated at (100, 100), (100, 300), (300, 100), (300, 300), while
the reference sources of routine data are located at
(60, 200), (200, 60), (200, 340), (340, 200) with equal distance
to the sink for comparison.

Figure 6 shows the travel delay of packets with dropping
probability pd = 0.1. In the beginning of the simulation,
sensors forward the packets with RRR as they are not sure
whether there is unusual event in the network. After explo-
ration in the first 20s, they switch to traditional shortest path
geographic routing as there is no unusual event. At 40s, four
unusual events occur. Each sensor keeps tracking the incoming
packet rate λH . Since λH > θH , sensors change to RRR again,
such that unusual event packets achieve much lower travel
delay than the routine data packets. To reduce the amount of
routine data, traffic reduction is applied at 80s. The routine
data packets are dropped with a probability pd = 0.1. The
figure shows that the packet delay of routine data drops to a
level that is comparable with that in shortest path geographic
routing. It indicates that dropping a small amount (10%) of
routine data packets in intermediate nodes persistently can
reduce the traffic load and the packet delay effectively. Note
that there are more fluctuations on the line of Routine Data
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Fig. 1. Data reported by sensor in adaptive transmission.
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Fig. 2. Reconstructed data in adaptive transmission and static transmission with only routine data.
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Fig. 3. Reconstructed data in adaptive transmission and static transmission with both routine data and unusual event.

(Reference Sources) than Unusual Events as the paths are
selected with more randomness for the Routine Data.

Figure 7 again shows the differentiated QoS achieved be-

tween unusual events and routine data with pd = 0.2. The
results also demonstrate that the packet travel delay of routine
data and event data are further reduced when pd increases.
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Fig. 4. Absolute error of temperature in adaptive transmission and static transmission with only routine data.
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Fig. 5. Absolute error of temperature in adaptive transmission and static transmission with both routine data and unusual events.

C. Packet Rate

We study the packet rates of unusual events and routine
data in presence of RRR and traffic reduction in the same
experiment. Figure 8 shows that the packet rate of unusual
events keeps steadily at 5pkt/s after the events occur at 40s. At
80s, reduction of routine traffic is applied by dropping routine
packets with probability pd = 0.1. As a result, the packet rate
of routine data drops from 1pkt/s to 0.5pkt/s on average. The
packet rate drops further to 0.3pkt/s on average when we set
pd = 0.2.

VII. CONCLUSIONS

In this paper, we proposed an information-aware traffic
reduction algorithm for sensors to provide satisfactory quality
of information, while reducing unnecessary routine data traffic.
Our algorithm allows sensors to classify the sensing data in

real-time and report them to the sink adaptively according to
their importance levels and the network load. Our bandwidth
allocation algorithm decides the forwarding probability of the
packets at the intermediate nodes which can adapt to the
dynamic change of the network traffic. This approach provides
not only high quality of information to the users, but also
reserves more network capacity to achieve high quality of
service in data transmission. We evaluated our algorithm by
simulations based on real sensor measurements. The results
showed that our algorithm can effectively reduce network
traffic and achieve both high quality of information and low
packet delay.
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