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Abstract—With the advancement of mobile technology, mobile
sensing becomes increasingly popular for applications in envi-
ronmental protection, traffic monitoring, and health care. Apart
from sensing, mobile phones have also been suggested to facilitate
data collection from wireless sensors in their surroundings. The
idea is to use smart phones to collect data from wireless sensors
through short range communication, including Bluetooth and
Near Field Communication (NFC). In this work, we consider
how to optimize this data collection provided by mobile users
along their walks in real-time. We formalize the problem as the
Sensor Collection Decision (SCD) problem and consider several
variations of the problem. In practice, SCD is an online problem
in which collection decisions must be taken in real-time, given no
pre-knowledge on the user mobility and the sensor locations. We
prove that a greedy strategy achieves a competitive ratio of 1

3
,

compared to the optimal offline solution. We conducted a variety
of numerical simulations using actual mobility trace data which
demonstrate that our proposed algorithms are near optimal in
practice.

Index Terms—Sensor networks, mobile data collection

I. INTRODUCTION

Wireless sensor applications have become increasingly pop-
ular in many domains, including environmental protection,
traffic monitoring, health care, security and safety [1]. Tra-
ditional wireless sensor networks (WSNs) are composed of
number of stationary wireless sensors. With the advancement
of mobile technology, mobile sensing becomes a reality sup-
ported by the advanced features of smart phones. Smart phones
operate like mini computers nowadays and many of them
are equipped with sensing capabilities such as microphone,
camera, and GPS. Mobile sensing applications have been
developed which encourage mobile users to participate in
different sensing activities [2], [3].

Apart from mobile sensing, mobile phones have recently
been explored to facilitate ubiquitous data collection from
wireless sensors [4], [5]. The idea is to collect data from
wireless sensors through short range communication, such as
Bluetooth and Near Field Communication (NFC), on the mo-
bile phones. One advantage of this approach is that it does not
require densely deployed sensor networks. Mobile phones can

collect data directly from the nearby sensors, which can save
energy from long multihop communication. GreenOrbs [6] is
one of the applications that allows forest rangers to collect
scientific data, including temperature, humidity, concentration
of carbon dioxide, using their mobile devices.

Nevertheless, there are many challenges in ubiquitous data
collection from mobile users. First, the mobile users are
moving freely in the sensing field. The contact between mobile
users and wireless sensors are unpredictable. The length of
contact time can be short depending on the moving speed of
the users. It is necessary for the mobile users to decide on
what sensing data to be collected in real-time to maximize
the reward gained. In addition, the wireless channel is shared
among the wireless sensors and mobile users in the same
vicinity. The wireless network capacity is limited for collecting
large amount of sensing data. Since the mobile users only
pass by the wireless sensors occasionally, the sensing data are
cached in the buffers of the sensors waiting for collection. In
many cases, the limited contact time and network capacity are
not sufficient for the mobile users to collect all the available
sensing data.

In this paper, we propose an online algorithm to optimize
the reward in ubiquitous data collection. The algorithm allows
individual mobile users to determine when and what data
to be collected from their surrounding sensors in real-time.
Our algorithm does not require any pre-knowledge of the
sensor locations in the field or user mobility pattern. We
measure the reward of sensing data according to the value
of information that the data carried. The value of information
can be determined by the importance of the sensing data and
the quality of the sensors [7], [8]. Given the reward of data
from the sensors, our focus is on scheduling data collection
to maximize the total reward for the mobile user. Our online
algorithm makes real-time decisions based on the available
network capacity, value density and collection urgency of the
data. We also design and implement a data collection protocol
for this online algorithm. We evaluate the performance of
our proposed solution through both theoretical analysis and
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experimental simulations using OMNeT++ [9] and mobility
traces collected by GPS [10].

II. RELATED WORK

Data collection have been widely studied for wireless sensor
networks. Most of the traditional WSNs considered a number
of wireless sensors forwarding their sensing data to a station-
ary sink [11], [12]. Recently, mobile elements (MEs) have
been suggested for data collection in WSNs. The data mules

architecture has been proposed to collect sensing data using
moving entities. Similarly, S. Basagni et al. [13] proposed a
heuristic algorithm to determine the routes of the mobile sinks
and demonstrated the improved network lifetime. Gu et al. [14]
also proposed a partitioning-based algorithm to schedule the
movement of mobile elements, which minimizes the required
moving speed and eliminates buffer overflow. Xu et al. [15]
further studied delay tolerant event collection with mobile
sink considering the spatial-temporal correlation of events
in the sensing field. Nevertheless, the above work focuses
on scheduling the movement of mobile elements, which are
different from mobile users walking freely without any control
in our work.

Some studies have been conducted for mobile elements
without any fixed trajectory. Lee et al. [16] proposed a routing
scheme that exploits the mobility pattern of the mobile sinks
to minimize energy consumption and network congestion.
Similarly, Kusy et al. [17] proposed an algorithm to predict
the mobility pattern of the mobile sinks from the training data
to improve reliability in data collection. Recently, ubiquitous
data collection with mobile users has been studied for mobile
users to collect data from wireless sensors networks. Li et
al. [4] proposed a ubiquitous data collection scheme that can
efficiently form a new data collection tree by locally modifying
the previously constructed data collection tree. However, none
of the above work has considered the reward or value collected
from the sensing data.

Sadagopan et al. [18] have explored the problem of max-
imizing the data collected from an energy-limited wireless
sensor network. It aims at collecting the maximum amount of
data possible from the sensors at a sink node considering the
remaining energy constraints in the sensors. Quality of Infor-
mation (QoI) has also been suggested as a multi-dimensional
metric to characterize the value of data captured by the sensor
network and the information derived from processing these
data [8]. Charbiwala et al. [19] further explored a centralized
sensor rate selection mechanism to maximize QoI for event
detection. Similar to the above work, we target to maximize
the value collected from the sensing data. Nevertheless, we
focus on ubiquitous data collection for mobile users, which
has to tackle the challenges of data collection with random
mobility and limited contact time.

III. PROBLEM FORMULATION

We consider a mobile user moving in a sensor field to collect
data from its surrounding wireless sensors. As the mobile user
moves along its path, new sensors will steadily come within
range (either directly or indirectly via the data collection tree).

The data from the wireless sensors may result in different
levels of reward according to the importance and value of
the carried information [7]. The mobile user does not know
whether the data that is available from the current sensors
is more or less valuable than data that may come available
from sensors that are somewhat further along the path. The
mobile must explicitly poll the sensors at a given time to
see what new data is available. There are a number of costs
associated with polling the sensors; the sensors must transmit
and potentially the data collection tree may be changed so it
is best to only poll intermittently. When polling is done, the
mobile user will receive information about what data items
are currently available for collection from the sensors that are
within range. The mobile user faces two problems that must
be decided in an online fashion: (1) at what times t to poll the
sensors for new data, we shall refer to this as the Polling Rate

(PR) problem, and (2) which available data should be collected
so as to stay within its capacity and maximize the reward of
the data received, which we refer to as the Sensor Collection

Decision (SCD) problem. In this work, we concentrate on the
SCD problem and do not make specific assumptions about
the location of the sensors and the distribution of the data
items (and their rewards), so just employ a simple constant
rate polling algorithm.

Suppose the mobile user j decides to poll the sensors that
are within range at some time t to see what data items are
currently available. If a sensor detects a polling request from
mobile user j (directly or indirectly), it sends a short message
to inform j of the data items it has and their values. The mobile
user receives information about each data item di in the form
of a tuple (i, li, ri, c, tl, tr), where i is the index of the data
item (assumed to be a unique identifier), li > 0 is the length
of the data (in packets), ri ≥ 0 is the reward value per packet,
c > 0 is transmission capacity required (in bytes) for j to
receive a packet of di, and di is available to be retrieved in the
window [tl, tr]. The mobile user must decide whether or not to
receive di during the interval of its availability. We assume that
the network is capacity limited so that the mobile user does
not have the capacity to receive all data items. It is possible
that di will be available again at a later time, depending on the
path of j, but this is not assured. We adopt a simple model
of the network capacity; we assume that mobile user j has
Cj units of network capacity during each timeslot. If j is
presented with the opportunity (i, li, ri, c, tl, tr), it must decide
whether to collect (some or all of) the data within the time
window [tl, tr] and not exceed its collection capacity in each
timeslot. We wish to find a collection strategy for one or more
mobile users that maximizes their reward. We note that there
are several important natural variations on this problem:

• Fractional vs. whole data: Can data be received partially
for fractional reward? For example, if data item di has
length li packets, does receiving m < li packets of
data produce mri reward? This variation reflects that a
sensor’s data may have partial value even if not all of the
data item is collected.

• Interruptible data transmission: Is it possible to interrupt
the transmission of di and continue it at a later time? If so,
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it may be advantageous to the collector to stop receiving
a data item temporarily in order to collect other newly
available valuable data with the possibility to collect the
remaining portion of di later.

In this work we focus on the fractional and interruptible
variation of the problem. We note that the whole data case
bares some resemblance to the online weighted secretary

problem [20]; in this problem an employer must decide at
what point to hire someone as he or she interviews a series
of candidates. In the case of whole sensor data, a particular
piece of data di may preempt future data that is potentially
more valuable so the collector must decide whether to commit
to collecting each piece of data in an online fashion.

IV. PROPOSED ALGORITHMS

A. SCD Algorithms

We propose two related algorithms for the fractional, in-
terruptible variation of the sensor collection decision (SCD)
problem based on computing a weight for each data collection
opportunity in the current time slot and then using a knapsack

algorithm to chose the most valuable combination of the
weighted data to collect in the time slot.

The data available to be collected during time t is either
from a new data item opportunity (i, li, ri, c, tl, tr), where t =
tl, or or an existing opportunity such that t ∈ [tl, tr]. We define
the value density of a data opportunity as

ρ(i, li, ri, c, tl, tr) =
ri

c
.

We will use a simple greedy strategy to chose which collection
opportunities the mobile collector should pursue at time t (see
Algorithm 1).

Algorithm 1 SCD-Greedy Algorithm

1: Oj : collection opportunities for j at time t;
2: Cj : capacity available at time t;
3: SCD-Greedy(Oj , Ci)
4: Dt = ∅: data items to collect;
5: s = Cj : remaining capacity available;
6: while Oj "= ∅ do
7: Choose o∗ = (i∗, l∗i , r∗i , c∗, t∗l , t

∗

r) = argmaxOj
ρ(o);

8: Dt = Dt ∪ {i∗};
9: s = s − c∗;

10: Update Oj = {(i, li, ri, c, tl, tr) ∈ Oj |c ≤ s};
11: end while
12: return Dt;

We also consider a variation of Algorithm 1 in which we
consider how urgent it is to collect a data opportunity. We
define the collection urgency at time t of a data opportunity
as

κt(i, li, ri, c, tl, tr) =
min(li, tr − t)

tr − t
.

We assume that the data locations and values are random and
so we expect that there will be fluctuations in the intensity
of data opportunities. In particular, in “high” intensity periods
in which a lot of data becomes available it may be prudent
to collect data is who value density is somewhat lower than
other available data but whose collection urgency is greater.

The higher value data will likely be collectable in the future.
Thus, we will employ a weighting scheme that balances both
the value density of the objects collected with their urgency.
The function we have chosen is

w(i, li, ri, c, tl, tr) = ρ(i, li, ri, c, tl, tr)
κt(i,li,ri,c,tl,tr).

We updated the algorithm to accommodate urgency in data
collection (see Algorithm 2).

Algorithm 2 SCD-UrgentGreedy Algorithm

1: Oj : collection opportunities for j at time t;
2: Cj : capacity available at time t;
3: SCD-UrgentGreedy(Oj , Ci)
4: Identical to Algorithm 1, except line 6 is replaced with:
5: Choose o∗ = (i∗, l∗i , r∗i , c∗, t∗l , t

∗

r) = argmaxOj
w(o);

B. Distributed Protocol Design

We present the details of the protocol design as follows. The
greedy online data collection algorithm can be implemented
with a distributed protocol between the mobile users and the
wireless sensors. We separate the implementation into two
phases, namely tree construction and tree migration. Tree
construction is performed when a mobile user j joins the
network the first time or moves to a new place that requires
exploration from scratch (see Algorithm 3). On the other hand,
tree migration is performed when the mobile user moves and
requires minor adjustment on the data collection tree (see
Algorithm 4).

In tree construction, the mobile user j broadcasts to sensors
in its k-hop neighbor. Each sensor i replies to j with ri, li,
and c. The data collection tree Tj is then constructed. j adds
the replies in the format of oi = (i, li, ri, c, tl, tr) to Oj . After
collecting all oi ∈ Oj , the mobile user runs the SCD-Greedy
algorithm to make data collection decisions. It then notifies
the selected sensors to start data collection.

Algorithm 3 Tree construction with mobile user j
1: Mobile user j broadcasts to sensors in k hops;
2: Each sensor i replies to j with < i, li, ri, c >;
3: for each reply from neighboring nodes do
4: j adds oi = (i, li, ri, c, tl, tr) to Oj ;
5: end for
6: Dt = SCD-Greedy(Oj , Ci);
7: send message to nodes in Dt to start data collection;

As j moves, it may lose connection to some sensors in
Tj . The hopcount c of some nodes may also change with
their distances to j. Tree migration is necessary to update
the tree structure to maintain the communication for data
collection. This operation can be performed either periodically,
or adaptively as the mobile user j loses connectivity with its
existing neighboring sensors (in our simulations we use an
adaptive approach). In tree migration, mobile user j broadcasts
to collect updated information from its neighboring nodes. It
removes nodes that are no longer in the tree from Oj . For
nodes that are carried forward, j updates their value density.
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For instance, a sensor that becomes farther away from the
mobile user requires more network capacity to deliver its
data through routing. Its value density will decrease with its
increased hopcount to the mobile user. Similarly, the length
of data li and the data retrieval time window [tl, tr] may
change with the mobility of the mobile user as well. After
updating Oj , j re-runs the SCD-Greedy algorithm and notifies
the relevant sensors.

Algorithm 4 Tree migration with mobile user j
1: Mobile user j broadcasts to sensors in k hops;
2: Each sensor i replies to j with updated oi;
3: for each nodes oi ∈ Oj with no replies do
4: remove oi from Oj ;
5: end for
6: for each replies of oi ∈ Oj with changed oi do
7: update the value density
8: end for
9: for each replies from nodes i /∈ Oj do

10: add oi to Oj ;
11: end for
12: Dt = SCD-Greedy(Oj , Ci);
13: send message to nodes in Dt for data collection;

V. PERFORMANCE ANALYSIS

In this section we analyze the performance of Algorithm 1
and develop an Integer Linear Program (ILP) formulation for
the offline version of the problem.

A. SCD Competitive Ratio

The algorithms proposed for the SCD problem are online

algorithms, meaning that they observe the input as a stream,
in this case, the newly available data items at time step t and
must make a decision on whether to collect each data item or
not. Online algorithms are typically analyzed with respect to
their competitive ratio relative to the optimal offline solution
as found by an optimal algorithm that has immediate access
to the entire input stream.

Lemma 1: Algorithm 1 achieves a competitive ratio of 1
3 .

Proof: Let S∗ be an optimal offline solution to an instance

of the SCD problem and let Salg be the online solution found
by Algorithm 1. We will consider these solutions as a set of

data packets that have been collected; let S∗(t) and Salg(t)
be the packets collected by the respective solutions at time t.
We have

S∗ = (S∗ ∩ Salg) ∪ (S∗ \ Salg).

Next, we can write
∑

S∗\Salg

reward(p) =
∑

t

∑

S∗(t)\Salg

reward(p). (1)

If a packet p ∈ S∗(t) \ Salg, then it was available at time
t to be collected by Algorithm 1, but the algorithm chose
not to collect it. Recall that Algorithm 1 proceeds by solving
an instance of a knapsack problem for all of the data packet

collection opportunities at time t. Let K∗(t) be an optimal
solution to this knapsack instance. We note that

∑

S∗(t)\Salg

reward(p) ≤
∑

K∗(t)

reward(p)

≤ 2
∑

S(t)

reward(p), (2)

since the standard greedy knapsack algorithm employed by
Algorithm 1 finds a knapsack solution that is at least 1

2 of
optimal. Combining (1) and (2), we have

∑

S∗\Salg

reward(p) ≤ 2
∑

t

∑

S(t)

reward(p)

= 2
∑

S

reward(p).

It follows that

reward(S∗) =
∑

S∗∩Salg

reward(p) +
∑

S∗\Salg

reward(p)

≤ reward(Salg) +
∑

S∗\Salg

reward(p)

≤ 3 reward(Salg),

so reward(Salg) ≥ 1
3 reward(S∗).

B. Solving the Offline SCD Problem

In order to obtain optimal solutions for the offline SCD
problem, we formulate an ILP. We consider the fractional,
interruptible version of the problem, although it is straight-
forward to modify it for the other variations. In the offline
version, we have a set of data collection opportunities O =
{(i, li, ri, c, tl, tr)} within a time interval [0, T ], and the ob-
jective is to maximize the total reward of all packets collected,
subject to the transmission capacity constraint in each timeslot.
Let Ti = {t : ∃(i, li, ri, c, tl, tr) ∈ O s.t. t ∈ [tl, tr]} be the
set of times available to collect data item i. We shall assume
that opportunities to collect data item i do not overlap and
define

cit =

{

c if ∃(i, li, ri, c, tl, tr) ∈ O s.t. t ∈ [tl, tr]

0 otherwise.

ILP:
Variables:
xit ≥ 0: the number of packets of data item di collected at
time t (integer).
Objective:

max
∑

i,t

rixit (3)

Constraints:

∑

t

xit ≤ li, ∀i (4)

xit = 0, ∀i, t /∈ Ti (5)
∑

i

citxit ≤ Cj , ∀t (6)
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Fig. 1. Reward collected VS. number of sensors.

VI. SIMULATIONS

We simulate our online algorithm in OMNeT++ using
802.15.4 MAC layer (2.4GHz) [9]. The wireless sensors are
randomly deployed in a 600m× 600m sensing area. We vary
the number of nodes from 50 to 150 in our experiments.
This results in an average degree of 5 to 10 for the sensor
nodes in the network. We adopt the mobility traces collected
by GPS in a state fair at North Carolina, USA [10]. The
maximum hopcount is set to five for the mobile user to
broadcast its HELLO message. We repeat each experiment
with five runs and show the averaged result. We also compare
our simulation results with the ideal greedy solution and the
optimal solution. The ideal greedy solution shows the results
of our online algorithm without considering any packet losses
and retransmissions due to network interference. The optimal
offline solution is generated by the ILP solver CPLEX. At
each time t, a sensor generates a new random data item with
independent probability p (Poisson process model).

We considered three experimental scenarios:

• Scenario 1: Vary n, the number of randomly deployed
sensors, from 50 to 150 nodes with a step size of 25. Fix
p = 0.3 and C = 30kbps.

• Scenario 2: Vary p the probability of a sensor randomly
generates a new data item in a timeslot, from 0.1 to 0.5
with a step size of 0.1. Fix n = 100 and C = 30kbps.

• Scenario 3: Vary C, the collection bandwidth of the
mobile user from 1kbps to 5kbps with a step size of
1kbps. Fix n = 100 and p = 0.3.

Figure 1 shows the total reward collected by the mobile
user varying the number of sensors. The result shows that
the mobile user can collect more reward if there are more
sensors in the field. It also demonstrates that our greedy
algorithm can achieve close to optimal performance in an ideal
network without any interference. We also implemented our
online algorithm and run it in the simulator OMNeT++. The
simulation result is slightly below the idealized greedy and the
optimal solutions due to network interference, packet losses
and retransmissions.

Next, we evaluate the reward collected by the mobile
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user varying the data generation probability. Again, Figure 2
shows that our greedy algorithm can achieve close to optimal
performance in an ideal network without any interference.
Similarly to Figure 1, our simulation result obtains less reward
compared with the idealized greedy and optimal solutions.
This is because packet losses and retransmissions occur due
to interferences in the network.

Finally, we evaluate the reward collected varying the service
rate of the mobile user in Figure 3. The results show that
both the idealized greedy and the optimal solutions achieve
similar performances. It is also interesting to see that both
solutions perform the best when the service rate is around
20kbps. On the contrary, the simulation result keeps quite
steady at different service rates. We believe that it is due to
the limitation of the wireless channel being shared among the
nodes in the same vicinity.

VII. CONCLUSIONS

In this work we considered the problem of how a mo-
bile user should best collect data from sensors that it can
communicate with in order that the most important data is
collected. We formalized the problem as the Sensor Collection
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Decision Problem (SCD) and proved that the a greedy strategy
achieves a 1

3 competitive ratio for the online problem. We
also gave an ILP formulation of SCD which permitted us to
compute optimal solutions for offline problem instances. We
conducted accurate MAC level simulations using OMNeT++
and showed that the simulation tracked the idealized greedy
online algorithm well. For the instances we considered, the
online greedy solutions were nearly equal to the optimal offline
ILP solutions.
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