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Abstract— Many mobile sensing applications consider users
reporting and accessing sensing data through the Internet.
However, WiFi and 3G connectivities are not always available
in remote areas. Existing data dissemination schemes for oppor-
tunistic networks are not sufficient for sensing applications as
sensing context has not been explored. In this work, we present
a novel context-aware sensing data dissemination framework for
mobile users in a remote sensing field. It maximizes information
utility by considering such sensing context as sensing type,
locality, time-to-live, mobility and user interests. Different from
existing works, the mobile users not only collect sensing data, but
also upload data to sensors for information sharing. We develop a
context-aware deployment algorithm and a hybrid data exchange
mechanism for generic sensors and mobile users. We evaluate
our solution by both analysis and simulations, and show that
it can provide high information utility for mobile users at low
communication overhead.

I. INTRODUCTION

With the advancement of smart phones, mobile sensing
applications have emerged recently, which leverage mobile
phones as sensors to collect and report the ambient data
for monitoring wildlife, pollution, social activities, and etc.
[1], [2]. Most existing applications consider mobile phone
users who can report and access sensing data through the
Internet by 3G or WiFi connections. However, the cell phone
reception is incredibly touchy, depending heavily on land-
scapes, carrier technologies, phone models, service providers,
tower locations, and etc. Dead spots are commonly found
in remote areas [3] and even in some part of major cities
[4]. Nevertheless, fine-grained and real-time sensing data are
essential for mobile users to make correct decisions in many
activities. For example, hikers may want updated information
about the weather and unusual condition of the hiking trails.
Sensing data such as dangerous trails with rocks, cliff, sandy
area, fallen trees from landscape changes due to climate could
be captured by mobile users or pre-deployed sensors [5], [6].

In this paper, we present a novel mobile sensing framework
that supports sensing data dissemination for mobile phone
users in remote areas. We face several unique challenges in
designing our system: (1) The mobile phones in remote areas
may have poor or no cellular and WiFi connectivities. Different
from existing participatory and urban sensing applications,
the mobile users may not be able to report and access the
sensing data through the Internet in the sensing field; (2) The
sensing context such as sensing type, locality and time-to-live
must be taken into account to achieve high information utility

and low communication overheads for mobile users. Existing
opportunistic data dissemination schemes for mobile ad hoc
networks are not sufficient as they have not considered sensing
context of the environment; (3) The data dissemination scheme
should take care of both users sharing common mobility
patterns as well as those different from the majority. The
scheme needs to be robust enough to support future users with
different mobility patterns from the existing ones.

To tackle the above challenges, we suggest a hybrid ap-
proach for mobile users to collect and exchange sensing
data leveraging both stationary sensors and mobile phones.
The mobile users can upload and download the sensing data
at stationary sensors for information sharing. The uploaded
sensing data will be disseminated to more mobile users within
the area of interests according to their sensing context. To the
best of our knowledge, we are the first to study context-aware
sensor data dissemination for mobile users in remote sensing
field leveraging a combination of both stationary sensors
and mobile phones. We aim at maximizing the information
utility for mobile users in terms of data delivery and delay
considering sensing context such as sensing type, locality,
time-to-live, mobility and user interests.

II. RELATED WORK

Participatory and urban sensing have been studied recently
[1], [2], which leverage mobile phones as sensors to collect
sensing data from the environment. BikeNet [6] utilized an op-
portunistic mobile sensing platforms where data are collected
and carried by cyclists with uncontrolled mobility. It operates
in a delay tolerant sensing mode, where cyclists go on trips,
collect sensed data, and upload their data when they return to
home. The idea of high-bit-rate short-range communication
has also been presented in Infostations [7] to complement
the relatively high cost and low bit-rate cellular systems.
With the advancement of sensing and mobile communication
technologies, however, the sensing context and detailed data
sharing strategies with both stationary sensors and mobile
phones remain to be further explored.

Mobile sinks and mobile relays have been applied for
improving the performance of data collection in wireless
sensor networks. Shah et al. [8] presented an architecture using
moving entities, called data mules, to collect sensing data. Gu
et al. [9] proposed a partitioning-based algorithm to schedule
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the movement of mobile elements, which minimizes the re-
quired moving speed and eliminates buffer overflow. Zhao et
al. [10] proposed a message ferrying approach to address the
network partition problem in sparse ad hoc networks. Different
from our work, all of the above work focus on communication
between intermediate peers in ad hoc networks without any
stationary sensors. Throwboxes have been proposed by Zhao
et al. [11] to enhance the network capacity by deploying
stationary nodes in mobile DTNs. We share a similar concept
here to utilize stationary nodes to improve data dissemination.
However, throwboxese aim at improving the total data rate
between mobile node pairs without considering the context of
the data. On the contrary, our work considers sensing context
such as sensing locality, time-to-live, and user interests, which
integrates sensing and opportunistic data sharing. We provide
a novel sensing data dissemination scheme that maximizes the
information utility for mobile users in a sensing field.

Context- and social-aware data dissemination have been
explored for opportunistic networks. Boldrini et al. [12] pro-
posed a middleware that autonomically learns context and
social information of the users in order to predict their future
movements. Yoneki et al. [13] proposed a socio-aware overlay
over detected communities for publish/subscribe communi-
cation. Jaho et al. [14] divided users into different interest-
induced social groups and locality-induced social groups to
improve information dissemination in social networks. Lee et
al. [15] proposed a content management mechanism for highly
dynamic mobile ad hoc network environment using location-
based content binding. Nevertheless, the above works mainly
focus on the social and mobility patterns of mobile users, while
the sensing context and the surrounding environment have not
been explored.

III. PROBLEM DESCRIPTIONS

We consider a sensing field with sensors deployed to
monitor events of interests in hiking trails such as high
temperature, dangerous trails with rocks or fallen trees. The
sensing field can be located at remote areas with poor or
no cellular and WiFi coverages. Users could obtain sensing
data by communicating with the stationary sensors or taking
sensing measurements directly using their mobile phones.
Each sensing event is associated with its location and time-to-
live (TTL) according to its event type. For instance, wildlife
being observed will last for shorter time, while natural fruits
and water source may last for longer. We represent an event
e as < e,Le, TTLe > being detected by a sensor or a mobile
phone at location Le, where TTLe is the time-to-live of the
event. A user mk at location k will be interested in event e
if he may reach the event area in time TTLe. The interest of
the user to that event is denoted by a binary variable Ik,Le .

Ik,Le =

{
1 if dist(k, Le)/v ≤ TTLe,
0 otherwise,

where dist(k, Le) is the walking distance from k to Le and
v is the walking speed of the user. We name the area with

Ik,Le = 1 as the area of interest denoted by Ai. It is a
circular area centered at Le with radius Re. Re is bounded
by TTLevmax, where vmax is the maximum moving speed
of hikers along a trail. We define information utility as the
amount of updated information gained by mobile users from
the sensors in the area of interests. Our system aims at maxi-
mizing the information utility for mobile users considering the
sensing type, time-to-live, locality, mobility and interests of
users by deploying wireless sensors in a remote sensing field.
Locations of sensors with specialized functions (e.g. water
quality sensors and pollution sensors) are usually suggested
by the nature reserve. On the other hand, generic sensors
(e.g. temperature sensors and humidity sensors), which have
greater sensing coverage and more memory for caching and
exchanging data, could be deployed at locations with greater
flexibility. We focus on optimizing the deployment of generic
sensors and the sensing data dissemination mechanisms in this
work.

IV. DEPLOYMENT OF GENERIC SENSORS USING MOBILE
STATISTICS

We formulate the deployment and caching problem of
generic sensors using binary variables zj(j = 1, ..., n), where
the outcome zj signals that a generic sensor will be deployed
at location j. The objective function aims at maximizing the
total information utility obtained by all mobile phone users,
which is denoted by

∑
∀j ujzj . Given the visiting frequency of

the potential locations, Fj from mobile statistics, we calculate
information utility uj as

uj =
∑

∀i
Ci,jIi,jFj , (1)

where Ci,j is a binary variable indicating whether there is
a path between i and j, Ii,j is a binary variable equals to
1 if dist(i, j) is smaller than Ri. Both Ci,j and Ii,j can be
obtained from the map of the hiking trails. The deployment
cost is bounded by budget B.

maximize
∑

∀j
ujzj

subject to
∑

∀j
cjzj ≤ B,

∀j ∈ 1, 2, ..., n zj ∈ {1, 0},
uj =

∑

∀i
Ci,jIi,jFj .

If the generic sensors have the same cost c, then the formu-
lation becomes a easy case of the Knapsack problem [16]. In
this case the optimal solution is to sort the items in order of
increasing value and insert them into the knapsack in this order
until nothing fits. We present an optimal algorithm for generic
sensor deployment in Algorithm 1. Since all generic sensors’
costs are identical, we maximize the total information gain by
taking the locations providing the greatest information utility.
Given a budget B for deployment, our system can deploy at
most B/c generic sensors in the field. We sort the information
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utility provided by the potential locations. Then, we deploy
generic sensors in this order until all the available generic
sensors have been deployed. The algorithm allows us to take
as much as possible the locations with the greatest information
utility.

Algorithm 1 Deployment Using Mobile Statistics
Input: n potential deployment location j with corresponding
information utility of uj

Output: An optimal solution (z1, ..., zn) for generic sensor deploy-
ment
Set all zj(j = 1, ..., n) equal to 0;
Set the remaining available generic sensors Sb = B/c;
while Sb > 0 do

Choose the j′ with maximum uj′ ;
zj′ = 1;
Sb = Sb − 1;

end while

Property: Our algorithm exhibits the greedy choice prop-
erty. A globally optimal solution can be arrived by making a
locally optimal (greedy) choice.

Proof: It is sufficient to show that as much as possible of
the locations providing the highest information utility must be
included in the optimal solution.

Let uj′ be the information gain of the location providing
the highest information utility (location j′). We define V
as the total information utility obtained by generic sensor
deployment, which can be computed by V =

∑n
q=1 uq . If

some of location j′ is left for some j $= j′, then replacing j
with j′ will yield a higher value, i.e. uj ≤ uj′ by definition
of j′.

V. SENSING DATA DISSEMINATION FOR MOBILE USERS

Mobile users can collect sensing data from stationary sen-
sors through short range communication when they are close to
each other. They can also take sensing measurements directly
using their phones like taking pictures, measuring noise level,
and remarking dangerous trails. Sensing data, taken either by
stationary sensors or by mobile phones, could be uploaded to
the generic sensors within the area of interests. This allows
other users to download sensing information about the trails
ahead in their journey. We consider sensing data in the format
of < IDs, es, Ls, TTLes , tes , Des >, where IDs is the
identifier of the sensor, es is the identifier of the detected
event, Ls is the location of the sensor, TTLes is the time-
to-live of the event, tes is the collection time of the event
data, and Des is the sensing data. A mobile phone user, who
has collected new sensing data, could upload the data to all
the generic sensors that he meets as long as the data is still
valid, i.e. t − tes ≤ TTLes , where t is the current time and
tes is the data generation time. Given the maximum moving
speed of mobile users vmax, the generic sensors that receive
the sensing data from es must be located within Rs of sensor
s.

Each of the mobile users and generic sensors will store their
sensing data in an information list. When a mobile phone user

and a generic sensor are within their communication range,
they can exchange data with each other. Before each exchange,
the user will remove outdated records from its information
list, denoted by ML (Mobile List). Similarly, we denote the
information list of the generic sensor as SL (Sensor List). The
mobile phone and the sensor then exchange their ML and SL
in the format of rs =< IDs, es, Ls, TTLes , tes , Des >. If the
data record rML

s is stored in ML but not in SL, it will be
copied from ML to SL. If the data record exists in both ML
and SL, it will be copied from ML to SL only when the
collection time of the data tes in ML is greater than t′es in
SL. It means that the data in ML is fresher than that in SL.
The same algorithm is run on the generic sensor, which will
also remove its expired data and copy new data to ML.

VI. ANALYSIS

We analyze the data delivery rate and average data delay
considering sensing data with time constraint Tc. The mobile
users will upload and download sensing data with the generic
sensors. The sensing data will expire after time Tc, so that
only data received by users before Tc are valid.

A. Delivery Rate
We calculate Ec[Nd] as the expected number of valid

downloads per upload given Tc. If the next upload arrives
before Tc, all the downloads will be served before the data
expire. Otherwise, only the downloads arrived before Tc will
be served successfully. We consider the arrivals of users follow
a poisson process. The average upload and download arrival
rates are λu and λd respectively. Let fu(t) be a distribution
function indicating the probability that the next upload will
arrive within time t. P [Xd(t) = k] is the probability that k
download arrivals occur during time interval t.

Ec[Nd] =

∫ Tc

t=0
fu(t)(

∞∑

k=0

P [Xd(t) = k]k)dt

+

∫ ∞

t=Tc

fu(t)(
∞∑

k=0

P [Xd(Tc) = k]k)dt

=

∫ Tc

t=0
fu(t)(

∞∑

k=0

(λdt)k

k!
e−λdtk)dt

+

∫ ∞

t=Tc

fu(t)(
∞∑

k=0

(λdTc)k

k!
e−λdTck)dt

=

∫ Tc

t=0
fu(t)(λdt)e

λdte−λdtdt

+ λdTc

∫ ∞

t=Tc

fu(t)e
λdTce−λdTcdt

= λdλu

∫ ∞

t=0
te−λutdt+ λdTcλu

∫ ∞

t=Tc

e−λutdt

= λdλu[
e−λut

λ2u
(−λut− 1)]Tc

0 − λdTc[e
−λut]∞Tc

=
λd
λu

(1− e−λuTc).

(2)
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Fig. 1. Data delivery rate of successful downloads.

If the sensing data has a limited lifetime Tc, one piece of
uploaded data can serve Ec[Nd] valid downloads on average.
Given the total number of download arrivals per upload be
E[Nd] = λd/λu, the successful delivery ratio, Sc, can be
computed by

Sc =
Ec[Nd]

E[Nd]
= 1− e−λuTc . (3)

Figure 1 shows the data delivery rate of successful down-
loads varying λd from 2 to 10 downloads/s with λu = 6
uploads/s.

B. Expected Delay

Similarly, we calculate the total data delay for all the valid
downloads per upload within time constraint Tc.

Tc[W ] =

∫ Tc

t=0
fu(t)(

∞∑

k=0

P [Xd(t) = k]k
t

2
)dt

+

∫ ∞

t=Tc

fu(t)(
∞∑

k=0

P [Xd(Tc) = k]k
Tc

2
)dt

=

∫ Tc

t=0
fu(t)(λdt)e

λdte−λdt t

2
dt

+

∫ ∞

t=Tc

fu(t)(λdTc)e
λdTce−λdTc

Tc

2
dt

=
λdλu
2

∫ ∞

t=0
t2e−λutdt+

λdT 2
c

2

∫ ∞

t=Tc

e−λutdt

=
λdλu
2

[e−λut(− t2

λu
− 2t

λ2u
− 2

λ3u
)]∞0 − λdT 2

c

2
[e−λut]∞Tc

=
λd
λ2u

(1− e−λuTc(Tcλu + 1)).

(4)
The expected delivery delay Ec[W ] for sensing data with

limited lifetime Tc can then be computed by

Ec[W ] =
Tc[W ]

Ec[Nd]
=

1− e−λuTc(Tcλu + 1)

λu(1− e−λuTc)
. (5)

Figure 2 shows the expected delivery delay for successful
downloads.
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Fig. 2. Average delivery delay.
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VII. SIMULATIONS

We evaluate our data dissemination mechanisms with real
mobile traces collected by the mobile phone users in Disney
World (Orlando) [17], [18]. The human mobility traces are col-
lected with GPS receivers carried by 41 participants at every
10 seconds. These traces are mapped into a two dimensional
area and recomputed to a position at every 30 seconds by
averaging three samples over that 30 second period to account
for GPS errors [17]. We monitor a 4km x 4km area at the
center of the theme park for more than 10 hours. The sensing
area is divided into grid cells of 50m x 50m, where sensors
and mobile phones in the same grid cell can communicate
with each other through short range communication.

We evaluate our data dissemination mechanism considering
only data exchanges between mobile users and generic sensors.
Figure 3 shows the data delivery rate varying Tc with different
number of generic sensors. The results illustrate that more
generic sensors can provide higher uploading rate and better
data delivery rate. Also, higher data delivery rate can be
achieved with an increase of time constraint Tc. Similarly,
Figure 4 shows that more generic sensors can achieve lower
data delay. The increase of data delay with Tc follows similar
shape with the curve in Figure 2 of our analysis. Figure 5
shows the average communication overheads of users. More
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generic sensors can provide more communication opportuni-
ties, but also increase the communication overheads.

VIII. CONCLUSIONS

Sophisticated context-aware sensor data dissemination has
been investigated for mobile users in sensing field with poor
or no Internet connectivity. We presented a novel sensor data
exchange framework for mobile phone users to obtain high
information utility by uploading and downloading sensing data
with stationary sensors. Generic sensors are carefully deployed
according to the sensing context and mobility statistics of
mobile users. We proposed a hybrid approach for opportunis-
tic data exchange utilizing both generic sensors and mobile
phones. Analysis has been conducted to evaluate the data
delivery and expected data delay by varying the time-to-live,
uploading and downloading rates of users. Through extensive
simulations with real mobility traces, we have shown that our
hybrid approach can achieve high data delivery rate and low
data delay with small communication overhead.

As future works, we intend to extend the studies for hybrid
networks with intermittent Internet connections in different
parts of the sensing field. We will also explore the possibility

to report and access sensing data through collaboration among
mobile devices with different connectivities.
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