
A Distributed Swarm-Intelligent Localization for
Sensor Networks with Mobile Nodes

Pontus Ekberg and Edith C.-H. Ngai
Department of Information Technology

Uppsala University, Sweden
{pontus.ekberg, edith.ngai}@it.uu.se

Abstract—We present a novel distributed localization algo-
rithm, called Swarm-Intelligent Localization (SIL), for computing
the physical locations of nodes in wireless sensor networks. The
algorithm assumes that only a small fraction of the nodes have
a priori knowledge of their positions, and that noisy distance
measurements are available between all neighboring nodes. The
algorithm has no explicit global state and it can handle nodes that
are both mobile and that can arrive in the network at any time.
SIL works in two different phases, a coarse phase where nodes
compute rough positions for themselves based on information
about remote anchors, and a fine phase where nodes iteratively
refine their positions from the coarse phase by collaborating with
their neighbors. The average computational complexity per node
running SIL is very low, namely constant in the network size
and linear in the connectivity of the network. We evaluate the
algorithm through extensive simulations. The results indicate that
SIL is able to compute accurate positions for the majority of
nodes in a wide range of network topologies and settings, and
that it can handle difficulties such as large distance measurement
errors and low network connectivity.

Index Terms—Sensor networks, Mobile environments.

I. INTRODUCTION

Many wireless sensor network applications require infor-
mation about where a certain phenomenon has been sensed.
For an example, in a tracking application we want to know
where the nodes that sense the tracked entity are positioned;
in a fire-detection system we want to know where a fire has
been detected; and in an inventory system we might want to
know where certain goods are placed. Location information is
also useful when employing techniques such as location-based
routing [1]. The process of determining the physical positions
of nodes is known as localization.

Usually a few nodes are assumed to have a priori knowledge
of their own positions. These anchor nodes often either have
GPS receivers or were mapped by hand. The rest of the
nodes are referred to as non-anchor nodes. The problem of
localization is then to find the positions of the large number
of non-anchor nodes, given the positions of the anchors.

In this work we present a new distributed algorithm, called
Swarm-Intelligent Localization (SIL), for solving the local-
ization problem. The algorithm’s computational complexity
per node is constant to the size of the network, and is on
average linear to the connectivity (average number of one-hop
neighbors) of the network. In the description of the algorithm

in subsequent sections, we assume that the only information
available to nodes are noisy distance measurements to their
one-hop neighbors, and that each anchor has a priori knowl-
edge of its own position.

SIL is capable of handling nodes arriving to the network at
different times, as well as mobile nodes. It uses a light-weight
general optimizer, Particle Swarm Optimization (PSO) [2], to
compute positions. SIL is an iterative algorithm, where the
computed position of a node is refined in each iteration based
on fresh information acquired from other nodes. We evalu-
ate the performance of SIL through simulations of different
network topologies with varying parameters.

II. RELATED WORK

Different approaches to localization algorithms for wireless
sensor networks have been proposed in recent years. They
could be centralized [3] or distributed [4]–[7], range-based [8],
[9] or range-free [10], and provide absolute [8] or relative
positions [11] etc. The algorithm presented in this paper is
distributed, range-based and absolute, so we will focus on this
type of algorithms in the remainder of this section.

One class of range-based localization algorithms attempts
to localize a few non-anchor nodes at a time [8], [12], [13].
The basic idea is that all non-anchor nodes perform position
estimations if they have enough direct anchor neighbors (gen-
erally three or four). When they finish the position estimations,
they will turn themselves into pseudo-anchors and enable other
non-anchor nodes to calculate their positions. This process
iterates until there are no more nodes that can calculate a
position. Error propagation and accumulation can be a problem
for this type of algorithms, because the calculations are based
on pseudo-anchors that themselves may have erroneous posi-
tion estimations. Nodes may also be left unlocalized, because
they never get enough (pseudo-)anchor neighbors to calculate
a position at all.

Another class of algorithms lets non-anchor nodes position
themselves with the help of each other, without turning them
into pseudo-anchors in some order. Savarese et al. [4] sug-
gested that non-anchor nodes first find rough initial position
estimations, and once they have those they iteratively recom-
pute and refine their positions based on each others’ guesses,
and broadcast any changes back to their neighborhoods. The
algorithm we propose in this work also takes this approach.

Lastly, a popular localization technique is to independently
localize small subnetworks consisting of a handful of neigh-

978-1-4577-9538-2/11/$26.00 ©2011 IEEE 83

boring nodes, and then stitch these small subnetworks together
into a global coordinate system. Many methods have been used
for localizing the subnetworks. For an example, Shang and
Ruml [11] used Multidimensional Scaling (MDS) to localize
the subnetworks. Li and Kunz [14] used a similar approach, but
used Curvilinear Component Analysis (CCA) instead of MDS.
One of the strengths of the network-stitching approach is that
small subnetworks can be localized into relative coordinate
systems without the help of anchor nodes, and then stitched
together and aligned to an absolute coordinate system using
relatively few anchors. However, this approach may require
some global decision about when to do the different steps,
which can make it difficult to handle mobile or newly arriving
nodes. Different from that, our work can support mobile nodes
arriving at different times.

III. SWARM-INTELLIGENT LOCALIZATION

In this section we present our new localization algorithm,
which we call Swarm-Intelligent Localization (SIL). SIL is a
distributed, range-based, absolute localization algorithm that
can work in either two or three spatial dimensions. It works
in two different phases, referred to as the coarse phase and the
fine phase. All non-anchor nodes start out in the coarse phase,
in which they calculate rough position estimations through a
number of iterations, and then carry on to the fine phase where
those estimations are further improved through more iterations.

The nodes communicate with their one-hop neighbors dur-
ing each iteration by transmitting one message that can ide-
ally be heard by all the neighbors. Each message contains
information about the sender’s estimation of its own current
position, its confidence in that estimation, and its stored data
about its one-hop neighbors and the anchors that it knows.
Each piece of data concerning the transmitting node’s one-
hop neighbors includes that neighbor’s last reported position
estimation, its reported confidence in that estimation, and the
measured distance to it (this data was gathered by listening
to previous messages transmitted by the neighbor). Similarly,
for each anchor is included its reported position, the shortest
known hop-count to it, as well as the added measured distance
along that path. In each iteration a node listens to one message
broadcast by each of its one-hop neighbors, broadcasts one
message itself, and then updates its position estimation based
on its currently available information. The node’s new position
estimation and the information received from other nodes
might be relevant to its neighbors. Therefore we iterate the
whole sequence again, thus making nodes cooperate in finding
a global solution as illustrated in Fig. 1.

In order to compute a position estimation, each non-anchor
node creates a Particle Swarm Optimization (PSO) instance
where the solution space of the optimizer maps to the physical
space (two or three spatial dimensions, represented as R2

or R3) in which we want to find the position. PSO is a
population-based, stochastic optimization algorithm proposed
by Kennedy and Eberhart [2]. In PSO, a number of particles,
together called the swarm, move or “fly” around in the solution
space of the problem, sampling the objective function at the
discrete points they move to. By using information of other
nodes’ reported positions, as well as the measured distances

Broadcast own data that is currently available to one-hop
neighbours, and listen to broadcasts from those neighbours.

Update position guess based on the gathered data about
remote anchors that is currently available.

Broadcast own data that is currently available to one-hop
neighbours, and listen to broadcasts from those neighbours.

Update position guess based on the gathered data about
one-hop and two-hop neighbours that is currently available.

Switch to
fine phase

End algorithm?

Start algorithm

Iterate

Iterate

End algorithm

Coarse
phase

Fine
phase

?

Fig. 1. In both the coarse phase and the fine phase we iterate until some
end condition is fulfilled. In each iteration we exchange information between
neighbors and calculate new position estimations in turn.

to those nodes, we form a function over the solution space,
called the objective function, that should be maximized by
the PSO. The point in the solution space where we find the
optimal (maximal) value of the objective function corresponds
to the node’s current best guess of its own position in physical
space. We have slightly modified Shi and Eberhart’s PSO
variant [15] to handle the dynamics of a changing objective
function (as new information is available each iteration, the
objective function will change) while incurring little overhead.
Due to the page-limit we have omitted the details about this
modification.

A. The Coarse Phase

1) Overview of the Coarse Phase: In the coarse phase,
the non-anchor nodes will gather position information about
a number of anchors, together with the hop-count and total
measured distance along a fewest-hops path to each of these
anchors as shown in Fig. 2. When receiving information about
an anchor, a node will store it and include it in future messages
that it sends, thus making sure that this information spreads
in the network.

A

Fig. 2. In order to estimate its own position in the coarse phase, the non-
anchor node labeled A uses the known positions of the anchors (darker),
together with the hop-count and total measured distance along a fewest-hops
path to each of them.

84

At the end of each iteration, a non-anchor node will position
itself at the point that seems to best match its current informa-
tion about the anchors. It does this by encoding the available
information in its objective function, and then iterating its
PSO instance on the newly formed objective function a fixed
number of times. Each anchor partakes in the communication
in exactly the same way as the non-anchor nodes, but does
not try to update its position afterwards.

Since anchors are sparsely deployed, we can expect the
majority of non-anchor nodes to have few, if any, anchors as
direct neighbors. As a consequence, the distance estimations
to the anchors will often have to be the sum of several hop-
by-hop distance measurements. These added distances are
likely to be inaccurate, especially if the nodes on the path
are not collinear, and we can therefore expect the position
estimations calculated in the coarse phase to be imprecise.
As such, the coarse phase of SIL serves to provide rough
position estimations for the non-anchor nodes, that will then be
further improved in the fine phase. The fine phase is capable of
computing much more precise positions than the coarse phase,
but is sensitive to the initial position estimations.

Since the number of anchors in a network is potentially un-
bounded, non-anchor nodes never store or forward information
about more than a maximum number, anchorsmax, of their
closest anchors in terms of hops. We use anchorsmax = 7 in
the simulations, but the optimal value will vary with factors
such as network size, topology and available resources.

2) The Objective Function in the Coarse Phase: Given
knowledge about an anchor’s position and an estimated dis-
tance to that anchor, we can draw the conclusion that we are,
approximately, somewhere on the perimeter of a circle that
has the distance estimation as the radius and the centre at the
anchor’s reported position. In three dimensions it would be the
surface of a sphere instead of the perimeter of a circle, but the
reasoning is otherwise the same.

We encode this in the objective function by adding a term
to it that has its maximum value on the circle’s perimeter, and
then gradually becomes smaller the farther away from it we
get. In order to leave some room for errors in the position and
distance data, we let the term flatten out as we approach the
perimeter. We also let it to flatten out as we get some distance
away, so that very remote anchors, or anchors to which the
distance estimation is very bad, can not contribute unbounded
penalties to the objective function. We achieve this by letting
the term be a Gaussian function of the distance between
the anchor’s reported position and the evaluated point in the
solution space (the non-anchor node’s candidate solution),
which has its center at the measured distance.

We set the variance of the Gaussian to be 2R2, where R
is the nominal radio range, so that it can be appropriately
shaped for deployments with different radio ranges. Let a
be an anchor, adist be the added measured distance to that
anchor, apos be its reported position and let ‖x‖ denote the
Euclidean norm of x. The contribution of anchor a to the
objective function of a non-anchor node is then proportional
to

fa(x) = e−
(‖apos−x‖−adist)

2

4R2 . (1)

Since an error in the distance estimation might be introduced
for each hop, especially if the nodes along the path are not
collinear, we weigh the contribution of each anchor by the
hop-count to it. We do not weigh by the estimated distance,
since that would make us biased toward anchors to which we
have underestimated the distance. Let A be the set of anchors
that a non-anchor node knows about, and let ahops be the hop-
count from that node to the anchor a. The objective function
of that node in the coarse phase is then the weighted sum of
the contributions described in Eq. (1):

fcoarse(x) =
∑
a∈A

fa(x)

ahops
. (2)

B. The Fine Phase

1) Overview of the Fine Phase: In the fine phase, the
non-anchor nodes will base their estimations not on remote
anchors, but on their close neighbors (which may be non-
anchor nodes themselves). Nodes switch to the fine phase
after they have run itermax iterations in the coarse phase,
or they have heard from the maximum number of anchors,
anchorsmax, and not moved their position estimation more
than 10% of the nominal radio range in the last iteration.
The number of iterations in the coarse phase is limited to
at most itermax to keep the total number of iterations low.
Since information about anchors propagate at least one hop
per iteration, any anchor that we have not heard about in many
iterations will be too far away to be really useful anyway. We
use itermax = 8, which we found to be a reasonable trade-
off. Note that different non-anchor nodes may be in different
phases at any specific time.

A non-anchor node will listen to the reported positions
that its neighbors currently believe they have, and then try
to position itself based on these reported positions and the
measured distances to these same neighbors. Note that each
node include the latest gathered information about its one-hop
neighbors in the messages it sends. By listening to messages
sent by its one-hop neighbors, a node can therefore gather
data about its two-hop neighbors. Both one-hop and two-hop
neighbors are used for the position estimation in the fine phase
(though we could generalize it to use n-hop neighbors, we
believe that returns in precision would be sharply diminishing
on going further than two hops away).

Once a non-anchor node has found a new position estima-
tion, this new estimation will have an effect on the estimations
of its neighbors, that based their estimations partly on the
estimation of the first node. Its neighbors will consequently
update their positions again, which will in turn affect the
estimation of the first node, and so on. What grows out of
this is a distributed, dynamic system, where nodes collaborate,
by using only local information, to achieve a global, coherent
solution. This is allowed to iterate for either a fixed number
of iterations, or until the nodes converge to solutions.

2) The Objective Function in the Fine Phase: For the one-
hop neighbors we have distance measurements that can be used
to form contributions to the objective function in a similar way
to the anchors in the coarse phase. Just as with the anchors,

85

A

B

C

d
AB

d AB

d BC

d
AB

Fig. 3. A pair of two-hop neighbors, A and C, are connected through a third
node, B. The distance measurements are dAB and dBC. Then A should likely
be between max(dAB, dBC) and dAB + dBC distance units away from C,
indicated by the filled area.

the contribution of a one-hop neighbor is proportional to a
Gaussian of the distance to the perimeter of a circle centered
on the neighbor’s reported position. The contribution to the
objective function of a one-hop neighbor, n, will therefore be
proportional to

fn(x) = e−
(‖npos−x‖−ndist)

2

4R2 . (3)

For two-hop neighbors we can not directly measure the
distance, and estimating it by simply adding two distance
measurements together is too inexact for our purposes in the
fine phase. However, we can find a larger space in which a
node is likely to be in, given these two distance measurements.
We note that a node is unlikely to be further away from one of
its two-hop neighbors than the added distance measurements
to it. Also, since two-hop neighbors are not one-hop neighbors,
they are unlikely to be closer to each other than any of them
are to the node that connects them (if they were, they would
probably have been able to communicate directly with each
other). Following this reasoning, we can conclude that it is
likely that a node is positioned somewhere in a ring-shaped
area (or space for the three-dimensional case), as is shown in
Fig. 3.

By using information about two-hop neighbors we can suc-
cessfully localize some nodes that can not be unambiguously
localized using only one-hop neighbors. Even if there are
several one-hop neighbors connecting a node to the same two-
hop neighbor, it only considers the two-hop neighbor once,
using the distances it gets from the one-hop neighbor that is
farthest from it.

We let a two-hop neighbor add to the objective function a
term that is proportional to a Gaussian of the distance from the
area described in Fig. 3. An example term is shown in Fig. 4.
Let mpos be the reported position of the two-hop neighbor m,
and let d1 and d2 be the measured distances of the two hops
to it, respectively. The contribution to the objective function
by the two-hop neighbor, m, is then proportional to

fm(x) = e−
h(‖mpos−x‖)2

4R2 , (4)

where h(y) is the distance to the optimal area, when y is the
distance to m:

h(y) = max(0,max(d1, d2)− y, y − (d1 + d2)). (5)

Fig. 4. In this example, the other node’s reported position is at (0, 0),
and the two nodes are connected through a third node to which they have the
measured distances d1 and d2, respectively. The term is maximal at any point
that is between max(d1, d2) and d1+d2 distance units away from the other
node’s reported position, and then decreases as we deviate from that area.

We weigh contributions to the objective function based on
the confidence factors of the neighbor nodes. The reasoning is
that if a node knows which neighbors’ guesses are likely to be
more accurate than others’, it can weigh its own guess based
on this information. We let all anchors have a fixed confidence
factor of 1, and let higher values denote lower confidence. A
non-anchor node’s confidence factor is calculated once as it
switches to the fine phase. The confidence is based on the
closeness in hops to the minimum number of anchors that are
required for a unique solution to be possible (three in two
dimensions, four in three dimensions). If the node does not
know about enough anchors, we use a somewhat arbitrary large
number, 100 in our case, as the hop-counts for the “missing”
ones. Let d be the number of dimensions of the solution space,
and Aclosest be the closest d + 1 anchors in in terms of hop-
counts that a node n knows about (or as many as are available).
The confidence factor of n is then given by

nconfidence =
∑

a∈Aclosest

(a2
hops)+(d+1−|Aclosest|)·1002. (6)

We chose this metric for the confidences because of its
simplicity and because it closely relates to why some nodes
have better position estimations early on. We can not simply
compute a node’s confidence factor based on how well it has
been able to find a solution to its objective function, though
it might seem like a good metric. This is because clusters
of nodes can position themselves perfectly with respect to
each other, but still be far away from their true positions—
something which seems to happen almost exclusively to nodes
that do not have enough anchors nearby.

The objective function in the fine phase is then a weighted
sum of the contributions from the one-hop and two-hop
neighbors in (3) and (4), respectively. Let N be the set of
all one-hop neighbors of a node, and M the set of all two-
hop neighbors. The objective function of that node in the fine
phase is then

ffine(x) =
∑
n∈N

fn(x)

nconfidence
+

∑
m∈M

fm(x)

mconfidence
. (7)

86

IV. EVALUATIONS

A. Simulation Setup

We simulate and evaluate the performance of the SIL algo-
rithm by varying parameters such as ranging errors, network
connectivity and node mobility. Four different topology types
are considered, as shown in Fig. 5. We define the location
error of a node as the distance between its true position and
estimated position. In the figures we plot the mean location
error and the median location error of all the non-anchor
nodes. All distances are normalized with the nominal radio
range R (i.e., if R = 30 m, then a location error of 1 means
an error of 30 m). Distance measurement noise is modeled as
Gaussian. Let d be the true distance between two nodes, the
measured distance d̃ is then

d̃ = d(1 + ωZ), (8)

where Z is a random variable drawn from a standard normal
distribution, and ω is a parameter for controlling the noise
level.

(a) Square grid topology (b) Square random topology

(c) C-shaped grid topology (d) C-shaped random topology

Fig. 5. The different types of network topologies.

B. Effects of Ranging Errors

Fig. 6 shows the location errors for varying values of the
ranging error parameter ω. All simulated networks had a size
of 100 nodes, of which 10% were chosen at random to be
anchors. The radio range and network area were set so that
the connectivity was about 10 for each network.

As we might have expected, the grid topologies had lower
location errors than their random counterparts. The explanation
is that the grid topologies’ regular structure avoid “weak”
spots that are inherently hard to localize. However, a larger
difference is to be seen between the square and the C-shaped
topologies. All of the topology types had similar median
location errors, but the C-shaped ones had larger mean location
errors with a larger standard deviation.

Location errors grow rather slowly when the ranging errors
increase, which indicates that the algorithm is robust even
in the face of large distance measurement errors. Compared
to other proposed localization algorithms, SIL’s robustness

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Measurement error, ω

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
1.1
1.2
1.3
1.4

L
oc

at
io

n
er

ro
r

(R
)

Mean
Median

(a) Square grid topology

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Measurement error, ω

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
1.1
1.2
1.3
1.4

L
oc

at
io

n
er

ro
r

(R
)

Mean
Median

(b) Square random topology

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Measurement error, ω

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
1.1
1.2
1.3
1.4

L
oc

at
io

n
er

ro
r

(R
)

Mean
Median

(c) C-shaped grid topology

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Measurement error, ω

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
1.1
1.2
1.3
1.4

L
oc

at
io

n
er

ro
r

(R
)

Mean
Median

(d) C-shaped random topology

Fig. 6. The effects of ranging errors.

to large ranging errors seems comparable or favorable. To
the best of our knowledge there are no algorithms that are
significantly more robust in this sense. We should note that
the ranging errors when ω = 1 are very large. When ω is
larger than around 0.5 we would get comparable or even better
results by simply setting all distances to the same approximate
average distance, effectively making the algorithm range-free.

C. Effects of Network Connectivity

Next, we studied the effects of varying network connectivity.
The simulated networks had a size of 100 nodes, 10% of them
randomly picked to be anchors. The ranging error parameter
ω was set to 0.2. We then varied the connectivity by changing
the radio range of the nodes. The results are shown in Fig. 7.

0 5 10 15 20 25 30
Connectivity

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
1.1
1.2
1.3
1.4
1.5
1.6
1.7

L
oc

at
io

n
er

ro
r

(R
)

Mean
Median

(a) Square grid topology

0 5 10 15 20 25 30
Connectivity

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
1.1
1.2
1.3
1.4
1.5
1.6
1.7

L
oc

at
io

n
er

ro
r

(R
)

Mean
Median

(b) Square random topology

0 5 10 15 20 25 30
Connectivity

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
1.1
1.2
1.3
1.4
1.5
1.6
1.7

L
oc

at
io

n
er

ro
r

(R
)

Mean
Median

(c) C-shaped grid topology

0 5 10 15 20 25 30
Connectivity

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
1.1
1.2
1.3
1.4
1.5
1.6
1.7

L
oc

at
io

n
er

ro
r

(R
)

Mean
Median

(d) C-shaped random topology

Fig. 7. The effects of connectivity.

Clearly, higher connectivity leads to better results. This can

87

be explained by the fact that with higher connectivity, the
average node has more neighbors, and thus more constraints
on its position estimation in the fine phase. The square grid
topology shows a remarkable resilience to low connectivities,
which can be explained by its regular structure’s lack of weak,
ill-connected spots. Even with very low connectivities, no
nodes in the grid network are really ill-connected. The other
network types were more difficult. In the random topologies,
low connectivity leads to more nodes that are ill-connected,
which makes them hard to localize.

D. Mobility
To evaluate the effects of mobility we studied the long

term behavior of the location errors as nodes were moving,
and plotted these in Fig. 8. All networks were of size 100,
10% of the nodes were picked to be anchors, the connectivity
was about 10 and ω = 0.2. We let 50% of the non-anchor
nodes be mobile and gave each of them an individual velocity
v = (∆x,∆y), such that ∆x and ∆y were drawn from a
uniform distribution on the interval [−R/5, R/5], where R is
the nominal radio range. In other words, when nodes moved
as fast as possible, they traveled the full radio range in each
direction during the time it took to run 5 SIL iterations. When
a mobile node got to the edge of the network area, it “bounced”
back by negating its velocity in that direction.

0 5 10 15 20 25 30 35 40
Iteration

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
1.1
1.2
1.3

L
oc

at
io

n
er

ro
r

(R
)

Mean
Median

(a) Square grid topology

0 5 10 15 20 25 30 35 40
Iteration

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
1.1
1.2
1.3

L
oc

at
io

n
er

ro
r

(R
)

Mean
Median

(b) Square random topology

0 5 10 15 20 25 30 35 40
Iteration

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
1.1
1.2
1.3

L
oc

at
io

n
er

ro
r

(R
)

Mean
Median

(c) C-shaped grid topology

0 5 10 15 20 25 30 35 40
Iteration

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
1.1
1.2
1.3

L
oc

at
io

n
er

ro
r

(R
)

Mean
Median

(d) C-shaped random topology

Fig. 8. The effects of mobility.

After a few iterations the location errors reached a relatively
steady level, and the algorithm was capable of keeping them at
that level while the nodes were moving. Many sensor network
deployments might need to keep track of some mobile nodes,
but most localization algorithms do not handle mobility in
any other way than rerunning the entire algorithm from start
at periodic intervals. For SIL, this is not necessary.

V. CONCLUSIONS

We have presented a new distributed, simple and lightweight
algorithm, named SIL, for localization in wireless sensor net-

works. The algorithm is flexible in that users easily can modify
it by adding or removing terms in the objective function as is
suitable for particular applications. For example, if we know
that the deployment has a particular shape or structure, terms
can be added to the objective function that rewards estimations
that agree with this knowledge.

SIL also support mobile nodes arriving at any time. Mo-
bility is handled by iterating the algorithm either when the
nodes move (controlled mobility) or at periodic intervals
(uncontrolled mobility). In each iteration, we build on prior
knowledge, thus enabling efficient refinements and updates.
Through extensive simulations we have demonstrated that SIL
is capable of computing precise positions for the majority
of nodes under different network topologies and settings. All
nodes, except completely isolated ones, are localized on a best-
effort basis. The location errors of SIL have been shown to
be low even for networks with large ranging errors and low
connectivity. The algorithm is also computational efficient and
very scalable.

ACKNOWLEDGEMENT

This work was supported by the VINNOVA VINNMER
program funded by the Swedish Governmental Agency for
Innovation Systems. We would also like to thank Dr. David
Black-Schaffer for his valuable comments on the paper.

REFERENCES

[1] K. Akkaya and M. Younis, “A survey on routing protocols for wireless
sensor networks,” Elsevier Ad Hoc Network Journal, vol. 3, 2005, pp.
325–349.

[2] J. Kennedy and R. Eberhart, “Particle swarm optimization,” in IEEE
International Conference on Neural Networks, vol. 4, 1995, pp.
1942–1948.

[3] L. Doherty, K. S. J. Pister, and L. E. Ghaoui, “Convex position
estimation in wireless sensor networks,” in IEEE INFOCOM, vol. 3,
2001, pp. 1655–1663.

[4] C. Savarese, J. M. Rabaey, and K. Langendoen, “Robust positioning
algorithms for distributed ad-hoc wireless sensor networks,” in USENIX
ATEC, 2002, pp. 317–327.

[5] K. Whitehouse, C. Karlof, A. Woo, F. Jiang, and D. Culler, “The effects
of ranging noise on multihop localization: An empirical study,” in IPSN
2005, April 2005, pp. 73–80.

[6] V. Savic, A. Poblacion, S. Zazo, and M. Garcia, “An experimental study
of RSS-based indoor localization using nonparametric belief propagation
based on spanning trees,” in SENSORCOMM, July 2010, pp. 238-243.

[7] B. H. Cheng, L. Vandenberghe, and K. Yao, “Distributed algorithm
for node localization in wireless ad-hoc networks,” ACM Trans. Sensor
Networks, vol.6, issue 1, Article 8, December 2009, pp. 1-20.

[8] A. Savvides, C.-C. Han, and M. B. Srivastava, “Dynamic fine-grained
localization in ad-hoc networks of sensors,” in ACM MobiCom, 2001,
pp. 166–179.

[9] M. L. Sichitiu and V. Ramadurai, “Localization of wireless sensor
networks with a mobile beacon,” in IEEE MASS, 2004, pp. 174–183.

[10] N. Bulusu, J. Heidemann, and D. Estrin, “GPS-less low-cost outdoor
localization for very small devices,” IEEE Personal Communications,
vol. 7, no. 5, 2000, pp. 28–34.

[11] Y. Shang and W. Ruml, “Improved MDS-based localization,” in IEEE
INFOCOM, March 2004, pp. 2640–2651.

[12] J. Liu, Y. Zhang, and F. Zhao, “Robust distributed node localization with
error management,” in ACM MobiHoc, 2006, pp. 250–261.

[13] A. Savvides, H. Park, and M. B. Srivastava, “The bits and flops of the
n-hop multilateration primitive for node localization problems,” in ACM
WSNA, 2002, pp. 112–121.

[14] L. Li and T. Kunz, “Localization applying an efficient neural network
mapping,” in ICST Autonomics. Brussels, Belgium, 2007, pp. 1–9.

[15] Y. Shi and R. Eberhart, “A modified particle swarm optimizer,” in
Proceedings of Evolutionary Computation, 1998, pp. 69–73.

88

