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Abstract—Wireless sensor networks have become increasingly
popular for environmental and activity monitoring, such as
temperature, pollution, parking space, traffic, and crowd moni-
toring. Mobile users can collect and visualise sensing data by
communicating with wireless sensors along their walks using
Bluetooth or NFC. They can also share the sensing data on the
Internet through 3G or WiFi connectivity. Nevertheless, mobile
users may not be able to collect all the data from the sensors
due to limited contact times and batteries. It is crucial to collect
data with a maximum amount of information from the available
resources. In this paper, we tackle the problem by prioritising
the sensing data to maximise the data utility considering the
quality of information of the sensing data and the communication
overhead. We formulate the optimisation problem and propose
a greedy algorithm for clustering the sensors and scheduling the
data collection. Our greedy algorithm coordinates the mobile
users in the sensing field in order to avoid the collection of
redundant sensing data. We evaluate the data utility and energy
consumption of the proposed algorithm using real mobility traces
from the North Carolina state fair. The results demonstrate
that our algorithm can significantly improve data utility at low
communication overhead compared with an existing algorithm.

I. INTRODUCTION

Wireless sensor networks consist of distributed, wireless-
enabled, embedded devices capable of employing a variety
of electronic sensors. Each node in a wireless sensor net-
work is equipped with one or more sensors in addition to
a microcontroller, wireless transceiver, and energy source.
Wireless sensors can be deployed for pollution monitoring,
radiation detection, traffic and parking management in smart
cities [1], [2], and so on. For example, pollution sensors
are deployed along roads to monitor the level of particles
from car emissions, such as carbon monoxide (CO), carbon
dioxide (CO2), and nitrogen dioxide (NO2). Cameras could
be deployed to monitor crowd, crimes, or traffic, and to
locate parking spaces. Wireless sensors are also essential for
industrial control, logistics, retail, smart agriculture, home
automation, and e-health [3].

The most attractive feature of wireless sensor networks is
their autonomy. When deployed in the field, a wireless sensor
is capable of communicating with every other node in range
through Bluetooth or near field communication (NFC), which
creates an ad hoc mesh network for relaying information to
and from the gateway node. With the advent of mobile phones,
mobile users can act as mobile gateway nodes to collect data
from the wireless sensors and share the data on the Internet or
with other mobile users. Opportunistic data collection with

mobile devices allows wireless sensors to be deployed at
almost any location without considering the density of wireless
sensors or the underlying network infrastructure. Coupled with
the low cost and almost limitless supply of available sensing
modules, wireless sensor networks offer much flexibility and
potential for numerous application-specific solutions.

Mobile users are collecting information of interest sensed
by the surrounding wireless sensors along their walks. Their
trajectories are random and uncontrollable. Due to the limited
contact time and wireless communication range, the mobile
users may not be able to collect all the data from the wireless
sensors. As contact might be scarce and short, there is a
need to maximise the value of information to be received by
the mobile users. Recently, quality of information (QoI) has
been suggested to measure the value of sensed data, which
is a multidimensional and application-specific metric affected
by multiple factors, which include its location, its sensing
modalities, ambient noise levels, sensing channel conditions,
fault status, and physical process dynamics [4], [5].

In this paper, we consider the QoI of sensing data and max-
imise the utility in data collection for mobile users in wireless
sensor networks. We define data utility as a metric computing
the sum of the qualities of information from the sensed data
divided by their communication overhead in data collection.
The wireless sensors in the sensing field periodically take
measurements from the environment and cache the sensed data
in their buffers. When the wireless sensors are approached by
the mobile users, the mobile phones carried by the mobile
users can communicate with the sensors to collect the cached
data. We formulate the optimisation problem and propose a
two-step greedy algorithm to maximise data utility in data
collection. The mobile users cluster the sensing field to avoid
the collection of redundant data and prioritise the collection
of sensing data according to their data utility. We demonstrate
the efficiency of the proposed algorithm by simulations using
real mobility traces from the North Carolina state fair.

The contributions of this paper are as follows. (1) We
present a novel QoI-aware data collection scheme that utilises
voluntary mobile users to collect data from their surround-
ing sensors. (2) We formulate the optimisation problem and
propose a greedy algorithm for maximising the QoI per com-
munication overhead from the collected data. (3) We conduct
extensive simulations with real mobility traces to evaluate the
QoI and communication overhead of our proposed solution.

The remainder of this paper is organised as follows. In
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Section II we discuss the related work. In Section III, we
give the system overview. In Section IV, we describe the
formulation of our optimisation problem on QoI-aware data
collection. In Section V, we present our two-step greedy
algorithm for maximising data utility in data collection. In
Section VI, we conduct extensive simulations to evaluate our
solution based on real mobile traces. Finally, we summarise
and conclude the paper in Section VII.

II. RELATED WORK

Data collection has been widely studied for stationary wire-
less sensor networks. Gnawali et al. [6] present the state-of-
the-art routing protocol for a sensor network where the nodes
are forwarding data directly to a sink. They consider stationary
WSNs that have static routes from the wireless sensors to the
sink. With the advancement of mobile devices, mobile nodes
have been considered to improve the performance of data
collection. Many works consider mobile devices walking pre-
defined paths to collect data from stationary sensors through
wireless communication. Shah et al. [7] present an architecture
using moving entities, called data mules, to collect sensing
data. Gatzianas and Georgiadis [8] consider a sensor network
where multiple mobile agents collect the data. They suggest
the sink to stay at specific sojourn points to collect data peri-
odically with a distributed algorithm. Similarly, Gu et al. [9]
propose a partition-based algorithm to schedule the movement
of mobile elements, which minimises the required moving
speed and eliminates buffer overflow. Bisnik et al. [10] further
study the problem of quality coverage on event detection using
mobile sensors. They also analyse the effect of controlled
mobility to the fraction of events captured. In this paper, in
departure from these works, we consider mobile users with
uncontrolled mobility in data collection. The mobile users do
not walk along pre-defined paths. They collect sensing data
automatically while they are moving naturally under normal
activities.

Uncontrollable mobility patterns have been considered re-
cently for mobile sensor networks. Kusy et al. [11] propose
an algorithm to predict the mobility pattern of mobile sinks
using a mobility graph. They precompute and store routing
states in the network in order to improve the reliability of
wireless sensor networks involving mobile sinks. In addition,
Lee et al. [12] introduce data stashing in order to forward
the collected data to multiple mobile sinks. They predict the
movement of the mobile sinks and stash the data in advance
in a set of selected relay nodes and wait for the mobile sinks
to arrive. As a mobile sink passes by the relay nodes, they
forward the stashed data to the mobile sink. This method
involves an offline procedure of learning the trajectories of
the mobile sinks in order to predict a set of potential future
trajectories. This offline procedure is formulated as the mul-
tiple sequence alignment problem, which is NP-hard. Li et
al. [13] also propose a ubiquitous data collection scheme that
allows mobile users to collect network-wide sensing data from
static wireless sensors. The proposed scheme can efficiently
form a new data collection tree or locally update the previous

data collection tree with the movement of the mobile users.
Existing work has thus explored data collection for mobile
sensor networks with small variations. However, none of them
has been focusing on optimising the quality of information
(QoI) considering the limited contact time and the remaining
battery life of the mobile devices.

Recent work has already explored the optimisation of QoI
for fundamental networking operations such as rate control,
scheduling, and routing. Tan et al. [14] consider the design of
QoI-aware routing in sensor networks. Urgaonkar et al. [15]
consider a model for QoI-aware scheduling in task processing
networks focusing on the accuracy and freshness of the
sensing data. Using dynamic programming and optimal stop-
ping theory, they characterise the optimal scheduling policy
that maximises the average utility delivered by the network.
Wang et al. [16] investigate maximising QoI subject to cost
constraints in data fusion systems. They consider data fusion
applications that try to estimate or predict some current or
future state for target tracking, path planning, and sensor node
localisation. Rather than optimising generic network-level
metrics such as latency or throughput, they explore resource-
efficient sensor network operation by directly optimising an
application-level notion of quality, namely prediction error.
Although application-level notions of QoI have thus been
explored for WSNs, the optimisation of QoI for data collection
in sensor networks by mobile users with uncontrolled mobility
remains to be further explored.

III. SYSTEM OVERVIEW

A. Network Model

We consider a sensing field with stationary sensors de-
ployed to monitor environmental data, such as noise level,
temperature, pollution, person count, and unusual events. This
sensing information could be interesting to mobile users who
are participating in different kinds of activities. For example,
participants in a state fair may want to obtain information
about free spaces in the parking lots and numbers of people
in restaurants, shows, or special events at particular locations.
Figure 1 shows the map of a state fair, where locations
of interest are identified and numbered by the organiser.
They could be the locations of popular booths, restaurants,
shows, parking lots, and toilets, which are all ideal places for
deploying stationary sensors for monitoring the environment
and activities.

Since local area networks may not be available in an
open field, the wireless sensors deployed are not necessarily
connected to any fixed network infrastructure. Opportunistic
data collection by mobile users with smart phones could be
beneficial to deliver the data from the wireless sensors to
mobile users and the Internet. Most smart phones are equipped
with Bluetooth, which enables them to communicate with the
surrounding wireless sensors. Smart phones allow their users
to visualise the data and upload it to the Internet through 3G
connectivity. This supports large-scale data dissemination for
both current participants in the state fair and future partici-
pants on the Internet. A base station in our network model



Fig. 1: The map of a state fair, with the numbers indicating
locations where stationary sensors could be deployed to moni-
tor unusual events, amounts of crowd, noise level, temperature,
etc.

communicates with the mobile nodes through 3G internet
connectivity and receives the uploaded data for aggregation
and coordination.

B. Protocol Design

In our setup, as the mobile nodes move in the sensing field,
the data collection is repeated every time a fixed time period,
called a round (typically 30 seconds), elapses. A new round
begins when a mobile node enters the sensing field, or when
the previous round ends. Each round includes the following
three phases:
• Phase 1: Each mobile node maintains two lists of its

immediate neighbour sensor nodes (one hop away from
the mobile node) as candidate sink nodes, namely one
list for the current round and one list for the previous
round. At the beginning of each round, if the new list
of candidate sink nodes of a mobile differs from the
previous one (due to the movement of the mobile node
to a new location out of the vicinity of the candidate
sink nodes from the previous round), then the mobile
node requests the sink nodes to initiate a neighbourhood
discovery with a given maximum number of hops. The
neighbourhood discovery protocol is a variation of the
tree discovery in [17] (also see route computation in [6]),
where the broadcast message in the neighbourhood dis-
covery protocol differs from the one in [17] and [6] by
the information it carries. The broadcast message sent
from a sensor node using the neighbourhood discovery
protocol needs to carry extra information required by the
quality of information scheme, namely the quality of its
information, the size of the data in its buffer, and the
identifiers of its neighbour sensor nodes in addition to
the primary information of the one in [17] and [6]. Each
mobile node reports the discovered communication links
and the quality of information of the sensor nodes to

the base station, and requests a scheduling of the sensor
nodes for the data collection.

• Phase 2: Preprocessing is done on the base station,
and it aggregates the information received from all the
mobile nodes, and computes a list of shortest paths and
hop counts from the sensor nodes to each mobile node.
The base station uses our clustering algorithm (further
explained in Section V-A) to assign a cluster of sensor
nodes to each mobile node, and solves an optimisation
problem to schedule the data collection (further explained
in Section V-B) by maximising the data utility and
minimising the communication overhead.

• Phase 3: Each mobile node receives the scheduling of
the data collection from the base station, and initiates the
data collection by requesting the data from the sensor
nodes in the order specified in the schedule. The schedule
information is cached at the mobile node, to be reused
in the next round if the mobile node is not moved out of
the vicinity of its immediate neighbour sensor nodes (the
candidate sink nodes).

Throughout this paper, we use QoI-aware collection proto-
col (QoIACP) to refer to the protocol design above.

IV. PROBLEM FORMULATION

In each round, let M be the set of mobile nodes moving
freely to collect data from the stationary sensors, and let S be
the union of all sensor nodes that are reachable by the mobile
nodes with a given limit MaxHopCount on the number of
hops. Throughout this paper, the identifiers of constants always
start with uppercase letters, and the identifiers of unknowns (or
variables) and indices always start with lowercase letters.

As explained in Section III-B, in each round, the result of
the neighbourhood discovery is reported to the base station
by each mobile node. The neighbourhood discovery data for
a mobile node m ∈M contains the list of sensor nodes
that are reachable by m within MaxHopCount hops. The
neighbourhood discovery data also includes the quality of
information Q[s] of each sensor node s, in the range from
0 to 100, the size of the buffered data D[s] in kB for sensor
node s, the set SinkNodes[m] of the sink nodev identifiers of
mobile node m, and the set Neighbours[s] of the neighbours
of the reachable sensor nodes by m. The base station performs
a preprocessing of the neighbourhood discovery data for all the
mobile nodes, and computes the number Hops[s,m] of hops
for a shortest path from each sensor node s to each mobile
node m.

Let x[s,m] be a Boolean variable with value 1 if the sensor
node s is selected for the data collection by the mobile node
m, and 0 otherwise. We require the sensor nodes to deliver
data with the highest quality of information and the lowest cost
(communication overhead), therefore the data utility gained for
each pair of sensor node s and mobile node m is:

u[s,m] =
D[s] ·Q[s] · x[s,m]

Hops[s,m]
(1)



where u[s,m] represents the data utility for communication
between sensor node s and mobile node m. The data size
generated in each round is equal to the data rate (bytes per
second) of s multiplied by the length T in seconds of each
round. In our work, the data rate is 200 bytes per second for
all sensor nodes, and the data is buffered for 10 rounds, hence
the total size of the buffered data is D[s] = 60 kB if T = 30
seconds.

The objective is to maximise the total data utility gained for
the communication between the sensor nodes and the mobile
nodes:

maximise
∑
m∈M

∑
s∈S

u[s,m] (2)

Note that maximising the total data utility (2) causes an
increase in the communication costs as the data with higher
utility might be routed from sensor nodes several hops away
from the mobile nodes.

The capacity constraints enforce that the size of the data
sent to any mobile node does not exceed the capacity of that
mobile node during any round:

∀m ∈M :
∑
s∈S

D[s] · x[s,m] ≤ C[m] · T (3)

where C[m] is the capacity in kB/second of the mobile
node m ∈M . In our work, the maximum bandwidth for data
collection from mobile nodes is 10 kB/second, indicating that
each mobile user can collect 300 kB of data in each round
if T = 30 seconds.

The communication constraints enforce that any sensor node
sends data to at most one mobile node in each round:

∀s ∈ S :
∑
m∈M

x[s,m] ≤ 1 (4)

Indeed, recall that not every sensor node is selected for data
collection at every round.

In a solution to our problem formulation with the objective
function (2) and just the constraints (3) and (4), a sensor node
s with a high quality of information might be selected for data
collection even if it is located a few hops away from a mobile
node m, and that might cause path overlapping. Therefore, it
is actually also necessary to guarantee that at least one of the
shortest paths from s to m passes only sensor nodes that are
not used for the data collection by any other mobile node.

Figure 2a shows a simple example of WSN with four
sensor nodes s1 to s4 and two mobile nodes m1 and m2.
The communication links are shown with solid and dashed
edges, where the dashed edges are the communication links
created by the mobile nodes with their immediate neighbours
(potential sink nodes). The number shown above a sensor node
is the quality of information of the corresponding sensor. We
assume the capacity for all mobile nodes is 10 kB/second,
the time period T of each round is 10 seconds, and the data
size buffered by all sensor nodes is 60 kB. We assume the
number of hops from a sensor node s to a mobile node m is
the number of edges on the shortest path from s to m (for
example, Hops[s1,m1] = 1,Hops[s3,m1] = 2, and so on). In

this example, due to the capacity constraints (3), each mobile
node can collect data from only one sensor node, and the
maximum utility is gained, if data is collected from s3 and s4
by either m1 or m2. Figure 2b shows a possible solution,
with x[s4,m1] = 1 and x[s3,m2] = 1 (with a total data
utility of 60·90

3 + 60·60
2 = 3600) indicated by colouring the

sensor nodes to the colour of the selected mobile nodes, and
x[s,m] = 0 for all other sensor nodes s and mobile nodes
m, indicated by keeping the blue colour of the sensor nodes
s1 and s2. The path from sensor node s4 to mobile node
m1 (indicated by red edges) overlaps the path from sensor
node s3 to m2 (indicated by green edges). The overlap occurs
at sensor node s3, and requires s3 also to relay the data
from s4 to m1, which increases the communication overhead
of s3, reduces the overall energy efficiency, and increases
the latency of the data delivery. Figure 2c shows a solution
where path overlapping is avoided by m2 collecting the data
from sensor node s2 instead of s3, with a total data utility
of 60·90

3 + 60·25
1 = 3300. Note that avoiding path overlap

decreases the total data utility by 3600 − 3300 = 300 units
compared to the solution in Figure 2b.

To enforce a no-overlap constraint for paths, we solve the
problem in two steps. First, we use a clustering algorithm
(further explained in Section V-A), and then we schedule
the data collection (further explained in Section V-B) within
each cluster. The clustering algorithm guarantees that path
overlapping does not occur, and the data collection scheduling
maximises the total data utility (2), subject to just the capacity
constraints (3) and the communication constraints (4).

V. ALGORITHM DESIGN

A. Clustering

Our clustering algorithm SelectClusters partitions the
sensor nodes reachable from the mobile nodes with a given
limit MaxHopCount of hops into disjoint clusters and assigns
each cluster to a mobile node. The clustering algorithm aims
at balancing the clusters between the mobile nodes, such
that each cluster includes as many sensor nodes as possible,
while avoiding starvation of the other clusters. Our clustering
algorithm SelectClusters for each round is listed in Algo-
rithm 1. In our algorithms, the identifier of a variable is written
with italic font, and the identifier of a function is written with
typewriter font.
SelectClusters takes the hop count matrix Hops , the

integer MaxHopCount , the array SinkNodes of sink nodes,
and the array Neighbours of neighbour sensor nodes as an
input, and outputs an array called cluster , where cluster [m]
represents the set of sensor nodes assigned to the mobile node
m. SelectClusters uses the function path (line 14), where
path(s,m) takes a sensor node s and a mobile node m as
input, and returns true if at least one shortest path from s
to m only passes through sensor nodes that are already in
cluster [m], and otherwise returns false.

The SelectClusters algorithm creates an array
clusterQueue, where clusterQueue[m] represents a first-in
first-out queue of sensor nodes that can be a member of
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Fig. 2: Motivating example for the no-overlap constraint for paths.

cluster [m], and initialises each clusterQueue[m] to the
(one-hop) neighbours of mobile node m (lines 3–5). Let
sensorIsNotUsed [s] be true if sensor node s is not yet
a member of any cluster [m], and false otherwise. Each
sensorIsNotUsed [s] is initially set to true (lines 7–9). We
use a breadth-first strategy to visit all the sensor nodes in
clusterQueue[m] (lines 10–12), and the algorithm quits if
clusterQueue[m] is empty for all m ∈ M (line 10). In each
iteration, we first select a mobile node m (line 11), and
then while clusterQueue[m] is not empty, we dequeue a
sensor node s from that queue (line 13). If s is not yet a
member of any cluster and at least one shortest path from s
to m only passes through sensor nodes already in cluster [m]
(line 14), then we add s to cluster [m] (line 15) and mark s
as used (line 16). We then iterate over each neighbour s′ of
s (line 17), and enqueue s′ to clusterQueue[m] (line 19), if
s′ is not used yet in any cluster, the number of hops from
s′ to m is at most MaxHopCount , and s′ is not already in
clusterQueue[m] (line 18). If a sensor s is added to a cluster,
then we require to switch to the next mobile node in order
to balance the clusters, which is achieved by breaking out of
the inner while loop (line 22).

B. Data Collection

We propose the scheduling algorithm SelectMaxUtility

for the data collection in each round. It is listed in Algorithm 2.
SelectMaxUtility aims at maximising the total data utility
achieved for the scheduling of the data collection from the
sensor nodes.

The SelectMaxUtility scheduling algorithm takes the
clusters cluster created by the SelectClusters algorithm,
the array D of sensor node data sizes, the array C of mobile
node capacities, the set M of mobile nodes, and the set S
of sensor nodes as an input, and outputs an array schedule,
where schedule[m] is a first-in first-out queue of sensor nodes
scheduled for data collection by mobile node m. Each mobile

Algorithm 1 The SelectClusters algorithm
Input: M,S,Hops,MaxHopCount ,SinkNodes,Neighbours
Output: cluster : disjoint sensor clusters for each mobile node

1: for all m in M
2: cluster [m]← ∅
3: for all s in SinkNodes[m]
4: enqueue(clusterQueue[m], s)
5: end for
6: end for
7: for all s in S
8: sensorIsNotUsed [s]← true
9: end for

10: while clusterQueue[m] 6= ∅ for some m
11: for all m in M
12: while clusterQueue[m] 6= ∅
13: s← dequeue(clusterQueue[m])
14: if sensorIsNotUsed [s] and path(s,m) then
15: cluster [m]← cluster [m] ∪ {s}
16: sensorIsNotUsed [s]← false
17: for all s′ in Neighbours[s]
18: if sensorIsNotUsed [s′] and

Hops[s′,m] ≤ MaxHopCount and
s′ not in clusterQueue[m] then

19: enqueue(clusterQueue[m], s′)
20: end if
21: end for
22: break
23: end if
24: end while
25: end for
26: end while
27: return cluster

node m starts the data collection process, as it receives the
scheduling queue schedule[m] from the base station. The data
collection is requested from the sensor nodes in schedule[m]
in the order given there.

The SelectMaxUtility scheduling algorithm iterates over
all the mobile nodes (line 7), and for each mobile node
selects sensor nodes i from the set cluster [m], such that



Algorithm 2 The SelectMaxUtility data collection algo-
rithm

Input: cluster , D,C,M, S
Output: schedule: queue of sensor nodes for each mobile node

1: for all m in M
2: schedule[m]← ∅
3: for all s in S
4: x[s,m]← false
5: end for
6: end for
7: for all m in M
8: totalDataSize ← 0
9: sensorSelected ← true

10: while sensorSelected
11: sensorSelected ← false
12: S′ ← {i ∈ cluster [m] | ¬x[i,m] ∧
13: u[i,m] = maxu[∗,m]}
14: if S′ is not empty then
15: for all s′ in S′

16: totalDataSize ← totalDataSize +D[s′]
17: sensorSelected ← true
18: if totalDataSize ≤ C[m] · T then
19: x[s′,m]← true
20: enqueue(schedule[m], s′)
21: else
22: sensorSelected ← false
23: end if
24: end for
25: else
26: sensorSelected ← false
27: end if
28: end while
29: end for
30: return schedule

each sensor node i is not yet assigned for data collection
(x[i,m] = false) and achieves the maximum data utility
u[i,m] among all sensors for m (line 12). Sensor s′ is
assigned for data collection only if the capacity constraint (3)
is satisfied. Let totalDataSize be the total size of the data in
bytes to be collected from the sensors by the current mobile
node. In each iteration of the while loop (line 10), we select a
set S′ of sensor nodes (line 12), and if S′ is not empty, then we
iterate on all sensor nodes s′ ∈ S′ (line 15), the total data size
totalDataSize is incremented by the data size D[s′] (line 16),
and if the capacity constraint (line 18) is satisfied, then the
sensor node s′ is assigned for data collection by mobile node
m (line 19), and it is enqueued in schedule[m] (line 20). We
exit the while loop (line 10) under two conditions. First, if
the capacity constraint for mobile node m (line 18) is not
satisfied, then the boolean variable sensorSelected is set to
false (line 22), and the next mobile node is selected as the
condition of the while loop becomes false (line 10). Second, if
the set S′ of sensor nodes is empty (due to x[s,m] = true for
all sensors in cluster [m], or the cluster cluster [m] is empty),
then sensorSelected is also set to false (line 26) and causes
the while loop to exit.

Fig. 3: Our random deployment of 600 sensor nodes in the
sensing field. The sensor nodes are shown with dots, and the
edges represent the communication links between the sensor
nodes. The location traces of the mobile nodes for 180 rounds
of the simulation are shown with coloured lines.

VI. EXPERIMENTS

A. Experiment Setup

We experiment with mobile traces collected by participating
visitors to a state fair (North Carolina, USA) [18]. The data
set includes GPS traces of 19 mobile phones every 30 seconds
over a period of at least 90 minutes and at most 208 minutes,
and covering a sensing field of size 1.2 km by 1 km. We
use the first 90 minutes of the GPS traces in our simulation,
as all the mobile nodes are active in the sensing field during
this period. The simulation is over 180 rounds, as the length of
each round is set to 30 seconds. We randomly place 600 sensor
nodes in the sensing field with random quality of information.
The placement requires that no two sensor nodes can be placed
closer than 25 meters. The transmission range of the sensor
nodes and the mobile nodes is set to 50 meters, indicating that
a neighbour sensor node is detected within 50 meters [19],
[20]. In each round, the size of the data stored in the buffer
of each sensor node is 60 kBytes, and the capacity of each
mobile node is 300 kBytes. We assume the base station is a
server connected to the Internet, and communicates with the
mobile nodes through 3G.

Figure 3 shows the sensing field with 600 randomly de-
ployed sensors and the communication links as the edges. The
location trace of each mobile node is shown by a coloured line
during the 180 rounds of the simulation.



B. Results and Analysis

We evaluate the performance of our data collection protocol
QoIACP in terms of data utility, quality of information, and
communication overhead. We compare the performance of
our QoI-aware data collection algorithm with our extended
implementation of the CTP protocol [6]. Our implementation
of CTP extends it by constructing the data collection tree
periodically when the mobile nodes are moving in the sensing
field. The mobile nodes keep collecting sensed data in their
data collection trees with minimum communication cost.

In order to measure further the quality of our results, we
construct an integer programming (IP) model from the prob-
lem formulation in Section IV by just keeping the objective
function (2), the capacity constraints (3), and the commu-
nication constraints (4), while allowing path overlapping to
occur. The IP model is solved to optimality with the solver
Gurobi Optimizer [21], and the resulting metrics, namely total
data utility, total quality of information, and communication
overhead are used in our evaluation as an upper bound for
the corresponding metrics computed for the QoIACP protocol,
because the latter also enforces the no-overlap constraints. The
optimal results of the IP model do not, in general, provide
a tight upper bound on the data utility due to the problem
relaxation, hence the optimal solution to the data collection
problem including the no-overlap constraints might be far
below this upper bound.

Our simulation of QoIACP and the data collection algo-
rithms is implemented in C++, and the IP model is run under
Gurobi Optimizer (revision 5.1) and Mac OS X 10.8.2 64
bit on an Intel Core 2 Duo 2.53 GHz with 3MB L2 cache
and 8GB RAM. The runtimes of the IP model and our data
collection algorithms are on average below 50 milliseconds
for any number of mobile nodes (varying from 1 to 19) in our
instance data.

Figure 4 compares the total data utility over 180 rounds
achieved by the QoIACP protocol versus the CTP protocol
and the IP model, upon varying the number of mobile nodes.
The results show that QoIACP achieves a high total data utility,
with at most a 4% gap from the upper bound computed by the
IP model, compared to the 15% gap between CTP and the IP
model for the largest instance (19 mobile nodes).

Figure 5 compares the total quality of information gained
over 180 rounds by the QoIACP protocol versus the CTP
protocol and the IP model, upon varying the number of mobile
nodes. The total quality of information is the sum of the
normalised information value from the collected sensing data.
It is computed by the numerator in the data utility function in
Eq. (1): ∑

s∈S

∑
m∈M

D[s] ·Q[s] · x[s,m] (5)

As expected, the results show a large gap between the CTP
protocol and our QoIACP protocol.

Figure 6 compares the total data utility achieved by the
QoIACP protocol versus the CTP protocol over 180 rounds.
The results show that QoIACP achieves a higher data utility
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varying the number of mobile nodes, for our QoIACP protocol,
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Fig. 5: Total quality of information gained over 180 rounds
(90 minutes), upon varying the number of mobile nodes, for
our QoIACP protocol, our variant of the CTP protocol [6], and
the upper bound from our IP model.

than the CTP protocol in 80% of the rounds, and the utilities
are equal in the other 20% of the rounds.

Figure 7 compares the total communication overhead over
180 rounds by the QoIACP protocol versus the CTP protocol,
upon varying the number of mobile nodes. The total commu-
nication overhead of the sensors is measured by the number of
transmissions for the sensors to report their sensing data to the
mobile nodes. The CTP protocol is tailored to minimise the
communication overhead, and as a result the data collection
from the sensor nodes with the CTP protocol achieves the
least amount of communication overhead on the sensor nodes.
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Fig. 7: Total communication overhead of the sensor nodes over
180 rounds (90 minutes), upon varying the number of mobile
nodes, for our QoIACP protocol and our variant of the CTP
protocol [6].

The sensor nodes with the QoIACP protocol are required to
spend more energy for the communication in order to achieve
a higher data utility.

Figure 8 compares the total communication overhead over
180 rounds by the QoIACP protocol versus CTP, upon vary-
ing the number of mobile nodes. The total communication
overhead of the mobile nodes is computed as the number
of transmissions required for the data collection between
the mobile nodes and their sink nodes. The results show
that both QoIACP and CTP achieve the same total mobile
communication overhead, mainly due to the capacity of the
mobile nodes being fully utilised for the data collection in each
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Fig. 8: Total communication overhead of the mobile nodes
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mobile nodes, for our QoIACP protocol and our variant of the
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MaxHopCount between 1 and 10.

round by both the QoIACP protocol and the CTP protocol.
Figures 9 and 10 show the trends of total data utility and

communication overhead for instances with 5, 11, and 19
mobile nodes as MaxHopCount is increasing from 1 to 10.
The results show that, regardless of the choice of protocol,
after 5 hops there is nearly no gain for the data collection by
increasing the maximum number of hops. Therefore, in our
QoIACP protocol, it is best to choose MaxHopCount = 5 for
all mobile nodes.

VII. CONCLUSION

We have presented a novel quality-of-information (QoI)
aware data collection protocol (QoIACP) for wireless sensor
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networks with mobile users. The protocol is designed to
optimise data utility, which measures the normalised QoI value
of collected data per transmission. A hybrid methodology is
used in our QoIACP protocol with a distributed neighbourhood
discovery protocol, but centralised clustering and data collec-
tion scheduling for coordination among multiple mobile users.
We have formulated the optimisation problem and proposed
a clustering algorithm and a scheduling algorithm for the
data collection in order to maximise the total data utility. A
relaxation of the problem constraints has been used to model
the problem with integer programming (IP); this model is then
solved to optimality to provide a usually non-sharp upper
bound on the quality of our results. We have evaluated our
QoIACP protocol by extensive simulations using real mobility
traces. We have also compared our QoIACP protocol with an
extended implementation of the CTP protocol [6].

The simulation results have demonstrated that our QoIACP
protocol can achieve very high data utility, as close as 4% to
the upper bound on an optimal solution. It obtains much higher
QoI (more than 25%) and data utility (more than 11%) than the
CTP protocol. The communication overhead of mobile users
remains the same between QoIACP and CTP, while the sensors
in QoIACP may have slightly higher communication overhead
for reporting sensing data with high QoI.

As future work, we plan to extend QoIACP to a fully
distributed implementation for real deployment. Apart from
maximising data utility, we would also like to extend the work
for load balancing for multiple mobile users.
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