
Energy-Efficient Sensor Selection for Data Quality
and Load Balancing in Wireless Sensor Networks

Farshid Hassani Bijarbooneh∗, Wei Du†, Edith Ngai∗, Xiaoming Fu‡
∗Uppsala University, Department of Information Technology, Box 337, SE–75105 Uppsala, Sweden

Email: {Farshid.Hassani, Edith.Ngai}@it.uu.se
†Research Unit in Networking (RUN), University of Liège, Belgium
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Abstract—It is common to deploy stationary sensors in large
geographical environments for monitoring purposes. In such
cases, the monitored data are subject to data loss due to poor
link quality or node failures. Fortunately, the sensing data are
highly correlated both spatially and temporally. In this paper, we
consider such networks in general, and jointly take into account
the link quality estimates, and the spatio-temporal correlation of
the data to minimise energy consumption by selecting sensors for
sampling and relaying data. In particular, we propose a multi-
phase adaptive sensing algorithm with belief propagation protocol
(ASBP), which can provide high data quality and reduce energy
consumption by turning on only a small number of nodes in the
network. We explore the correlation of data, formulate the sensor
selection problem and solve it using constraint programming
(CP) and greedy search. Bayesian inference technique is used
to reconstruct the missing sensing data. We show that while
maintaining a satisfactory level of data quality and prediction
accuracy, ASBP successfully provides load balancing among
sensors and preserves 80% more energy compared to the case
where all sensor nodes are actively involved.

I. INTRODUCTION
Wireless sensor networks (WSNs) consists of a large number

of embedded devices capable of sensing, processing, and
communicating the habitat and environmental data [1].

It is often the case that sensor readings in the same spatial
regions are highly correlated, and depending on the application
the readings are temporally correlated as well. Exploiting this
aspect significantly improves energy consumption in WSNs.

Belief propagation (BP) [2]–[4] is a technique for solving
inference problems. In the WSN context, the belief of a
sensor node is the data measurement of an event in the
environment, and BP provides an iterative algorithm to infer
the measurements of the sensor nodes, especially in cases
where the data are missing, because of packed losses or
because there is no data available at some selectively disabled
sensor nodes. In such inference problems, the assumption that
the data are spatio-temporally correlated significantly improves
the accuracy of data inference using BP in WSNs.

In this paper, we propose an adaptive sensing belief propa-
gation protocol (ASBP), where the data is collected in several
rounds (a round is a fixed time interval where the network
repeats the same behaviour) by active sensors (sensors that
are collecting data in a each round). We formulate and solve
an optimisation problem that selects the active sensors in each
round, by maximising the data utility while maintaining energy
load balancing. We define data utility as a metric computing

the sum of the qualities of the path links from the selected
active sensor nodes to the base station, subtracted by the sum
of the correlations of the selected active sensors. In addition
to BP, we also use data quantisation to further compress the
data and reduce the transmission costs. In our active sensor se-
lection formulation, we consider non-linear multi-hop routing
protocol constraints. We use constraint programming (CP) [5]
and compare it with our heuristic-based greedy algorithm.
The contributions of this paper are as follows. (1) We present

a novel data collection scheme (ASBP) that utilises highly
correlated spatio-temporal data in the network and uses BP to
reconstruct the missing data due to packet losses and the sensor
selection strategy. (2) We formulate the active sensor selection
optimisation problem, and propose two approaches to solve the
problem. Our CP approach solves the problem to optimality.
(3) We conduct extensive simulation with a real deployment of
a sensor network and the collected data to evaluate the impact
of our proposed solution on the overall energy consumption,
data utility, and accuracy (error prediction of the missing data).
The remainder of this paper is organised as follows. In

Section II we discuss the related work. In Section III, we
give the system overview. In Section IV, we describe the
formulation of our optimisation problem, and we solve it
using CP and heuristic-based greedy algorithm. In Section VI,
we evaluate the performance of our ASBP protocol on a
real deployment of a wireless sensor network. Finally, we
summarise and conclude the paper in Section VII.

II. RELATED WORK
There is now a substantial body of work on energy-efficiency

to prolong WSNs lifetime. Many of the approaches that are
aimed at minimising the energy consumption can be cate-
gorised into cluster-based and prediction-based. For instance,
see LEACH clustering protocol [6] and the references therein.
LEACH is an application-specific clustering protocol, which
shows significant improvements on the network lifetime. How-
ever, it does not guarantee a good cluster head distribution and
assumes uniform energy consumption for the cluster heads.
Prediction-based energy-efficient approaches aim at predict-

ing the data to minimise the number of transmissions. Chou et
al. [7] proposed a distributed compression based on source
coding, which highly relies on the correlation of the data.
They used adaptive prediction to track the correlation of the
data, which is used to estimate the number of bits needed
in source coding for data compression. Recent work in WSN
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Fig. 1: The map of the Intel lab, with the diamond shape nodes
indicating the locations and the ids of the sensor nodes.

addressed the use of compressive sensing [8]. The authors use
compressive sensing to exploit the temporal stability, spatial
correlation, and the low-rank structure of the environment
matrix (EM). Although compressive sensing shows improved
missing data estimation, it does only consider implicit spatio-
temporal correlation. Furthermore, compressive sensing ap-
proaches rely on a complete EM matrix to be available for
the prediction of the missing data. However, in our work we
present a belief propagation approach for the data prediction,
where the spatio-temporal correlation is explicitly enforced,
and the inference for predicting the missing data is performed
iteratively as the data are received at the base station. In
addition to the above, to the best of our knowledge, there has
been no work addressing a CP approach for energy-efficient
sensor selection with dynamic routing, while considering the
link quality and correlation of the data.

III. SYSTEM OVERVIEW
A. Network Model

In our application, stationary sensor nodes are deployed in a
sensor field to collect environmental data. The sensor nodes
periodically sample data, which is forwarded to the sink using
a multi-hop routing protocol. In this work, we use the real data
collected at the Intel lab [9]. Figure 1 shows the map of the
Intel lab, and the location of the deployed sensor nodes, which
are marked with diamond shapes, and the sensor id. The link
thickness between the sensor nodes represents the value of the
link quality aggregated throughout the experiment.

The sink is a base station with high computation capacity and
memory. It collects the sensor node readings and performs
analysis and computations on the data. The base station
communicates with only the neighbour sensor nodes in the
communication range, and is assumed to be aware of the
network topology and the routing tables of the deployed sensor
nodes. In this paper, we refer to the sink and the base station
as the same entity.

B. Protocol Design
In our setup, the sensor nodes collect and report the data

periodically (typically every 30 seconds). In our protocol each
round includes two phases. The first phase is used to collect
the link quality and sensor readings from all sensors, which is
used in the second phase to improve energy-efficiency, energy
load balancing, and the data quality. The two phases in each
round are as follows:

Phase 1: Phase one begins as all sensor nodes become
active, and starts collecting and forwarding a fixed number
of quantised data to the base station (typically 20 sensor

readings). Throughout this phase the routing protocol estimates
the link quality for the shortest routes between the sensor
nodes and the base station. The base station then computes
the correlation coefficient matrix from the sensor data, and
computes all the shortest paths from the sensor nodes to the
base station. These data (link quality, correlation, and shortest
routes) are then used as an input to solve our sensor selection
optimisation problem (further explained in Section IV) The
sensor selection problem is solved using either constraint
programming (CP) or a heuristic-based greedy algorithm to
select a set of active sensor nodes, such that it maximises
the spatio-temporal correlation with the inactive sensor nodes,
while considering link quality and the dynamic routing.
Phase 2: The base station broadcast a message that informs a

subset of the sensor nodes to become inactive (sleep mode with
no radio activity) for a given period of time (typically 2 hours).
In this phase, the base station performs the belief propagation
algorithm (BP) [3], [4] to infer incrementally the missing data
due to the inactive sensor nodes and packet losses (further
explained in Section V). As the second phase is completed,
the base station continues to use BP during the first phase of
the next round. This allows us to compare the inference results
during the first phase with the ground truth, and to compute
the error in prediction. This error is then used by our protocol
to give feedback (on the minimum number of selected sensor
nodes) to the sensor selection optimisation problem of the next
round. This allows a dynamic control over the accuracy of the
data prediction in phase two. Throughout this paper, we say
adaptive sensing with belief propagation protocol (ASBP) to
refer to the protocol design above.

IV. PROBLEM FORMULATION
We present our constraint programming (CP) model for the

sensor selection problem, followed by our heuristic-based
greedy algorithm. The CP model guarantees a global optimum
solution to the problem, whereas the greedy search finds a
good quality local optimum solution.

A. Constraint Programming Model with Dynamic Routing
Let S be the set of WSN sensor nodes, with |S| = N . Let
L[s1, s2] be the link quality between neighbour sensor nodes
s1 and s2, indicating the probability of receiving a packet sent
from s1 to s2, with s1, s2 ∈ S. Let B[s] be the link quality
between the sensor node s and the base station. Let C[s1, s2]
be the absolute value of the correlation of the data between
sensor nodes s1 and s2, with C[s1, s2] ∈ [0, 1]. Let P [s] be
the set of all shortest paths from the sensor s to the base
station, where a path p ∈ P [s] of length n is denoted by
p : 〈(s1, s2), (s2, s3), · · · , (sn−1, sn)〉 with s1 = s. Let E[s]
be the residual energy of the sensor s at the end of the first
phase in ASBP protocol. Let x[s] be a Boolean variable with
value 1 if the sensor node s is selected for the data collection,
and 0 otherwise. Let q[s] represent the maximum achievable
path quality among all possible shortest paths from sensor s to
the base station, in a solution to the sensor selection problem.
We define the data utility u[s] for sensor s to be the path
quality of s subtracted by the correlation of the data between
s and all other sensor nodes (∀s ∈ S):
u[s] = w1 · x[s] · q[s]− w2 ·

∑
s′∈S,
s′ 6=s

x[s] · x[s′] · C[s, s′] (1)

where w1 and w2 are non-negative weight coefficients used to
normalise the two terms. The combined objective considering
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the data utility u[s] and the residual energy E[s] of the sensor
nodes becomes:

maximise
∑
s∈S E[s]α · u[s] (2)

where α is a parameter to adjust the weight of the energy
coefficient on the data utility (typically α is set to 0.5).

The routing constraint enforces that if sensor s is selected
then the path quality q[s] must be maximum among the shortest
paths between s and the base station (∀s ∈ S):

q[s] = max
p∈P [s]

(
B[np] ·

∏
(s′,s′′)∈p

(
x[s′′] · L[s′, s′′]

))
(3)

where np is the nearest neighbour sensor to the base station on
the path p, and s′, s′′ are two adjacent sensors on the path p.

The path quality constraint enforces that the path quality
q[s] from a selected sensor to the sink must exceed a given
threshold t:

∀s ∈ S, q[s] ≥ x[s] · t (4)
where the threshold t is adjusted to provide a consistent packet
delivery on a path to the sink (typically t ∈ [0.3, 0, 7]).

The active sensor constraint enforces that the minimum
number of active sensors is at least m:∑

s∈S x[s] ≥ m (5)
where m provides a trade-off between energy efficiency and
data quality (belief propagation inference error).

In summary, our constraint programming model consists of
the objective (2) and constraints (1), (3), (4), and (5).

Our CP model also benefits from implied constraints and
customised search procedure, which is not presented in this
paper due to space reasons.

B. The Greedy Search Algorithm
Our heuristic-based algorithm is listed in Algorithm 1. The

intuition behind this algorithm is that we should remove a
sensor if 1) the data from the sensor are strongly correlated
with the others, meaning that we can predict fairly accurately
the reading from that sensor; 2) the sensor is already over-
used, meaning that the sensor has a low energy; 3) the sensor
has a poor connection to the sink node, meaning that the data
transmission from that sensor has a high risk to fail. Thus,
we do a greedy selection by taking all three aspects into
consideration and remove sensors one by one until we are
left with the required number of sensors.

Our heuristic algorithm returns a set idSelected of selected
sensors. The algorithm takes the same input constants S, L,
B, C, E, and variables m, and t as explained in Section IV-A.

The heuristic algorithm creates a set of selected sensors
idSelected (line 1), and initialise it with all the possible sensor
ids. The function BestShortestPath (line 2) returns an array
q of path quality values from each sensor to the base station,
while respecting the path quality constraint (4).

The heuristic algorithm maintains a set idNonReachable of
sensor nodes that are not able to reach the base station due
to the violation of the path quality constraints (4) (line 3).
Sensor nodes in the set idNonReachable (line 4) are removed
from the set of selected sensor nodes (line 5), and the values
of link quality, base station link quality, and correlation for
those sensor nodes in idNonReachable are set to 0 from the
corresponding data using the function SetZero (lines 6–8).
The function SetZero(A, Ids) takes a n× n matrix A, and a

Algorithm 1: The heuristic-based greedy algorithm
input : S,L,B,C,E,m, t
output: idSelected

1 idSelected ← S
2 q ← BestShortestPath(L,B)
3 idNonReachable ← {s ∈ S | q[s] < t}
4 if idNonReachable 6= ∅ then
5 idSelected ← idSelected − idNonReachable
6 SetZero(L, idNonReachable)
7 SetZero(B, idNonReachable)
8 SetZero(C, idNonReachable)

9 idFeasible ← idSelected
10 while idFeasible 6= ∅ ∧ |idSelected | > m do
11 L′ ← L
12 B′ ← B
13 idMin ← min (argmins∈idFeasible (E[s]α · u[s]))
14 SetZero(L′, idMin)
15 SetZero(B′, idMin)
16 q ← BestShortestPath(L′)
17 idNonReachable ← idSelected ∩{s ∈ S | q[s] < t}
18 idPotential ← idSelected − idNonReachable
19 if |idPotential | < m then
20 idFeasible ← idFeasible − idMin
21 continue
22 idSelected ← idPotential
23 idFeasible ← idSelected
24 SetZero(L, idNonReachable)
25 SetZero(B, idNonReachable)
26 SetZero(C, idNonReachable)

27 return idSelected

set of indices Ids , and for each index i in Ids sets the value of
every possible pair of (i, j) 1 ≤ j ≤ n in A to zero (A(i, j) =
0 ∧ A(j, i) = 0, 1 ≤ j ≤ n), and if A is a one dimensional
array, then it only sets A(i) = 0.

The main loop of the algorithm (line 10) iteratively selects a
sensor node that contributes the least value to the objective (2)
(equivalent to a sensor node with the lowest data utility
weighted by the initial energy), and performs a lookahead
move (lines 11–21) to detect if removing this sensor node
violates any of the constraints. To perform the lookahead
move, the link quality data for the sensor idMin is set to zero
(lines 14–15), and then the path quality q is updated to discover
the non-reachable sensor nodes idNonReachable (line 16).

if active sensor constraint (5) (line 19) is violated, then we
skip to the next iteration (line 21). Otherwise, we update the
set idFeasible of feasible sensors and continue to the next
iteration until no more feasible sensor node is remained, or m
sensor nodes are selected.

V. BAYESIAN INFERENCE AND DATA QUANTIZATION
This section describes how to use belief propagation to infer

the missing data because of the inactive sensor nodes and the
data transmission losses of the active sensor nodes throughout
the second phase of our ASBP protocol.

A. Introduction to Belief Propagation
Belief propagation (BP) is a classic algorithm for performing

inference on graphical models [3], [4]. In general, it assumes
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x1 x2 x3 x4

y1 y2 y3 y4

Fig. 2: An example of a graphical model.

i

p

q

j

mpi(xi)

mqi(xi)

mij(xj)

Fig. 3: A graphical depiction of message passing from nodes
p and q to the node i in belief propagation (BP). The updated
message mij(xj) is then sent to the node j.

that some observations are made and the task is to infer the
underlying events behind these observations. Denote yi the ob-
servation at node i and xi the underlying event, i = 1, . . . , N .
For the application of WSNs, yi is the reading of sensor i
about some phenomenon that is being monitored, such as the
temperature, and xi is the true reading of the phenomenon.
Clearly, there are some statistical dependencies between yi
and xi, encoded in a so-called evidence function φi(xi, yi).
Very often, we consider the observation yi to be fixed and
write φi(xi) as a short-hand of φi(xi, yi). Furthermore, there
are also statistical dependencies between the several underlying
events xi, encoded in a so-called potential function φij(xi, xj).
For WSNs, the potential function captures spatial correlations
between the readings at nearby sensors.

Given the above notation, the inference of the xi can be for-
mulated as the maximisation of the following belief function:

b({xi}Ni=1) =
∏
ij

φij(xi, xj)
∏
i

φi(xi). (6)

A graphical depiction of this model is shown in Figure 2.
The rectangles are the observation nodes yi and the circles
represent the underlying events xi. The potential functions are
associated with the links between xi and the evidence functions
are associated with the links between yi and xi.

BP performs inference by passing messages between nodes
in the graph. The message from i to j is defined as:

mij(xj) =
∑
xi

φi(xi)φij(xi, xj)
∏

k∈N(i),k 6=j

mki(xi), (7)

where N(i) denotes the neighbours of node i. The message
essentially integrates all messages from the neighbours of i,
except j, as well as the local evidence seen at i. The BP
inference is done by maximising the belief at each node:

bi(xi) = φi(xi)
∏

j∈N(i)

mji(xi). (8)

The message passing process in BP is illustrated in Figure 3.
In this paper, we adopt the max-product variation of BP [10].

B. BP for Inference on WSNs
In using BP for inferring the missing data on WSNs, we need

to construct a graph to model the correlations between sensor
readings. There are two types of correlations on WSNs:

x11 x21 x31 x41

x12 x22 x32 x42

x13 x23 x33 x43

Fig. 4: A depiction of the graphical model built for WSNs.

a) Spatial correlation: Data from different sensors may be
correlated. Note that we do not assume that strong correlations
always exist between data from nearby sensors. Instead, we
compute the correlation coefficients between each pair of sen-
sor nodes from the observed data. We claim spatial correlations
only when we see large correlation coefficients, regardless of
the spatial distance between two sensors.

b) Temporal correlation: Data from the same sensor may be
correlated over time. Here, we assume that the sensor reading
at time t is strongly correlated with that at time t− 1.

Thus, we built our graph as illustrated in Figure 4
where xti denote the true reading of sensor i at time
t. The link between xti and xt−1i represents the tempo-
ral correlations, with a temporal potential function defined
φti(x

t
i, x

t−1
i ) = exp(− (xt

i−x
t−1
i )2

σ2
i

). Similarly, the link between
xti and xtj represents the spatial correlations, with a spatial

potential function defined φsij(x
t
i, x

t−1
i ) = exp(− (xt

i−x
t
j)

2

σ2
ij

).

Note that the noisy sensor reading yti is omitted from the
graph for the purpose of simplification, and the evidence
function associated with the link between xti and yti is defined
φei (x

t
i, y

t
i) = exp(− (xt

i−y
t
i)

2

σ2
i

). yti can be missing for two
reasons: either sensor i is in the sleep mode or the packet
failed to reach the sink node. When it is missing, we turn the
evidence function into a constant, i.e., φei (x

t
i, y

t
i) = 1, for all

possible values of xti. Note that σi and σij are parameters that
can be learned from some training data [11].
Comparing to alternative approaches such as the compressed

sensing based approach in [8], BP based on the graph in
Figure 4 is advantageous for two reasons: 1) BP captures the
spatial and temporal correlations between sensors explicitly via
a graphical model which is updated over time. For example,
we can disconnect the sensor nodes when the correlation
coefficients drop below some threshold. 2) BP allows the
incremental inference that infers the missing data at time t
from the available data at just time t and t − 1. In contrast,
the CS-based approach in [8] takes as input a data matrix with
missing entries, and thus can only perform inference in a batch
mode for a time interval.
We will demonstrate these advantages and the inference

accuracy in Section VI.

C. Data Quantization
Quantisation is a classic technique in signal processing that

has been widely used for data compression [12]. In summary,
quantised measures are less fine-grained and lossy, however
there are many advantages in using a quantised measure:
• A quantised measure is informative enough for de-

scribing the correlation between the data.
• A quantised measure can be encoded into a few bits,
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saving storage and transmission costs.
• A quantised measure is coarse and thus cheaper to

obtain. It is also stable and highly adjustable to match
the needs of the network application.

Let the metric to be quantised take on values in the
range [rmin, rmax], and values outside this interval are mapped
either to rmin or rmax. The quantisation is done by partitioning
the interval into R bins using R − 1 thresholds, denoted by
τ = {τ1, . . . , τR−1}. Each bin is represented by a value within
the range of the bin, e.g., the centroid point of the bin’s range.
Let the value bi represent the ith bin. A table look-up is used
to map the metric value to bi according to the bin threshold:

Q(x) = bi, if τi−1 < x 6 τi, i = 1, . . . , R. (9)
where τ0 = rmin and τR = rmax. The bin indices values
{b1, . . . , bR} are stored in a codebook, and a metric value is
represented by a bin index, that is encoded into few bits.
In general, the thresholds τ are chosen according to the

requirements of the application, adaptively adjusted, or learned
from a set of training data.

VI. EXPERIMENTS
A. Experiment Setup
We experiment with the real data collected from 54 sensor

nodes deployed in the Intel Berkeley Research Lab [9]. The
data is collected by a base station, and includes temperature,
humidity, light intensity, and voltage values once every 30
seconds, throughout a time span of 36 days. The data set also
includes aggregated link quality data. In our simulations, we
selected a time interval of 10 hours, consisting of 5 rounds of
two hours.
We apply a uniform quantisation on the temperature data

in the range of [0, 50] into 256 bins. The values outside the
interval are mapped to the minimum and maximum of the
interval accordingly.
In our energy consumption evaluations, we consider 14mA

transmission cost, as reported for the Mica2Dot mote [13],
used in the Intel lab deployment.
In our simulations, phase one of a round ends when at least

20 data readings are collected from all the sensor nodes. The
weights w1 and w2 in data utility (1) are chosen to normalise
the path quality and correlation. We expect that at least m
sensor nodes are selected, hence the path quality is scaled
by the minimum number m (5) of sensor nodes (w1 = m),
because the sum of the correlation is at least m we set w2 = 1.

B. Results and Analysis
We evaluate the performance of our ASBIP in terms of data

utility, energy efficiency, and data prediction accuracy. We
compare the results of our constraint programming model,
heuristic-based algorithm, and a random sensor selection. Our
simulation of the ASBP protocol is implemented in C++, and
the CP model is implemented using the constraint program-
ming solver Gecode [14] (revision 4.2.1).
Figures 5a, and 5b compare the total data utility and energy

consumption achieved in one round by the ASBP protocol
using CP, our heuristic-based algorithm, and random sensor
selection, with a minimum of 30% and 70% for the base
station link quality, respectively. For each result, we vary the
parameter m in (5) to control the total number of selected
sensor nodes for data collection. Note that we only increase
the base station minimum threshold, whereas the minimum
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Fig. 6: The prediction mean square error of BP with the
CP model, our heuristic-based algorithm, and random sensor
selection strategies, upon varying the minimum number m of
selected sensor nodes.

link quality between the sensor nodes is 30%. The increase
in the minimum base station link quality to 70% affects the
multi-hop routing. It increases the path size to 5 hops, which
requires the sensor nodes closer to the base station to relay also
the data for the nodes further away. Hence, the path quality
q[s] is decreased, and the total data utility is reduced.
The results show that the general traditional random approach

does perform very poorly compared to the global optimum.
The results for the random sensor selection are computed by
taking the mean of the data utility and energy consumption for
10 random sensor selections. We observe that the data utility
increases up to 25 selected nodes and then decreases. This
is because of the trade-off between the path quality and the
correlation. As the number of selected sensors increases the
sum of the data correlation between a selected sensor node and
all the other sensor nodes becomes a larger factor in the data
utility term (1) compare to the path quality term, hence the data
utility decreases. We conclude that an efficient sensor selection
strategy should select 25 sensor nodes in order to maintain a
balance between the path quality and the data correlation.
The heuristic-based strategy in Figure 5b fails to find a

solution for more than 30 selected sensor nodes, because of
the more limited requirement of 70% link quality, and without
backtracking the greedy algorithm fails at maintaining a route
to the base station for all selected sensor nodes.
The total energy consumption for the data transmissions with

both settings 30% and 70% on the minimum base station
link quality is shown in Figure 5c. The minimum base station
link quality is denoted in the legend of the plot. We observe
that at the same threshold on the base station link quality,
the energy consumption is almost independent of the sensor
selection strategy. However, the energy consumption is almost
doubled as the base station link quality threshold is increased
to 70%, which is due to the additional multi-hop relay of the
data required to reach the base station.
Figure 6 shows the BP results with the CP model, heuristic-

based algorithm, and random sensor selection strategies, upon
varying the minimum number m of selected sensor nodes. We
first compute the mean square error (MSE) of the predicted
data versus the ground truth for each sensor node in the
temporal domain. The result is an array of 54 MSE values
on the sensor node predicted data. We then plot the mean of
the MSE error in Figure 6. The results for the random sensor
selection are computed by taking the average of 10 runs. The
standard deviation of CP and the heuristic-based algorithm is
at most 12%. The CP model with m = 10 has an average error
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Fig. 5: Data utility and energy consumption for data transmission obtained by simulating the ASBP protocol in one round and
solving the sensor selection problem with the CP model, our heuristic-based algorithm, and random sensor selection. Minimum
thresholds of 30% (Figure 5a) and 70% (Figure 5b) were used for the base station link quality, upon varying the minimum
number m of selected sensor nodes.

of about 6%, which indicates that in the temporal domain in
average the prediction of the belief propagation deviates 6%
from the ground truth. At the same data point, the standard
deviation (SD) is about 12%, and increasing the number of
selected sensor nodes m always drops the value of SD. As
we expected, the best sensor selection (by CP) achieves the
minimum error, whereas the random sensor selection does not
consider the correlation of the data, and as a result has a higher
prediction error.

The results compared with the energy consumption in Fig-
ure 5c show that we can save up to 80% energy by selecting
only 10 sensor nodes to be active for the data collection in
each round, while maintaining at most the satisfactory average
error of 6% with an SD of 12% in the prediction accuracy. In
our approach, depending on the application and the required
accuracy, we can adjust the selected number of sensor nodes as
a trade-off between the energy consumption and data quality
(accuracy of the belief propagation).

VII. CONCLUSION
We have presented a novel adaptive sensing belief propa-

gation (ASBP) protocol for energy-efficient data collection
in wireless sensor networks. The ASBP protocol is designed
to take advantage of data quantisation and spatio-temporal
correlation of the data in order to prolong the lifetime of the
network. ASBP solves an optimisation problem to select an
optimal set of active sensor nodes that maximises the data
utility and achieves energy load balancing. The data utility
measures the path quality (the packet reception probability
over a path in the network), and correlation of the data for
the active sensor nodes. In our protocol, belief propagation
(BP) iteratively infers the values of the missing data from the
stream of active sensor readings. The accuracy of the BP is
adjustable based on the minimum number of active sensors.
We formulate and solve the active sensor selection optimisation
problem using constraint programming (CP), and compare it
with our heuristic-based greedy algorithm.

We have evaluated our ASBP protocol using real data col-
lected at the Intel lab sensor deployment. The simulation
results show that our ASBP protocol can greatly improve
energy-efficiency up to 80%, with the optimal CP active sensor
selection, while maintaining in average 6% error in the BP data
inference.

As future work, we plan to extend our ASBP protocol
to a fully distributed implementation for real deployment,

and compare versus our current optimal results. We are also
interested to integrate adaptive sampling rate into our current
results, as well as investigating multi-sink scenarios.

ACKNOWLEDGEMENTS
This research is in part sponsored by the Swedish Foundation

for Strategic Research (SSF) under research grant RIT08-0065
for the project ProFuN: A Programming Platform for Future
Wireless Sensor Networks, and sponsored by the U4 Strategic
University Network DAAD Programme Strategic Partnership
and Thematic Networks. Special thanks to the reviewers for
pointing out ways to improve the presentation of this paper.

REFERENCES
[1] J. Amaro, F. J. T. E. Ferreira, R. Cortesao, N. Vinagre, and R. Bras,

“Low cost wireless sensor network for in-field operation monitoring of
induction motors,” in ICIT, March 2010, pp. 1044–1049.

[2] J. Pearl, Probabilistic reasoning in intelligent systems: networks of
plausible inference. Morgan Kaufmann, 1988.

[3] J. S. Yedidia, W. T. Freeman, and Y. Weiss, “Exploring artificial
intelligence in the new millennium,” G. Lakemeyer and B. Nebel, Eds.
Morgan Kaufmann Publishers Inc., 2003, pp. 239–269.

[4] F. V. Jensen, Introduction to Bayesian Networks, 1st ed. Secaucus, NJ,
USA: Springer-Verlag New York, Inc., 1996.

[5] F. Rossi, P. van Beek, and T. Walsh, Eds., Handbook of Constraint
Programming. Elsevier, 2006.

[6] W. R. Heinzelman, A. Chandrakasan, and H. Balakrishnan, “Energy-
efficient communication protocol for wireless microsensor networks,”
in HICSS, vol. 8, 2000, p. 8020.

[7] J. Chou, D. Petrovic, and K. Ramachandran, “A distributed and adaptive
signal processing approach to reducing energy consumption in sensor
networks,” in INFOCOM, vol. 2, 2003, pp. 1054–1062.

[8] L. Kong, M. Xia, X.-Y. Liu, M.-Y. Wu, and X. Liu, “Data loss and
reconstruction in sensor networks,” in IEEE INFOCOM, 2013.

[9] S. Madden, “Intel lab data, 2004,” Available from http://www.select.cs.
cmu.edu/data/labapp3/index.html, 2014.

[10] Y. Weiss and W. T. Freeman, “On the optimality of solutions of the
max-product belief-propagation algorithm in arbitrary graphs,” IEEE
Transactions on Information Theory, vol. 47, pp. 736–744, Sep. 2006.

[11] J. Su, H. Zhang, C. X. Ling, and S. Matwin, “Discriminative parameter
learning for bayesian networks,” in Proceedings of the 25th ICML.
ACM, 2008, pp. 1016–1023.

[12] A. Gersho and R. M. Gray, Vector Quantization and Signal Compres-
sion. Norwell, MA, USA: Kluwer Academic Publishers, 1991.

[13] G. Anastasi, A. Falchi, A. Passarella, M. Conti, and E. Gregori,
“Performance measurements of motes sensor networks,” in Proceedings
of the 7th MSWiM. ACM, 2004, pp. 174–181.

[14] Gecode Team, “Gecode: A generic constraint development environ-
ment,” 2006, available from http://www.gecode.org/.

2014 IEEE 22nd International Symposium of Quality of Service (IWQoS)

343


