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Abstract— Wireless sensor networks have been widely deployed
to perform sensing constantly at specific locations, but their
energy consumption and deployment cost are of great concern.
With the popularity and advanced technologies of mobile phones,
participatory urban sensing is a rising and promising field which
utilizes mobile phones as mobile sensors to collect data, though it
is hard to guarantee the sensing quality and availability under the
dynamic behaviors and mobility of human beings. Based on the
above observations, we suggest that wireless sensors and mobile
phones can complement each other to perform collaborative
sensing efficiently with satisfactory quality and availability.

In this paper, a novel collaborative sensing paradigm which
integrates and supports wireless sensors and mobile phones with
different communication standards is designed. We propose a
seamless integrated framework which minimizes the number of
wireless sensors deployed, while providing high sensing quality
and availability to satisfy the application requirements. The
dynamic sensing behaviors and mobility of mobile phone par-
ticipants make it extremely challenging to estimate their sensing
quality and availability, so as to deploy the wireless sensors
at the optimal locations to guarantee the sensing performance
at a minimum cost. We introduce two mathematical models,
a sensing quality evaluation model and a mobility prediction
model, to predict the sensing quality and mobility of the mobile
phone participants. We further propose a cost-effective sensor
deployment algorithm to guarantee the required coverage prob-
ability and sensing quality for the system. Extensive simulations
with real mobile traces demonstrate that the proposed paradigm
can integrate wireless sensors and mobile phones seamlessly
for satisfactory sensing quality and availability with minimized
number of sensors.

I. INTRODUCTION

A wireless sensor network (WSN) consists of spatially
distributed autonomous sensing devices which cooperatively
monitor physical or environmental conditions, such as temper-
ature, sound, vibration, pressure, motion or pollutants at dif-
ferent locations. Traditional sensor networks involve a number
of static sensors being deployed carefully at chosen locations.
Although individual sensor node is not very expensive, large
deployment of sensor nodes in the network could make the
total cost considerably high. In the meantime, mobile phones
are becoming very popular and more powerful which make
participatory sensing possible [1], [2]. Some mobile phones
could also be used as sensors to collect data such as sound,
motion, temperature, etc.

Mobile phone users could collect data at different time and
locations when they move around. The phones are regularly
charged and no extra deployment cost is involved in partici-
patory sensing. However, the randomness of user movements

and behaviors may bring difficulty in guaranteeing satisfactory
coverage and sensing quality in the network. The quality
of sensing data resulted by human may differ from one to
another, which may not always satisfy the requirement of the
applications.

Compared with the dynamic nature of participatory sensing
campaigns, wireless sensor networks are relatively stable. In
most applications, after the WSNs are deployed, the topolo-
gies remain almost the same and their behaviors are more
predictable. Although there are some random or unpredictable
factors, such as damage of sensors, running out of energy,
and data inaccuracy during transmission, their performance
can be analyzed. It is obvious that the different natures and
characteristics of static sensors and mobile phones could
complement each other to perform collaborative sensing to
reduce the deployment cost and provide satisfactory quality
of sensing data.

In this paper, we consider a novel collaborative sensing
paradigm which includes static sensors and mobile phones. In
particular, we aim at providing collaborative sensing by both
mobile phone participants and static sensors at satisfactory
sensing quality and availability with a minimized deployment
cost. We face some unique challenges when designing cost-
effective and efficient sensing for this innovative collaboration
paradigm. First, the existing wireless communication standard
of sensors and mobile phones are different. Most of the exist-
ing sensors only support IEEE 802.15.4 standard and Zigbee
for communication. On the other hand, mobile phones support
mainly IEEE 802.11b/g standard (WiFi) and bluetooth, but not
IEEE 802.15.4 and Zigbee. These limitations should be taken
into account when building an integrated network. Second,
the efficiency of the collaborative sensing paradigm depends
on the sensing quality and the availability of mobile phone
participants and sensors. Unfortunately, human behaviors and
mobility may vary from time to time and they are not always
predictable. Third, we would like to reduce the cost of the
collaborative sensing system by minimizing the number of
sensors required in the field, while guaranteeing the sensing
quality and availability in long period of time. Moreover,
one-time deployment is preferred to avoid extra costs and
inconvenience caused by re-deployments.

To address these challenges, we propose a novel integra-
tion framework that incorporates mobile phones and wire-
less sensors seamlessly to provide cost-efficient collaborative
sensing with high quality and availability at a minimized



deployment cost. First, we present a new network architec-
ture that support mobile phones and wireless sensors with
different wireless communication standards. Considering the
most common technologies on existing phones and sensors,
we suggest a network with WiFi as backbone and overlayed
with a IEEE 802.15.4 network for connecting to the sensors.
Second, we introduce two mathematical models to estimate
the sensing quality and mobility of mobile phone participants
based on reputation statistics and probability model for mo-
bility respectively. Third, we propose a cost-effective sensor
deployment algorithm which minimizes the number of static
sensors, while guaranteeing the sensing field are covered with
the required sensing quality and probability in most of the
time. Despite the dynamic behaviors of mobile phone partic-
ipants, we aim at one-time deployment of wireless sensors
to avoid unnecessary re-deployments for a practical and cost-
effective solution. Forth, we evaluate our collaborative sensing
paradigm comprehensively with real mobile traces from the
mobile phone participants in Disney World (Orlando).

The remainder of this paper is organized as follows: Section
II presents related work. In Section III, we describe the system
architecture for collaborative sensing with wireless sensors
and mobile phone. In Section IV, we present our sensing and
terrain models followed by the sensor deployment problem in
the proposed paradigm. The sensor deployment framework for
collaborative sensing in mobile phone assisted environment is
presented in Section V, together with detailed descriptions of
the three modules. In Section VI and VII, we conduct extensive
simulations to evaluate our framework and provide a case
study based on real mobile traces. Finally, we conclude the
paper in Section VIII.

II. RELATED WORK

Participatory sensing has been studied recently to provide
mobile phone-based data gathering [1]. It is coordinated across
a potentially large number of participants over wide spans
of space and time. Research topics on participatory sensing
spread over privacy mechanisms, context-annotated mobility
profiles for recruitment, performance evaluation for feedback,
incentives and recruitment, etc. In our work, we mainly
focus on two aspects, which are evaluation of participants’
sensing quality and availability. Reddy et al. proposed a model
for evaluating participation and performance in participatory
sensing based on Beta distribution [3]. They also proposed a
recruitment engine that uses campaign specifications provided
by an organizer to select a limited set of potential volunteers
based on participants’ previously gathered mobility profiles
[2]. Their work focuses on the recruitment of mobile phone
participants considering their geographic and temporal avail-
ability, while our framework works on the deployment problem
of static sensors for collaborative sensing with mobile phone
participants.

Deployment problems in traditional wireless sensor net-
works have been widely studied. Tian et al. proposed a node-
scheduling scheme to reduce system overall energy consump-
tion and increase system lifetime [4]. Their scheme turns off

some redundant nodes and guarantees that the original sensing
coverage is maintained. Dhillon et al. proposed two greedy
algorithms for deployment of wireless sensor network [5].
They built a probability model for wireless sensors based on
a grid sensing field. Chakrabarty et al. proposed a deployment
strategy to reduce cost for wireless sensor network which
has different kind of wireless sensors [6]. They formulated
the problem with integer linear programming. Poduri et al.
proposed an algorithm based on artificial potential fields for
the self-deployment of a mobile sensor network [7]. Their
deployment strategy is researched in a network with the
constraint that each of the nodes has at least K neighbors.

Our work is different from the above as we consider
sensor deployment in mobile phone assisted environment. We
investigate how sensor deployment can be optimized cost-
effectively considering the mobility and human behaviors in
mobile phone sensing. Our framework enables static sensors
and mobile phone participants complement each other to
provide satisfactory sensing services with minimized cost.

III. COLLABORATION SENSING PARADIGM WITH
WIRELESS SENSORS AND MOBILE PHONES

We aim at designing a novel collaborative sensing paradigm
that connects wireless sensors and mobile phones in a network,
such that users can collect and process data from both of them.

A. System Architecture
The network in our paradigm includes both wireless sensors

and mobile phones. Unfortunately, the different wireless com-
munication standards on mobile phones and wireless sensors
hinder direct communications between them. Most of the exist-
ing wireless sensors communicate with IEEE 802.15.4/ZigBee
standard [8]. Although we can find sensors that support WiFi
[9] and bluetooth [10], they are not very common. On the
other hand, most of the mobile phones are equipped with
GPRS, WiFi, bluetooth and infra-red nowadays [11], but they
are rarely Zigbee enabled [12]. We need a new network
architecture that support devices with different communication
standards to collect and integrate data from them. We ex-
plored different implementations which enable mobile phones
communicating with wireless sensors. For example, we can
install a wireless access point like Asus WL-500GP [13] which
supports IEEE 802.11b/g and is equipped with UBS ports for
connecting to the sensors. Alternatively, we can connect a
mobile phone such as Nokia N810 [14] through its USB port
or a IEEE 802.15.4/ZigBee USB adapter [15] to the sensors.

Although USB ports and adapters could be used to connect
mobile phones and sensors, they are far from a convenient and
practical solution to the general mobile phone participants.
Based on the most popular existing technology, we suggest
a hybrid network architecture as shown in Figure 1 for our
collaborative sensing paradigm. The proposed architecture
supports sensors and mobile phones equipped with either
IEEE 802.15.4/ZigBee or IEEE 802.11b/g standards. Given
the popularity and wide coverage of WiFi, we consider WiFi
as the backbone of our network which allows mobile phone



Fig. 1. System architecture

users to report their data easily and freely. In the meantime, we
also deploy a sensor network that enables multi-hop communi-
cation with IEEE 802.15.4/ZigBee among the wireless sensors.
The sensor network includes one or multiple sink nodes that
support IEEE 802.11b/g to overlay the sensor network with the
backbone network. We may also include a gateway server to
process and store the data collected by the sensors and mobile
phones. We do not require necessary interactions between
sensors and mobile phones in this stage to keep our design
simple and practical.

B. Collaborative Sensing with Sensors and Mobile Phones

The network can be deployed in different places to monitor
the environment and human activities. Some potential sensing
environments include amusement parks, universities, tourist
attractions, etc. Figure 2 shows the map of an amusement
park where a number of games, theaters and aquariums are
located at different zones. The smiley faces in the figure
indicate the spots that many people like to go. The map also
shows some green areas with trees and possibly mountains
that attract less people. We intend to build a network for the
administrator to monitor and collect data from the environment
considering the unique behaviors and mobility of the mobile
phone participants collaborating with wireless sensors.

We consider some primary sensing data like the noise level
and pictures to be collected by the microphone and the camera
of the sensors or mobile phones. Based on the capability of
the sensors and phones, other secondary data like temperature,
pressure and motion could also be detected with different types
of sensing components in the sensors or the mobile phones. We
focus on the primary data which could be collected by sensors
or mobile phones interchangeably in this work. However,
the approach could be extended easily for different kinds of
sensing data and application requirements. Sensors could be
deployed cost-effectively with the assistance of mobile phones
for monitoring the environment.

Fig. 2. Map of amusement park where smiley faces indicate the crowds
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Fig. 3. Sensing field with obstacles

IV. THE SENSOR PLACEMENT PROBLEM IN
SENSOR-MOBILE PHONE COLLABORATION PARADIGM

A. Sensing and Terrain Models
In our collaborative sensing environment, there are two

types of devices: mobile phones and wireless sensors. Since
participants may have different kinds of mobile phones, their
sensing capabilities differ from one to another. We extend the
model proposed by Dhillon et al. for the detection probability
of a target by a sensor in a terrain of sensing area [5]. We
assume that the detection probability varies exponentially with
the distance between the target and the sensor. A target at
distance h from a sensor is detected by that sensor with
probability

z(h) = e−γh,

where γ can be used to model the quality of the sensor and the
rate at which its detection probability diminishes with distance.
The choice of a sensor detection model could be changed
according to different sensing environments without affecting
our algorithm.

Terrain is an important factor in wireless sensor networks,
which heavily affects the sensing capabilities of the sensing
devices. For example, obstacles such as buildings can block
the vision of some sensors. Figure 3 shows an example of
sensing field with obstacles.

In our paper, the sensing field is represented as a grid of two-



or three-dimensional points gi. The distance between adjacent
grid points is d. For simplicity, we assume that sensors are
deployed only at these grid points. The participants’ sensing
actions are also considered to be performed within these grids.
The number of grid points in the sensing field is denoted by N .
We define the detection probability matrix, D, which describes
the detection probability from the sensors or mobile phones
to the targets as

D =





d1,1 d1,2 · · · d1,n
d2,1 d2,2 · · · d2,n

...
...

. . .
...

dn,1 dn,2 · · · dn,n





in which di,j indicates the sensing probability of a target in
grid point j by a sensor or mobile phone in grid point i.
The probability matrix can be calculated according to our
knowledge of the sensing and terrain models. We let dis(i, j)
denote the distance from grid point i to grid point j. Then,
entries of D are calculated as follows

di,j =

{
z(dis(i, j)) if vision from i to j is not blocked,
0 otherwise.

Note that the detection probability matrix depends on the
sensing capability of the sensors and mobile phones, so it may
vary from one type of devices to another even though they are
monitoring the same terrain.

B. Problem Description

Many factors have to be considered when a wireless sensor
network is deployed, such as energy consumption, connectivity
and deployment cost. In a sensing environment with sensors
and mobile phones, the deployment cost of sensors could be
relatively expensive in comparison with the recruitment of
mobile phone participants. Minimizing the number of sensors
in deployment could definitely reduce the cost for the sensing
applications. Our aim is to deploy minimum number of sensors
and provide enough coverage and sensing quality for every
grid point in the sensing field.

The grid points in a sensing area may have different impor-
tance according to the application requirements. For example,
some grids are critical to the sensing campaign where data
need to be sensed with higher priority. Such importance can
also be changed during the progress of participatory sensing
from period to period. Thus every grid point gi is associated
with a pair < Qi, Pi >, where Qi indicates the lowest quality
of data required by the campaign expressed as a real number
in the range of [0, 1]. The quality of sensing result could be
judged by the organizers or experts. The parameter Pi indicates
the lowest required coverage probability for that grid point.
Regarding to the coverage probability, we mean the probability
that a grid point gi is sensed by any mobile phone participants
or wireless sensors. At the beginning of each period, the
quality and probability vectors Qreq = (Q1Q2...QN ) and
Preq = (P1P2...PN ) are given as input parameters.

Wireless sensor network should complement mobile phone

Fig. 4. Overview of our framework

participants in sensing to make sure that enough sensing qual-
ity and availability could be achieved. Our sensor deployment
algorithm should be adaptive to human actions. It is not wise
to deploy the network once and then remain it the same during
the whole campaign. The participatory sensing campaign can
be divided into several periods. Before each period, the wire-
less sensor network could be reconfigured slightly according to
the information from the participatory sensing campaign and
the behaviors of its participants. However, re-deployments are
unfavored due to the extra time, effort and cost. In case that
re-deployment is not possible, our scheme could predict the
behavior of the mobile phone participants and figure out an
optimal sensor deployment that guarantees the best sensing
quality at most of the time in the future.

V. WIRELESS SENSOR DEPLOYMENT IN MOBILE PHONE
ASSISTED ENVIRONMENT

We propose a seamless integrated framework for the de-
ployment of wireless sensors in mobile phone assisted en-
vironment. Our framework consists of three modules, which
communicate with each other by passing parameters (see Fig-
ure 4). The implementation of every module can be replaced
by another provided that the interfaces between the modules
remain the same. This gives our deployment framework great
flexibility and generality, which is important to support a
diverse variety of participatory campaigns.

This section is organized as follows: Firstly, we describe
the sensing quality evaluation model. Then, we explain the
mobility prediction model for the participants. Finally, we use
the above two models to figure out the locations that require
the deployment of extra wireless sensors.

A. Evaluation of Sensing Quality of Participants

The sensing quality of participants are affected by many
human factors, like community expertise [16], trustworthiness
of the participants, data quality of their mobile phones, etc.
Some participants will report their data reliably and honestly
which can provide the system high sensing quality that satisfy
the application requirements, while some bad participants
might not always provide useful data. Participatory sensing
reputation metrics can incorporate expertise, data quality,
credibility and certainty among the participants [3].

Evaluating sensing quality of participants has an inherent
relation with reputation evaluation of transaction parties in e-
commerce [17]. Online markets require a great deal of trust



among trading partners to mitigate the risks involved in anony-
mous transactions. In reputation systems for e-commerce,
the reputation of merchants are calculated according to the
feedbacks and remarks from customers [18]. Similarly, in
participatory sensing, the participants may act as merchants
who sell goods and the organizers or experts may act as
the customers. Unlike peer-reviews in on-line market, the
organizers in participatory sensing can evaluate performance
of the participants by comparing the sensing data among the
participants and checking whether their collected data meet
the application requirements.

Moreover, the sensing quality of participants depend heavily
on the time and locations that their actions are performed. For
instance, a mobile phone participant may be more willing to
report data when he is travelling, rather than hurrying to work.
A participant may gain more experiences gradually and report
data with higher quality along time. One may even change
to a new mobile phone with stronger sensing capabilities. The
dynamic natures of human activities at different time and place
bring unique challenges in sensing quality evaluation. We
hence propose a mathematical model to estimate the sensing
quality of mobile phone participants considering the order of
their previous actions over time.

Beta distribution can be applied to model the performance
of a participant, which is based on the statistics on proba-
bility distribution of some binary events [3], [19]. The beta
probability distribution function y(q|α,β) is expressed by

y(q|α,β) = Γ(α+ β)

Γ(α)Γ(β)
qα−1(1− q)β−1,

where Γ is the Gamma function, 0 ≤ q ≤ 1, α and β
are integers greater than 0. The function is indexed by two
parameters, α and β. Consider a process has two possible
outcomes {x, x}, r denotes the number of outcome x and s
denotes the number of outcome x. Then the probability density
function of outcome x in the future is a beta distribution by
setting α = r + 1 and β = s+ 1. At the beginning, α and β
are initialized to be 1, which result in a uniform distribution.

The results of participants’ performance can be represented
as a stochastic process which has two possible outcomes
(x, x). x means a successful action and x means an unsuccess-
ful action. For the ith outcome, we define random variables
ri and si as follows

ri =

{
1 if the ith action is successful,
0 otherwise.

si =

{
1 if the ith action is unsuccessful,
0 otherwise.

Beta distribution can be applied to model participants per-
formance by setting r as number of successful actions and s
as number of unsuccessful actions, such that

r =
∑

ri, s =
∑

si.

As the campaign progresses, the sensing performance of
the participant is changing. The more recent performances is

more representative than the old ones, so that old performances
should have less weights than recent ones. We introduce the
following aging factor that emphasizes on the order of action
results as

ki = λ
(t−ti),

where t is the current day and ti is the day when the
action is performed. Meanwhile, it has the advantage of being
calculated recursively by

r = r′λ(ti−ti−1) + ri, s = s′λ(ti−ti−1) + si,

where r′ and s′ are the r and s in the previous time stamp at
ti−1.

In practical campaign, the feedbacks from organizers about
the participants are not simply binary because the result of an
action cannot be only judged as successful or unsuccessful.
In this case, the organizers may give the feedback in form
of a pair of real numbers < ri, si >, where ri indicates the
satisfaction degree and si indicates the dissatisfaction degree.
In addition, it is also possible for the organizers to give the
feedback by only one real number vi. Then, ri and si can be
calculated by

ri =
1 + vi

2
, si =

1− vi
2

.

Since different tasks may have special difficulties, it is
straightforward that a positive weight wi can be applied to
show the levels of difficulty. More important the task is, the
larger its weight is. Then, ri and si can be calculated by

ri =
wi(1 + vi)

2
, si =

wi(1− vi)

2
.

Together with the aging factor, the parameters α and β can
be calculated as follows

α = 1 +
∑

ri = 1 +
∑ wi(1 + vi)

2
λ(t−ti),

β = 1 +
∑

si = 1 +
∑ wi(1− vi)

2
λ(t−ti).

After that, we can obtain the probability that the next
sensing action of a participant whose result is better than Q
by calculating

∫ 1
Q y(q|(α,β))dq.

B. Prediction of Participant Mobility

Another dynamical aspects of participants are their motions
because nobody knows what exactly they will do tomorrow.
However, their motions are not completely random as most
people have their schedule everyday or places they used to
go. For example, students usually go to the university canteen
for lunch after their morning lectures. Similarly, tourists who
just played with the roller coaster in the amusement park are
likely to play with the ferris wheel nearby. The motion patterns
of human beings could be learned and predicted by some
mathematical models. We formulate and predict participants’
behaviors by the Markov model here which requires only the
sensing data uploaded by the participants.

Since most people care about their privacy, a reliable way to



Fig. 5. Example of participant motions

collect information of users’ motions is using their uploaded
geo-tagged data from which the locations can be obtained.
Their motions in a day can be described by a sequence L.
Figure 5 shows an example of motion sequence represented as
L = [A,D,C,E,B]. Every element in the sequence describes
the location where the task is performed. The sequence of
participants’ motions can be modelled by a Markov chain
{c1, c2, ..., cn}. Each state ci corresponds to the grid point
gi in the sensing field.

According to the property of Markov transition matrix X ,
p(n)i,j gives the probability that the Markov chain, starting in
state ci, will be in state cj after n steps. We calculate the
probability for the starting states f (0) = (f (0)

1 f (0)
2 ...f (0)

n ) of
the participants in a period T , which can be obtained by some
statistics from the previous participants’ actions.

X =





p1,1 p1,2 · · · p1,n
p2,1 p2,2 · · · p2,n

...
. . .

...
pn,1 pn,2 · · · pn,n





Let f (m)
i denote the probability that a participant is in

state ci at time m. These state probability at time m are
conveniently arranged in a row-vector

f (m) = (f (m)
1 f (m)

2 ...f (m)
n )

known as the state probability vector at time m. It can be
calculated by

f (m) = f (m−1)X.

Repeated application of this recursive equation yields

f (m) = f (0)Xm.

From the Markov transition matrix X , we can calculate
the probability of grid point gi being visited by a participant
during one day as

1−
Nd∏

t=0

(1− f (m)
i ),

where Nd is the number of time units in one day.

C. Cost-Effective Deployment of Wireless Sensors
Given the corresponding sensing requirement < Qi, Pi > of

each grid point gi, the probability that its data can be sensed
by any mobile phone participants with the required quality is
obtained by Algorithm 1. For each grid point gi, we calculate
the probability Pri that gi cannot be sensed by any participants
x in a time period T . Then the probability CovTi that gi cannot
be covered by any participants is

∏
∀x Pri. Finally, CovTi =

1 −
∏

∀x Pri denotes the probability that gi can be covered
by the mobile phone participants, where i = 1...N with N is
the number of grids in the monitored area.

Algorithm 1 Calculation of coverage for each grid point
for all gi is a grid point do
Pri = 1;
for all x is a participant do
px =

∫ 1
Qi

yx(q|α,β)dq;
for all gj is a grid point do

if dj,ipx > Qreq then
Pri = Pri

∏T
t=0(1− f (t)

j );
end if

end for
end for
CovTi = 1− Pri;

end for

We can obtain the coverage probability CovT1 , CovT1 ,
..., CovTn at each grid in different periods of time T1, T2,
..., Tn, where CovTj = (Cov

Tj

1 Cov
Tj

2 ...Cov
Tj

N ). Since one-
time deployment is often required for sensor networks, we
summarize the average coverage probability, Cov, by taking
an average of CovTj over different periods as

Cov =
n∑

j=1

CovTj/n.

Given the required coverage probability Preq for the grids,
we can calculate the missing coverage probability vector M =
Preq − Cov, where M = (M1M2...Mn) and Mi is the
missing probability that a grid point gi needs to be covered
by extra wireless sensors. Intuitively, the higher the missing
probability for a grid, the greater need for a sensor to be
deployed there. The coverage problem in sensor networks has
been proven as a NP-hard problem and heuristic algorithms
have been suggested for solving related problems [5], [20].

We propose a greedy algorithm for sensor deployment
considering the sensing quality and probability of mobile
phone participants (see Algorithm 2). Our algorithm attempts
to increase the coverage of the grid points that are covered
least effectively. We adopt a heuristic approach to determine
the best placement of the next sensor at a time.

We initialize qi as the required sensing quality Qi for all
grids gi with missing probability Mi > 0. We define ui to
be the gain if a new sensor is placed at grid gi. ui indicates
the missing probability that a sensor can reduce in proportion
to the required sensing quality Qi. A new sensor will be
placed at the grid that reduce the missing probability the
most, i.e. maximum gain ui. The grids which are covered by
the newly added sensors will have their missing probability
reduced. Only grids with missing probability Mi > 0 will be
considered in our algorithm. When a grid achieves a sensing
quality greater than Qi, i.e. qi = 0, it will be removed from the
missing list by setting Mi = 0. The algorithm is iterative and
terminated when all grid points are covered with the required



probability, or the upper limit of the number of sensors is
reached.

Algorithm 2 Deployment of wireless sensors
Sensors num = Sensors max;
for each gi with Mi > 0 do
qi = Qi;

end for
while (∃Mi > 0) and (Sensors num> 0) do

for each gi do
ui =

∑
∀j Mj

di,j

Qj
;

end for
Find gi∗ with the maximum ui∗ ;
for each gj do

qj = qj − di∗,j ;
if qj ≤ 0 then
Mj = 0;

end if
end for
Sensors num = Sensors num-1;

end while

VI. PERFORMANCE EVALUATIONS

We evaluate the performance of our framework by simu-
lating a sensing field of 10 × 10 grid points with randomly
generated obstacles in the environment. The distance between
adjacent grid points is 1 unit. Each grid point has a required
coverage probability. Their required lowest sensing quality lies
uniformly random in the range of [0.6, 1]. In our simulations,
the mobile phones and wireless sensors share the same detec-
tion probability function as

z(h) = e−0.4h.

A. Deployment Allows Reconfigurations

In the first experiment, we consider a campaign with 3
mobile phone participants. The whole campaign lasts for 200
days which are divided into 10 periods. Re-deployment is
allowed at the beginning of each period. We set all grid
points with the same required coverage probability of 0.9
in this experiment. We impose some motion patterns to the
participants. The sensing field is divided into 4 small areas
and each of them contains 5× 5 grid points. Each participant
only performs sensing in their own small area out of the four.
Three out of these four areas have participants moving around
with random motion. The remaining one is simulated as a lake,
where the participants cannot go there.

Figure 6 compares the coverage for the network with and
without sensors deployed. We show the coverage satisfaction
percentage in our figure, which means the percentage of grids
that can satisfy the required coverage probability which is 0.9
here. Coverage satisfaction percentage is an index showing
the satisfaction level on coverage in sensing. In our algorithm,
the sensors are deployed after the first period, such that our
framework can get enough information about the participants.
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Fig. 6. Comparison on coverage satisfaction percentage with required
coverage of 0.9
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Fig. 7. Number of sensors deployed with required coverage of 0.9

From the figure, we see that only around 30% of the grids can
achieve the required coverage probability on average. On the
other hand, about 80% of the grids on average can achieve
the required coverage probability in the network with sensors
deployed. Figure 7 shows the number of sensors deployed
in the campaign. The number of sensors required is around
18-20 in this case. It is surprising that re-deployments are
not required so often under random motion of participants in
divided areas.

B. One-Time Deployment
In this experiment, we evaluate the performance of our

framework considering one-time sensor deployment without
any reconfiguration. The experimental setting here is the same
as the first experiment with the required coverage probability
at 0.9. The wireless sensor network is deployed only once
after our framework has learned enough information in the
first period. We show the coverage satisfaction percentage
after 18 sensors are deployed in Figure 8. The figure shows
that our proposed sensor deployment algorithm can achieve
much better coverage satisfaction percentage than the random
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Fig. 8. Comparison on coverage satisfaction percentage with one-time
deployment

deployment algorithm. The coverage satisfaction probability
of random deployment with equal number of sensors is also
plotted for comparison. Both our algorithm and the random
deployment algorithm can achieve better coverage than sensing
with only mobile phone participants. The results demonstrate
that wireless sensors can complement the mobile phone par-
ticipants to improve the coverage.

VII. A CASE STUDY WITH MOBILE TRACES

We further evaluate our sensor deployment with real mobile
traces collected by the mobile phone participants in Disney
World (Orlando) [21], [22]. The human mobility traces are col-
lected with GPS receivers carried by 41 participants at every
10 seconds. These traces are mapped into a two dimensional
area and recomputed to a position at every 30 seconds by
averaging three samples over that 30 second period to account
for GPS errors [21].

We monitor a 1km x 1km area at the center of the theme
park with our framework considering the mobile traces of
10 hours. The sensing area is divided into 10x10 grid cells
with the grid points located at the center of each of them.
We assume that the mobile phones and wireless sensors share
the same sensing quality. A mobile phone or a sensor located
in a grid can provide full sensing quality within that grid.
The sensing quality degrades to only 50% in the neighboring
grids and only 15% two grids away. The sensing quality drops
to 0% for grids further away. The sensing data from mobile
phones and sensors to the same grid could complement each
other to achieve higher sensing quality. We set the expected
coverage probability Preq = 0.7 and the expected sensing
quality Qreq = 0.7 for all grids in this experiment. We
consider one hour as a time unit for a grid to be monitored
by mobile phones and/or sensors with Preq and Qreq at least
once.

Again, we target at one-time deployment in this exper-
iment. We run our sensor deployment algorithm to obtain
the minimum number of wireless sensors required and their





















         


























Fig. 9. Coverage satisfaction probability with one-time deployment





















         





















Fig. 10. Average sensing quality with one-time deployment

placements. From the traces, we found that at least 13 sensors
are required to satisfy the expected Preq and Qreq over
the sensing field. Figure 9 shows the coverage satisfaction
probability of the grid cells over time after deploying the
sensors. The results show that our sensor deployment can
always guarantee a satisfaction coverage probability greater
than 0.7, while uniform and random deployments with same
number of sensors can satisfy this requirement only in certain
hours. The coverage probability of the field without sensors
is also plotted for comparison. Similarly, the average sensing
quality of the grids is shown in Figure 10. It demonstrates that
our deployment can always provide the best average sensing
quality among the three different deployments.

Next, we examine the satisfaction coverage probability and
the average sensing quality varying the number of sensors (see
Figures 11 and 12). Our deployment can always achieve higher
satisfaction probability and average sensing quality than both
uniform and random sensor deployments. The results confirm
that our sensor deployment algorithm can reduce the number
of sensors effectively, while guaranteeing satisfactory sensing























                  
























Fig. 11. Coverage satisfaction probability varying number of sensors





















                  



















Fig. 12. Average sensing quality varying number of sensors

coverage and sensing quality.

VIII. CONCLUSIONS AND FUTURE WORKS

We propose a framework for wireless sensor network de-
ployment in mobile phone assisted environment. We suggest
that wireless sensors and mobile phone participants can per-
form sensing collaboratively and complement each other. Our
framework predicts the sensing quality of the mobile phone
participants considering their mobility and sensing behaviors.
Then, it provides wireless sensor deployment minimizing the
number of sensors, while guaranteeing satisfactory sensing
quality and coverage. Our framework includes several sub-
models which offers high level of flexibility. It can adapt
to different kinds of sensing campaigns by replacing any of
the sub-models accordingly. Extensive evaluations with real
mobile traces have shown that our framework can provide
good coverage and sensing quality in most of the grid points
with small number of additional wireless sensors. We believe
that the performance of our framework will improve further
if we understand the behavior and motion patterns of the
participants thoroughly in real campaigns.
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